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Preface 

This report was prepared as part of ETC/ATNI Task 1.1.2.2 Long term air quality measurement trends 
in Europe in 2019. It constitutes the deliverable to subtask 2 : «ETC Technical Paper on the role of 
meteorological variability in driving air quality». 
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Executive Summary 

The current report provides a short overview of previous years’ studies on long-term trends in O3, NO2 
and PM and the role of meteorological variability for the concentration of these pollutants. The report 
furthermore includes a comprehensive study applying the final version of the statistical GAM model to 
monitoring data of O3, NO2, PM10 and PM2.5 and model meteorological data covering the entire time 
period 2000-2017.  
 
The previous studies on the link between trends and meteorology has shown that these links could be 
estimated by a careful design of model setups using CTMs (chemical transport models). This was a 
main focus of the EuroDelta Trends exercise where the relative influence of boundary conditions vs 
that of meteorological variability and vs that of emissions were estimated from the differences 
between various model scenarios. In this way, one could attribute the individual contributions from 
each of these three processes to the concentration levels of pollutants such as O3, NO2 and PM. This 
procedure as well as other associated procedures based on the same model scenarios indicates that 
emission changes have been the main driver for the downward pollutant trends during 1990-2010 
while meteorological variability lead to an additional decline in pollutants during the first decade. For 
the 2000-2010 period, the influence of the meteorological variability on the trends was smaller.  
 
The CTMs are certainly useful tools for explaining pollutant trends but require multi-year scenario 
calculations designed in very specific ways. This approach could also be sensitive to the years selected 
for calculating the perturbations in boundary conditions and meteorology.  
 
The statistical GAM model that has been developed during the last years provides an alternative or 
complementary method for separating the influence of meteorological variability from other 
processes. This model represents a completely different approach that is based only on links between 
local meteorological parameters (like temperature, wind etc) and observed pollutant concentration 
levels. Thus, the model does not contain any representation of the real processes in the atmosphere. 
The GAM model is therefore an efficient tool that only require access to meteorological data. The main 
limitation is that this model relies on the assumption of in-situ relationships between meteorology and 
pollutant concentration which is not really valid for most pollutants. In spite of this essential limitation, 
it turns out that the model provides good agreement with the observed data in some regions as 
explained in more detail below. In other regions, mainly those which are located further away from 
the main emission regions, the performance of the statistical model is poorer. Furthermore, the 
statistical model seems less capable of predicting the high peak levels which often is of more interest 
than the mean levels.   
 
Based on the experience with the statistical modelling we see three main applications of the method 
and the report is focussed on these applications:  

1. Separate the long-term trend in observed concentration levels from the variations  induced by 
meteorological variability and additionally look for any trends induced by meteorology alone.  

2. Evaluate to what extent the pollutant levels in one specific year deviates from the expected 
level due to meteorological anomalies that year. 

3. Identify possible flaws in the measurement data. Since the statistical model is based on 
systematic patterns between meteorology and concentration levels, a particularly poor model 
performance could indicate errors in the observational data.  

 
Monitoring data were extracted from the data stored in EEA’s Airbase and e-Reporting data base as 
well as from EMEP’s database EBAS. Meteorological data were extracted from ECMWF as daily or 6-h 

data with a spatial resolution of 0.3 x 0.3.  



 

Eionet Report - ETC/ATNI 2019/14 6 

We found differences in model performance both with respect to geographical area and atmospheric 
species. In general, the best performance was found for O3 with gradually lower performance for NO2, 
PM10 and PM2.5 in that order. With respect to area, the model generally produced the best predictions 
for Central Europe (Germany, Netherlands, Belgium, France, Austria, Czech Republic) and the poorest 
for southern Europe. There were some differences for the performance of the individual species. For 
summertime ozone, the best agreement with observed data was found in the Mid- and East-Europe 
while the poorest agreement was found for the Iberian Peninsula and the Mediterranean. 
Furthermore, for England we found a slightly poorer agreement with ozone than with wintertime NO2. 
For the Scandinavian sites, a fair agreement was found for summertime O3. The timeseries of daily 
data revealed, however, that this could be explained by the fact that the GAM model reproduced the 
seasonal cycle very well although the episodes of peak ozone tend to be significantly underestimated.  
 
For wintertime NO2, particularly poor agreement between the GAM model and the measurements was 
found for the North Italian region. The model agreement for southern Europe and the Iberian Peninsula 
was also fairly low, although variable from site to site.  
 
The number of stations with measurements of PM10 and PM2.5 with sufficient length was substantially 
lower than for O3 and NO2, and thus, a region-by-region comparison of the model performance was 
not really possible. In general, the PM10 data indicated a better agreement between the model and the 
measurements for summer than for winter. Furthermore, the GAM model seemed to perform better 
for the background urban than for rural sites. Poorest performance for PM10 was found for background 
rural sites in winter.  
 
Over the 18 years period studied (2000-2017) we found very few cases for which the meteorology 
alone caused a statistically significant trend in the data. One exception is the O3 sites in Mid Europe. 
For the sites in this region taken together, it is estimated that meteorology alone caused a slight 
increase in the summer mean MDA8 levels. The general lack of meteorology induced trends in the data 
reflects the length of the time series in this study. A time period of 18 years is presumably a sufficiently 
long period that interannual variations in meteorology is reduced and still too short for climate change 
to have a noticeable effect.  
  
Withdrawing the meteorological factor by the GAM model can help in identifying significant trends. 
The main reason for this is that meteorology introduces a year-to-year variability which could mask 
the underlying trend. Meteorology could also induce a trend in the concentrations but this is a matter 
of length of the timeseries. For short time periods (typically less than 10 years) the variations in 
meteorology could lead to spurious effects reflecting the weather conditions at the start and end year. 
On a long timescale the effects of climate change (trends in temperature, precipitation etc) will 
certainly lead to trends in the concentration of pollutants, but this is beyond the scope of this report.  
 
For rural ozone, a decline is calculated in the meteorologically adjusted (hereafter named meteorology 
adjusted) trends in all regions except for the inflow region at the north-western boundary of Europe 
that shows only minor variations during the 2000-2017 period. Some regions show a steady decline in 
ozone while others show a curve peaking in the early 2000s. Many of the regions indicate a flattening 
of the ozone trend in the last part of the period. The meteorology adjusted trends for NO2 show a 
similar pattern as for O3 with decreasing levels in all regions. As for O3 the NO2 trends are seen as a 
steady decline in some regions and a curve peaking in the early 2000s in other regions. Marked 
downward meteorology adjusted trends are found for PM10 as well as substantial variability from year 
to year caused by meteorology.  
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Abbreviations and definitions 

CAMS: Copernicus Atmosphere Monitoring Service 
 
CTM: Chemical transport model 
 
ECMWF: European Centre of Medium-Range Weather-Forecasts 
 
EEA: European Environment Agency 
 
EMEP: European Monitoring and Evaluation Programme 
 
ETC/ACM: European Topic Centre for Air Pollution and Climate Change Mitigation 
 
ETC/ATNI: European Topic Centre on Air pollution, noise, transport and industrial pollution  
 
EDT: EuroDelta Trends  
 
GAM: Generalized Additive Model 
 
MDA8 : The maximum daily 8-h running mean concentration defined as in the AQ directive. 

This metric was only used for ozone.  
 

NMGE : Normalised mean gross error. NMGE= |Mi – Oi|/ Oi (where Mi = model value at day i and 
Oi = observed value at day i).  

 
NO2: Nitrogen dioxide 
 
O3: Ozone 
 
PBL: Planetary boundary layer (the height of the layer near the ground that could be regarded 

well mixed vertically during the day, typically in order of a few hundred meters up to 2 km 
height). 

 

PM: Particulate matter 

PM2.5: Particulate matter with a diameter of 2.5 µm or less 

PM10: Particulate matter with a diameter of 10 µm or less 

ppb: Parts per billion (unit of concentration) 

r: Linear correlation coefficient 

R2: Coefficient of determination 

US-EPA: United States Environmental Protection Agency 

UTC: Coordinated Universal Time 

µg/m3: Microgram(s) per cubic metre 
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1 Introduction 

During the last few years, several studies on trends in the air pollutants O3, NO2 and PM have been 
carried out within the framework of EEA (Colette et al., 2015; Colette et al., 2016; Solberg et al., 2018a, 
Solberg et al., 2018b). In addition to the issue of the magnitude of the trends themselves, a central 
question has been the influence of meteorological variability vs that of anthropogenic emissions for 
the observed trends.  
 
Normally, such questions are analysed by the use of chemical transport models (CTMs) which aims at 
predicting the atmospheric levels of pollutants through parameterizations of advection, turbulent 
diffusion, chemical reactions, surface interactions etc. and which then could be used to investigate the 
sole influence of each process. There is a scientific consensus that  state-of-the-art CTMs provide the 
best approach for predicting and analysing trends and variabilities of atmospheric pollutants. However, 
using CTMs for simulating very long time periods in a multi-scenario approach could be a costly and 
time-consuming task. Secondly, the analyses of the model results become non-trivial when there are 
significant discrepancies between the model predictions and the measured levels of pollutants. One 
background for the EEA trend studies was a statement in the 2013 Air Quality Report (EEA, 2013): “… 
there is a discrepancy between the past reductions in emissions of O3 precursor gases in Europe and 
the change in observed average O3 concentrations in Europe”. This raised the question whether the 
discrepancy was due to errors in the emission data, lack of performance by the CTMs or simply the 
range of uncertainty of the links between precursor emissions and ozone levels.  
 
In parallel with the long-term development of CTMs into present day’s highly complex deterministic 
models, several studies in the scientific literature has been devoted to the application of statistical 
models. Such models aim to link the level of pollutants to several input explanatory variables on the 
basis of correlations alone without any attempt of reproducing the actual causal physio-chemical 
processes. Thus, there is a fundamental difference between these two approaches. Whereas a CTM 
tries to simulate the dependencies in a cause-effect relationship, the statistical model simply look for 
patterns in the data, i.e. correlation between two or more physical quantities. Such statistical models 
are commonly met by the critic that they are in some sense worthless and only offering a “poor man’s 
model” that was popular before complex 3-D CTMs could be applied. A large number of scientific 
papers have shown, however, that statistical based models are useable when they are designed in a 
careful way and that they could be used as an addition to the much more advanced CTMs (e.g. 
Thompson et al., 2001; Ordonez et al., 2005; Camalier et al., 2007; Zheng et al., 2007; Chan 2009; 
Davies et al., 2011; Fix et al., 2018; Otero et al., 2018; Pernak et al., 2019).  
 
A literature review of such statistical models applied to surface ozone was prepared through an ETC 
task in 2014 (Solberg et al., 2015). In 2015, a trend study for NO2, O3 and PM (Colette et al., 2015) was 
applied to Airbase monitoring data as a complement to the ongoing trend work within UN-ECE for 
EMEP stations. One conclusion from this study was that it was difficult to conclude on the relative 
importance of European emission policies and externalities such as intercontinental transport or 
meteorological variability, and the use of CTMs was recommended. In 2016, this recommendation was 
followed up in an ETC task (Colette et al., 2016) devoted to the analyses of trends of O3 and PM10 within 
the project EuroDelta-Trends (EDT). The ETC task in 2016 and the associated EDT exercise was looking 
at both measured and modelled data, but the two separate ways of isolating the influence of 
meteorology (and boundary conditions) from the influence of emissions that were applied were based 
on modelled data only.  
 
Then, in 2017, the trend work was continued in an ETC task (Solberg et al., 2018a) that was focused on 
the use of a certain statistical method, a so-called generalized additive model (GAM), to O3 monitoring 
data. The purpose of this study was to see if a procedure applied by the US-EPA (Camalier et al., 2007) 
on a regular annual basis to their O3 data for subtracting the influence of interannual variations in 
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meteorology was applicable also to the European O3 data. In 2018, this work was continued by applying 
a similar GAM method to Airbase data for NO2 and PM10.  
 
With these various studies as a background, the purpose of the present report is to provide a synthesis 
and recommendation for the possible future use of statistical models for “removing” the influence of 
meteorological anomalies on measured pollutants and their associated trends.  
 
Key results of the various studies are given below together with the different methods’ strengths, 
weaknesses, limitations and requirements.  
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2 Short overview of previously applied methods within ETC 

Chapters 2.1 to 2.3 provide the main features of the trend studies carried out in 2016-2018. 
 

2.1 Studies based on the EuroDelta Trends model exercise (2016) 

These results were documented by Colette et al. (2016).  
 
Time period: 1990-2010.  
Pollutants:         O3, PM10, PM2.5 (after 2000). Two methods applied as described in Ch. 2.1.1. and 2.1.2. 
 

2.1.1 EuroDelta Trends (EDT) attribution procedure based on model scenarios 

This was a purely CTM based approach. It was designed specifically to allow for an attribution of the 
impact of European emission changes vs that of meteorology and boundary conditions, respectively. 
An ensemble of models was used with the same predefined trends in anthropogenic emissions. One 
specific set of boundary conditions was used for all models. 
 
The approach was based on the concept of ozone being the result of annual variations in three 
processes: emissions, boundary conditions and meteorology. By designing model runs corresponding 
to various linear combinations of these three processes, the trend due to meteorology alone was 
calculated as the additive combination of these specific model runs.  
 
We could not retrieve ozone correlation scores in the EuroDelta Reports since these data were not 
included in the reports,, but referring to CAMS, the correlation of daily maximum ozone in state of the 
art CTMs is of the order or 0.6-0.8, reaching 0.8-0.9 for the CAMS ENSEMBLE model (Figure 1).  
 

Figure 1:  Ozone correlation in the CAMS Operational Regional Forecasts, for each quarter since 
spring 2016,  courtesy V. Petiot, Meteo-France. 

 
 
The metrics studied were the following: Annual mean PM10 and 4th highest MDA8 O3 for the summer 
half year (April-September).  
 
The results were aggregated and presented for nine European regions.  
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2.1.2 Estimation of trends as deviations from a model climatology 

It is possible to define a term called “pollutant climatology” or “ozone climatology” similar to the more 
familiar weather climatology. The weather climatology is calculated as the 30-years mean of various 
weather characteristics (temperature, wind, precipitation etc) as a function of time of year at a defined 
site. A corresponding ozone climatology would refer to the 30-years mean of ozone as a function of 
time of year, but since this depends on the weather conditions as well as on the ozone precursor 
emissions (NOx and VOC), we have to define the ozone climatology as the mean (and spread) in the 
ozone levels at a certain site and time of year given the 30 years of different meteorologies and given 
the emissions for that specific year. Thus, the ozone climatology would have to be defined as a model 
quantity. It could not be determined by observations. The ozone climatology could be written as:  
 

O3,clim (yearj) = 1/nO3(i)  i = 1, …, n (years), assuming emissions for yearj 
 
In other words, the ozone climatology for one specific year would have to be calculated by a CTM, 
running the model for 30 years of meteorological data using the same emission data applicable to that 
specific year. In practice we will seldom have access to 30 years of meteorological data and thus we 
will have to limit the climatology to the number of years available. This concept of ozone climatology 
was applied by Colette et al. (2016).  
 
In Colette et al. (2016), this approach was based on three sets of model runs from the EMEP model, 
two of them corresponding to the EuroDelta Trend scenarios as mentioned above. Results from these 
three model runs were used to estimate the climatology of the pollutant levels each year and the 
deviation from this climatology each year.  
 
It was shown that the actual model scenario for one specific year could be estimated with a good 
accuracy as the linear combination of these runs. The possible influence of changes in input boundary 
conditions had to be neglected in this procedure, though.  
 
The metric studied was: The 4th highest MDA8 of O3.  
 

2.2 Statistical study based on the US-EPA methodology for observed O3 (2017) 

This method was fundamentally different from the approaches outlined above with respect to both 
the input data and the model concept. The main aim of this study was to apply a statistical method 
named GAM (Generalized Additive Model) that has been documented and applied on a routine basis 
by the US-EPA. The GAM is essentially a multiple regression method where one dependent variable (in 
this case the daily ozone levels) is estimated as a function of several input explanatory variables (in this 
case meteorology and time). The GAM differs from a standard multiple regression in the way that the 
relationship between each input variable and the dependent variable is a smooth function and not a 
constant as in multiple regression as outlined in detailed in Ch. 5 below. 
 
The GAM was applied to rural Airbase and EMEP ozone data (May-August) for two periods separately: 
1990-2000 and 2000-2010. Gridded daily meteorological data from EuroDelta Trends were used as 
input explanatory variables to the statistical method. The performance of the method was evaluated 
by looking at daily values of MDA8 O3 station by station. 
 
In the original US-EPA study (Camalier et al., 2007) their method was validated against daily maximum 
O3 concentrations based on stations merged into 39 urban agglomerates for which they found that the 
predictive power as measured by R2 ranged from 0.56 to 0.80. In our approach, we used no merging 
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of stations and we evaluated the predictions against the daily MDA8 levels for individual rural and 
suburban sites. It was found that the R2 (coefficient of determination) statistic for the individual 
European sites in general was lower than found for the urban agglomerates in the US. The best 
agreement between the daily observed ozone levels and the values predicted by the GAM was found 
in Central Europe with R2 of 0.65-0.70 which seems very satisfactory. On the other hand, significantly 
poorer agreement was found in Spain, southern France and various areas in the east, particularly Baltic 
and Slovakian site, with R2 values of 0.3-0.5. The RMSE (root mean square error) showed particularly 
high values in Northern Italy, Portugal and the few sites in the southeast, indicating a strong bias in the 
predicted MDA8 levels in these areas.  
 

2.3 Similar method as for O3 applied to NO2 and PM (2018) 

In this study, we applied the statistical model developed for O3 in 2017 to NO2 and PM10 for the periods 
1990-2000 and 2000-2010. The PM2.5-data were too limited for the GAM to be used for that pollutant. 
As for ozone, the gridded meteorological data from EuroDelta Trends were used as input. Various 
adaptions were needed when switching the focus from O3 to NO2 and PM10. Firstly, the daily mean 
values were used as dependent statistic instead of the max daily 8h average used for O3.  Secondly, 
also data from urban sites were included.  
 
Best performance for NO2 was found in the areas typically associated with the main European emission 
area, i.e. Belgium, the Netherlands, North-Western Germany and the United Kingdom. Significantly 
poorer performance was found for e.g. Austria and areas in southern Europe. Marked differences were 
also found for PM10 although there was a less clear spatial pattern. The amount of PM10 data were, 
however, much less than for NO2 for this time period.  
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3 Findings – strengths, weaknesses, uncertainties, feasibilities, requirements 

3.1 Conclusions from the studies based on the EuroDelta Trends model exercise in 2016 

As documented by Colette et al. (2016), all methods based on the EuroDelta Trends model exercise 
provided similar results with emission changes being the main driver for the downward trends in peak 
O3 levels whereas the meteorological variability also lead to reduced ozone but at a smaller magnitude.  

3.1.1 Attribution procedure 

Findings:  Emission changes are the most important driver of trends in ozone summer peaks. 
However, in almost all region and time periods, meteorological variability contributed to decreased 
ozone peaks whereas boundary conditions were less important. For annual mean PM10, emissions 
were the clearly most important driver in both periods, whereas the impact of meteorology was much 
smaller. Meteorology lead to slightly reduced PM10 levels in the 1990s except in the Mediterranean, 
and a very slight increase all over in the 2000s.  
 
Requirements: Require gridded model results for at least two meteorological years with different 
boundary conditions and different emissions 
 
Limitations: Strictly model based. Observational data are not used  
 
Recommendations: The method relies on a very specific set of model scenarios for the entire time 
period as it was defined within the EuroDelta Trends exercise. The model data (as well as the input 
meteorological data) from the EuroDelta exercise ends in 2010. One strength of the approach lies in 
the multi-model assessment, which is not scheduled for an update in the short term, although CAMS 
is considering performing such a task in a future phase. Furthermore, it is not really possible to evaluate 
the “performance” of this method compared to the statistical observational methods applied later. 
Making this method an operational service is in principle possible but will require a substantial 
modelling effort.  

 

3.1.2 Ozone model climatology 

Findings: Emissions are clearly most important, but the results indicate that for all regions except 
Scandinavia the meteorological variability during the 1990-2000 and 2000-2010 periods lead to an 
even stronger reduction in ozone (measured by the 4th highest MDA8) than the emission reduction 
alone. 
 
Requirements: Require gridded model results for the entire period (each year) with three emission 
scenarios – fixed emissions for the start year, fixed emissions for the end year and true emissions 
varying from year to year.  
 
Limitations: Strictly model based. Observational data are not used.  
 
Recommendations: Much of the same conclusions as for the previous chapter (Ch. 3.1.1). This method 
is very similar to the EuroDelta Trends set-up, except the multi-model aspect. An updated EMEP/MSC-
W Trend simulation was performed late 2019 and will be investigated by ETC/ATNI in 2020.  
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3.2 Conclusions from a statistical GAM model based on observational ozone data (2017) 

Findings: When the predicted daily O3 levels were compared to the measured O3 data, a good to very 
good agreement was found in central Europe and in Germany in particular. In the Nordic countries, 
the seasonal cycle and the timing of ozone episodes were well reproduced, but the high ozone peaks 
were substantially underestimated. In southern Europe poorer agreement with observed values were 
found. 
 
Requirements: The GAM method relies on the availability of a suite of meteorological data provided 
on a daily or finer temporal resolution for each station, either from a gridded data set or from local 
measurements. The necessary parameters typically include temperature, humidity, wind speed, and 
the height of the mixed layer.  
 
Limitations: A main limitation of this method as for all locally based statistical models is the assumption 
that the ozone concentration at a station could be explained by the local meteorological conditions at 
the site. This is normally not a valid assumption since the ozone level depends on the history of the air 
mass over a period of several days including physio-chemical processes such as surface deposition, 
photochemical formation, vertical mixing etc. Another limitation is that the GAM model is designed 
for predicting mean quantities. In the 2017 study, the method was used for predicting the seasonal 
mean of the MDA8 during May-August. The results from the study indicated that the high peaks in 
ozone were generally underestimated and thus the GAM method should not be used for predicting 
exceedances of limit values or other extreme values.  The fact that the performance of the method is 
less suited for peak ozone levels  and that certain regions  of Europe are not so well modelled is a 
concern.  
 
Recommendations: When already established and adapted to the data set, the GAM is a straight-
forward and efficient tool which could be used on a routine basis if the required input meteorological 
data are available. It is important to be aware of the strengths and limitations of the method though. 
The method could be applied to predict daily ozone levels and the influence of meteorological 
variability for parts of Europe, mainly central Europe, to a fairly accurate degree. On the other hand, it 
will probably not be possible to use this method for the prediction of exceedances of extreme values.  
 

3.3 Conclusions from a GAM model based on observational NO2 and PM data (2018) 

Findings: The performance of the GAM model showed similar behaviour for NO2 as for O3 with highest 
scores near the emission source areas and poorer scores elsewhere. For PM fewer clear patterns were 
found, but this could reflect more sparse station network in the period 1990-2010 and that the applied 
season (4-months winter period) was too limited. 
 
Requirements: To apply the GAM method for NO2 and PM requires similar input data as for O3. For PM, 
representation of natural sources of dust would have been an advantage, but is difficult to think of in 
practice without involving a CTM. 
 
Limitations: As for ozone, the assumption that the concentration at a station could be explained by the 
local meteorological conditions at the site is in principle not a valid assumption although the method 
is seen to work well for certain regions. On the other hand, one could argue that the assumption of 
local relationships would be more valid for a primary pollutant as NO2 than a secondary pollutant as 
O3, at least in the emission areas. Another limitation is, as for O3, that the GAM is not really suited to 
predict exceedances of extreme values since the method tends to underestimate the highest levels. 
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Recommendations: The recommendations for applying the GAM for NO2 and PM is similar as for O3; it 
is a straight-forward method which could be run on a routine basis (annually) without strong demands 
on computer resources etc. Access to input meteorological data is required though. 
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4 GAM model applied to O3, NO2 and PM for the period 2000-2017 

4.1 Method description 

In this chapter, we show results with the GAM method using data extracted from ECMWF for the 
period 2000-2017 together with data from the consolidated monitoring data from EBAS and Airbase/e-
reporting for O3, NO2, PM10 and PM2.5. 
 
The methodology is mainly based on the same approach that was developed in the previous projects 
on trends for these pollutants as described in Solberg et al. (2018a, 2018b), and the reader is referred 
to those reports for more details.  
 
The basic method is a so-called GAM, i.e. generalized additive model, which is a statistical regression 

model linking expected values i  of the given response variable iY  to a number of explanatory 

variables 
ijx  through the following set of relations: 

 ( ) ( ) ( )0

1

;    
p

i j ij i i

j

g x E Y   
=

= + =  (1) 

where 0  is a constant (the intercept), and ( )j  , for 1,...,j p= , represent smooth functions of the 

covariates 
ijx , where p  is the number of such covariates. The regression model (1) is introduced for 

each compound (O3, NO2, PM10 and PM2.5) and for each monitoring site separately.  
 

The response variable iY  in (1) represents measured daily mean value of concentration at day number

i while
ijx represents explanatory variables at the same site and day, where the latter consist of 

meteorological variables (temperature, wind speed etc.) and time variables (day of week, day of 

season etc.), for 1,...,i n= , where n  is the number of data, i.e. days, in the period 2000-2017. 

 

In Eq. (1) ( )g   is a link function linking the statistical expected value of the response variable iY , i.e. 

i ,  to the explanatory variables 
ijx . In the GAM, the response variable iY  is also assumed to have a 

certain probability distribution, with mean i  and variance iV  , known as the response distribution. 

The GAM is an extension of a multiple linear regression (MLR) where each  βj  is a smooth function of 

ijx and not a constant to be multiplied with 
ijx  as in an MLR, and where the mean value µi is more 

generally related to the covariates through a given link function ( )ig  . 

 

Like in the previous trend study (Solberg et al., 2018b) we apply a unit link function ( )g  =  and a 

Gaussian distribution as a response distribution for O3, and a log link function ( ) logg  =  and a 

Gamma distribution as a response distribution for NO2, PM10, and PM2.5. The reason for this choice is 

that O3 has a relatively small range of concentration variations where the variance of iY , i.e. iV , does 

not change very much with the mean i  and thus the response distribution is well represented with a 

symmetric distribution such as the Gaussian. On the other hand, NO2, PM10, and PM2.5 have a much 
larger range of concentration variations of several orders of magnitude, and for these compounds, the 

variance of iY , i.e. iV , is more proportional to 2

i . Thus, for these species it is better, and also 
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common practice in GAM modelling, to choose a distribution that is skewed to the right such as a 

Gamma distribution, as a response distribution for iY . 

The other choice of settings and parameters in the present study (Table 1) is closely related to the 
settings and parameters in the previous trend study (Solberg et al., 2018b) with some exceptions: 
 

1. Absolute humidity instead of relative humidity was introduced as a specific covariate for O3 
since it is found that the O3 levels were better explained by this variable. 

2. Global radiation was found to be superfluous based on a concurvity analysis of all covariates 
since it was found to be well represented non-linearly by the other meteorological covariates. 
This covariate has thus been removed from the GAM model. 

 
For the other explanatory variables, the same set as in the previous study (Solberg et al., 2018b) was 
used, i.e. daily mean values of temperature, wind speed and direction, planetary boundary layer 
height, relative humidity (for NO2, PM10 and PM2.5), day of week, day of season and time in fraction of 
years, the latter of which represents the trend term in the GAM model. New in the current study, is 
that this trend term is represented as a smooth function of time rather than as a straight line as was 
the case in the previous studies (Solberg et al., 2018a, 2018b). The main reason for this choice is that 
the period 2000-2017 is a relatively long period and thus it is less relevant to represent the whole trend 
during this long period as a simple straight line. However, in order not to introduce too much unwanted 
variability due to noise in the residuals into the trend term, we chose to model this with a smaller 
number of degrees of freedom (4) for this term than the default which is 10. The same smaller number 
of degrees of freedom (4) is also applied for the same reason to the other two time-covariates, i.e. 
weekday and day of season. However, for all meteorological covariates, we still apply the default of 10 
degrees of freedom for the smooth functions. 
 

Table 1: List of explanatory variables used in the GAM (Eq. (1)) for O3, NO2, PM10 and PM2.5 in this 
study. The short names refer to the legends used in the map plots shown below. 

 Associated explanatory variable Short name in 
the plot legends 

Not used by 

x1 Daily temperature at 18 UT temp  

x2 Daily mean 10 m wind speed ws  

x3 Daily mean 10 m wind direction wd  

x4 Daily mean PBL height pblh  

x5 Daily relative humidity at 18 UT1) rh O3 

x5 Daily absolute humidity at 18 UT h2o NO2, PM10, 
PM2.5 

x6 Daily total precipitation prec O3, NO2 

x7 Weekday number dayofweek  

x8 Day number in season dayofseason  

x9 Continuous time in fraction of years (0.0 = 1 Jan at start 
of period). This is the trend term. 

years  

1) Relative humidity was not given in the ECMWF data but was calculated based on the absolute humidity, 
temperature and pressure (Vaisala, 2013).  

 
Through the GAM optimisation, we calculate the smooth β functions and their significance levels for 
each station/period as well as various measures of the GAM model evaluation performance such as 
RMSE, R2, etc. For this latter part, we use the openair library (Carslaw and Ropkins, 2012; Carslaw, 
2015). 
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Examples of the response curves for O3 and NO2 are given in Figure 2 and Figure 3, respectively. These 
response curves show the partial dependency of O3 and NO2 with respect to each input parameter 
when all the other parameters were kept at their mean values.  Figure 2 indicates a marked positive 
relationship between temperature and ozone as expected as well as a negative relationship between 
O3 and wind speed and absolute humidity. The trend term shows reduced concentrations with time 
for this site except for the very last part of the period. For NO2 (Figure 3) the results for this site show 
a marked negative relationship with temperature, relative humidity, wind speed and PBL height, as is 
to be expected. A clear downward meteorologically adjusted trend is also seen for this site.  
 

Figure 2: Example of response curves for one station, AT0002 (Illmitz), for O3 based on daily data 
from the summer half year (April-September) during 2000-2017. The daily data are based 
on the MDA8 (max daily 8h running mean concentration). Each panel shows the response 
function between the input parameter and ozone when all the other input parameters are 
kept at their mean level. The short names of the input parameters are explained in Table 1 
above. Illmitz is a well-established background site in central Europe, having a very long 
monitoring history, thus a god candidate to be used as an example site. 
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Figure 3: Same type of plot as in Figure 2. Example of response curves for BETBE011 for NO2 for the 
winter period, defined as November-February. This is an example of a site with a marked 
reduction in NO2 and also a good agreement between modelled and observed levels. 

 
 
The GAM model was applied to O3 only for the summer period (1 April - 30 September) and to NO2 
only for the winter period (1 November - 28 February). For PM10 and PM2.5 the model was applied for 
both the summer and winter periods.  
 
The reason for looking at separate season was based on the criteria of homogeneity. The use of a GAM 
relies on an overall assumption of homogeneity, i.e. that the links between the explanatory variables 
and the output parameter are homogeneous within the time period considered. For ozone, it is well 
known that that the links to various meteorological parameters are reversed going from summer to 
winter. In summer, anticyclonic conditions associated with weak winds and a shallow PBL typically lead 
to enhanced ozone levels, whereas such conditions lead to reduced ozone in winter due to  titration 
with NO2. Similar shifts from summer to winter are seen for NO2 and PM, and thus applying the GAM 
model to individual seasons make sense and will produce more robust results.  
 
As in the previous studies, the GAM performance is evaluated each year by excluding the data for that 
year, i.e. the “target year” and fitting the model to the rest of the data (the left-out years). This means 
that e.g. when using the GAM model to predict the daily concentration levels in 2013, we skip the 
measurement data for 2013, but use the data for all the other years in the 2000-2017 period to 
calculate the smooth response curves. Then, these response curves are combined with the 
meteorological data for 2013 to predict the daily concentration levels in 2013. Thus, the model values 
are true predictions and not in any way influenced by the observed concentration values in the target 
year.  
 
A more detailed overview of how the GAM model is solved numerically is found in Appendix A.  
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4.2 Input data 

The meteorological data used in this report were retrieved from the European Centre of Medium-
Range Weather-Forecasts (ECMWF). The Era-Interim (Berrisford et al., 2011) reanalysis dataset was 

used with a 6-hourly analysis (00:00, 06:00, 12:00, 18:00 UTC), retrieved on a 0.3 x 0.3 resolution. 
For precipitation and PBL height daily data were extracted (daily total precipitation and daily mean 
boundary layer height). These data were consistent through the whole period 2000-2017, i.e. there 
were no shifts in methodology or resolution which is crucial for the statistical modelling that assumes 
of systematic relationships between input meteorological data and output pollutant levels.  
 
The measurement data were extracted from the air quality monitoring databases hosted by the 
European Environment Agency (EEA) and by EMEP. Up to 2012, the datasets from EEA were gathered 
in the AIRBASE database, for which we used the v8 release. After 2013, the EEA database moved to 
the Air Quality e-reporting system. A technical difficulty lied in matching these two databases because 
many stations changed names and codes over time. Instead of station names, the matching is 
performed using the Sampling Point information, which is the most reliable information about the 
consistency of a given record.  
 
The data from EEA were combined with measurement data from EBAS hosted by EMEP. Whereas the 
EEA data contain stations at rural, suburban and urban locations, the EBAS data are from rural stations 
only. The merging of the EEA data with the EMEP data was not a trivial task and due to limitations on 
time and resources we ended up with combining EEA and EMEP data only for ozone whereas we used 
only EEA data for NO2 and PM. As mentioned above, the merging of the AIRBASE database with the e-
reporting system was a considerable task on its own. A further combination of these data with data 
from EBAS turned out to be more demanding than anticipated due to several factors:  
 

• Different station names and station codes used by EMEP and EEA 

• Differences in the geographical coordinates for the same stations  

• Differences in the measurement data themselves such as  
o 1 or 2 h shifts in data due to uncertainties linked to UTC or local time 
o Different procedures for flagging data 
o Periods of invalidated data in one database while being valid in the other 
o Errors due to wrong scaling etc in one database and not the other 

 
This reflects the problems when the same measurement data are reported to several separate 
databases. Due to differences in quality assurance (QA) procedures, file conventions, metadata 
requirements etc it is almost impossible to avoid differing data. Merging data from two or more 
databases containing partially the same stations, could thus become time consuming and challenging 
to carry out.  
 
We chose to merge data for O3 since the EEA data includes significantly more rural sites than EBAS and 
since urban and suburban sites where not included in the statistical modelling for O3. Ideally, for the 
future, the EEA and EMEP data should be combined also for NO2 and PM.   
 
All the statistical modelling was based on daily values, and for O3 we used the daily MDA8 values 
whereas for NO2 and PM we used the daily means. For NO2 and PM data there is an additional 
complication that these measurements could be given as either daily or hourly data and furthermore 
that the monitoring could shift from one to the other during the time period and even that in some 
years the same station could have parallel measurements with both hourly and daily data. The merging 
of the daily and hourly data NO2 and PM from the EEA databases turned out to be non-trivial and at 
the end we had to drop this merging and therefore used only the hourly based measurements which 
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was aggregated into daily mean values. For the future it is strongly recommended that a list of 
preferred hourly and daily data sets to be used are provided in beforehand.  
 

4.3 Screening of stations 

In this and subsequent chapters parts of the results were aggregated into the nine geographical regions 
shown in Figure 4. Figure 4 is copied from the report by Colette et al. (2016) and shows the regions 
used in the EuroDelta Trends exercise. This definition of regions represented a slight adjustment to the 
regional climate zones as defined in the original PRUDENCE project (Christensen and Christensen, 
2007). We adjusted these regions a bit further to include stations further east and south, and thus the 
Eastern Europe (EA) region was extended further east and the Mediterranean (MD) region further east 
and south compared to the original definitions. 
 

Figure 4: The adjusted Prudence regions, copied from Colette et al. (2016) used in the EuroDelta 
exercise. In the present work, the EA region was extended to the east and the MD region 
was extended to the east and south. 

 
 
 
The GAM method described above was applied for each monitoring station individually. Based on the 
results of the GAM and inspection of the time series of the observed monitoring data, it was clear that 
a certain fraction of the time series included various kinds of flaws. As discussed in more detail below, 
it turned out that the GAM could be used to identify time series with dubious data. Ideally, all input 
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data extracted from the databases should be cleaned for errors, but it became obvious that this was 
not the case. This is outlined in more detail in Ch. 5.7 below.  
 
In the further use and evaluation of the observational data for O3 and NO2 we included only the time 
series fulfilling two criteria:  

• The height of the monitoring site should be below 1000 m altitude 

• The linear correlation coefficient, r, should be 0.55 or higher 

 
These selection criteria were based on a close inspection of the time series. It turned out that the GAM 
in general did not perform well for high mountain sites which presumably reflects that the pollutant 
levels are not linked to the local meteorological conditions at these sites and furthermore, that the 
rather coarse gridded meteorological data from ECWMF are not representative for the mountain sites. 
 
The distribution of the linear correlation coefficients for the individual stations are shown in Figure 5 
for O3 and NO2. This indicates that a certain fraction of the sites showed particularly low correlation 
between the GAM model and the measured values and the cut-off value at 0.55 is marked in the plots. 
 

Figure 5: The distribution of linear correlation coefficients, r, for the GAM model vs the observations 
for O3 during the summer half year (Apr-Sept) and NO2 during winter (Nov-Feb). The cut-
off at r = 0.55 for the filtering of the stations is marked. 

 
 
 
The criteria for the linear correlation coefficient (r > 0.55) are a subjective choice based on inspection 
of individual time series. Ideally, the observational data should be “cleaned” prior to our use by 
methods independent on the GAM, but the time did not allow us to do this and besides, this was not 
part of the task of the present project. In the following, we show aggregated results from the GAM 
based on the criteria given above. 
 
The inspection of the time series revealed that the issue of time series with possible flaws was most 
pronounced for NO2 and to a somewhat less extent for O3. For the PM data, we did not see a similar 
link between the linear correlation coefficient (r) and dubious time series as for NO2 and thus the PM 
data was only screened for the station altitude. Table 2 gives the number of sites within each of the 
nine adjusted Prudence regions. 
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Table 2: The number of monitoring sites within each of the adjusted Prudence regions (see Figure 
4) for the different pollutants and seasons. The number in brackets refer to the number of 
so-called filtered sites (r >  0.55 and altitude < 1000 m asl). The filtering was only applied 
to O3 and NO2. 

 O3 
(Apr-Sep) 

NO2 
(Nov-Feb) 

PM10 
(Nov-Feb) 

PM10 
(Apr-Sep) 

PM2.5 

(Nov-Feb) 
PM2.5 

(Apr-Sep) 

EN 14 (14) 27 (27) - - 16 18 

IN 8 (7) 5 (5) - - - - 

IP 42 (26) 140 (107) 31 41 25 26 

FR 11 (11) 66 (65) - - - 6 

ME 138 (133) 390 (384) 153 201 69 64 

SC 28 (28) 32 (31) 9 9 12 11 

NI 48 (29) 148 (95) - 5 - - 

MD 14 (10) 48 (43) - - - - 

EA 26 (25) 64 (63) 39 48 12 20 

 
 
In Figure 6 and Figure 7 the spread in correlation coefficients for the unfiltered and filtered NO2 and  
O3 data are shown for the adjusted PRUDENCE regions defined above. The results (median, 25-
percentile and 75-percentile) are also given in Table 3 and Table 4. This shows that the filtering of 
sites is mainly applied to sites in the North Italy (NI) and Iberian Peninsula (IP) regions. For NO2, the 
best GAM model performance as measured by the linear correlation coefficient, r, is seen for the 
Mid-Europe, France, England and Inflow regions (Figure 6). For O3, the best performance is seen for 
the Mid-Europe and East Europe regions.  
 

Figure 6: The spread in linear correlation coefficients, r, for the GAM model prediction vs the 
observed daily mean values of NO2 (Nov-Feb) for the adjusted PRUDENCE regions. The 
number of sites is given on top. Blue refers to the unfiltered data set and red to the filtered 
data set. 
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Figure 7: Same as Figure 6 for O3 during summer (April-Sept.). 

 
 
 

Table 3. The data from Figure 6 in tabulated form showing the median (p50), 25-percentile (p25) 
and 75-percentile (p75) of the linear correlation coefficients, r, for the GAM model 
prediction vs the observed daily mean values of NO2 (Nov-Feb) for the adjusted PRUDENCE 
regions for the filtered and unfiltered data. The number of sites is given by ‘n’. 

Region 
Filtered data  Unfiltered data 

p50 p25 p75 n p50 p25 p75 n 

Scandinavia 0.76 0.73 0.78 31 0.76 0.72 0.78 32 

Inflow 0.79 0.76 0.81 5 0.79 0.76 0.81 5 

England 0.79 0.76 0.81 27 0.79 0.76 0.81 27 

Mid Europe 0.76 0.71 0.80 384 0.75 0.70 0.80 390 

East Europe 0.71 0.65 0.74 63 0.71 0.64 0.74 64 

France 0.76 0.72 0.80 65 0.76 0.71 0.80 66 

North Italy 0.67 0.62 0.70 95 0.63 0.53 0.68 148 

Iberian Peninsula 0.69 0.62 0.75 107 0.65 0.55 0.73 140 

Mediterranean 0.72 0.65 0.76 43 0.70 0.62 0.75 48 

 
  



 

Eionet Report - ETC/ATNI 2019/14 26 

Table 4. The data from Figure 7 in tabulated form showing the median (p50), 25-percentile (p25) 
and 75-percentile (p75) of the linear correlation coefficients, r, for the GAM model 
prediction vs the observed MDA8 values of O3 (Apr-Sep) for the adjusted PRUDENCE 
regions for the filtered and unfiltered data. The number of sites is given by ‘n’. 

Region 
Filtered data Unfiltered data 

p50 p25 p75 n p50 p25 p75 n 

Scandinavia 0.77 0.69 0.80 28 0.77 0.69 0.80 28 

Inflow 0.73 0.71 0.75 7 0.72 0.65 0.75 8 

England 0.70 0.69 0.74 14 0.70 0.69 0.74 14 

Mid Europe 0.80 0.78 0.82 133 0.80 0.78 0.82 138 

East Europe 0.78 0.72 0.82 25 0.78 0.72 0.82 26 

France 0.73 0.67 0.77 11 0.73 0.67 0.77 11 

North Italy 0.74 0.71 0.76 29 0.73 0.68 0.75 48 

Iberian Peninsula 0.64 0.61 0.69 26 0.61 0.55 0.66 42 

Mediterranean 0.71 0.65 0.75 10 0.66 0.55 0.75 14 

 
 

4.4 GAM performance 

The maps below show the R2 and the normalised mean gross error, NMGE, aggregated into grid 

squares of 1 x 1. For grid squares with more than one monitoring station, the aggregated data shows 
the mean of the statistics in the case of two stations and the median in the case of more than two 
sites.  
 
R2, also called R squared, gives the part of the variance explained by the GAM model while NMGE is a 
measure of the bias, or mean absolute error, relative to the mean value.   
 

4.4.1 O3 April - September 

Figure 8 shows the mapped values of R2 and NMGE for rural background ozone sites below 1000 m 
fulfilling the minimum criteria of r ≥ 0.55. This shows that the GAM performance varies considerably 
over the continent with best scores for northern and central Europe (Germany, Belgium, Netherlands, 
Poland Czech Republic, Austria and to a less extent Scandinavia). For southern Europe (Spain, southern 
France and southern Italy) the performance as measured by R2 is clearly poorer. The area in central 
Europe with best performance matches the area of main emissions of ozone precursors and reflects 
the fact that the GAM model is based on local relationships (a link between observed O3 and local 
meteorological conditions). For stations further away from the main precursor source regions, and 
thereby more dependent on long-range transport it is to be expected that the performance of a 
statistical method as the GAM that relies on local relationships will perform poorer. A typical feature 
at mid- and northern Scandinavian sites is that most of the ozone variability is due to the marked 
seasonal cycle which is reproduced well by the GAM model, while the peaks in ozone is substantially 
underestimated by the GAM. This may lead to a fairly high correlation between the GAM model and 
the observations while the time series of daily data reveal that this is mainly due to the average 
seasonal cycle and not the episodes.  
 
The values of NMGE are mostly smaller than 0.15, implying that the mean relative error is less than 
15% which reflects that the general range of O3 levels are small (and much smaller than the range of 
NO2 and PM levels). 
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Figure 8: R2 (left) and NMGE, the normalised mean gross error (right), aggregated into grid squares 

of 1 x 1 for the performance of the GAM model applied to surface ozone data from the 
summer half year for rural background stations. 

 
 
 

4.4.2 NO2 November - February 

Figure 9 shows the mapped values of R2 and NMGE for NO2 for four winter months (November - 
February) for background urban and background rural stations, respectively. The number of rural sites 
is however, much lower than the number of urban sites. The R2 field for the urban NO2 sites shows a 
similar pattern as for O3 with highest score in central and northern Europe, but clearly higher NO2 
scores are seen for the urban Spanish NO2 sites compared to the rural O3 sites. The relative errors as 
given by NMGE are, however, much higher for NO2 than for O3. This is to be expected due to the much 
larger span in concentration levels for urban NO2 than rural O3.  
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Figure 9: Same as Figure 8 for NO2 at urban background sites (top) and rural background sites 
(bottom) during four winter months (November-February). 

 

 
 
 

4.4.3 PM10 November - February 

Figure 10 shows the mapped values of R2 and NMGE for PM10 for four winter months (November - 
February) for background urban and background rural stations, respectively. The number of stations 
with long-term PM10 measurements is substantially lower than for NO2 and O3 as seen in Figure 10, 
and there are no French sites and very few in Scandinavia. Most of the stations are in central Europe 
(Germany, Poland, Czech Republic and Austria) and a few on the Iberian Peninsula. The general 
performance of the GAM model is poorer for PM10 compared to NO2 and O3. One should keep in mind, 
though, that these data were not screened for the stations with the lowest r-values (as was NO2) and 
thereby more sites with R2 values in the range of 0.3-04 are seen. Few PM10 sites show high R2 scores 
(> 0.6). Furthermore, these results indicate that the GAM model performs poorer for rural sites 
compared to urban sites in winter although the number of rural sites is too low to really judge this. 
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The sites with the highest R2 values in winter are in Poland, the Czech Republic and one on the north 
west coast of Spain. More or less all NMGE values are higher than 0.3 implying that the general bias of 
the GAM model is as 30 % or more relative to the mean. 
 
The fact that the GAM performance for PM10 for the winter months are poorer than for NO2 and O3  
reflects that further physical processes than those included in our GAM model are important for the 
PM10 levels. 
 

Figure 10: Same as Figure 8 for PM10 at urban background sites (top) and rural background sites 
(bottom) during four winter months (November-February). 

 
 
 

4.4.4 PM10 April - September 

Figure 11 shows the mapped values of R2 and NMGE for PM10 for the summer half year (April - 
September) for background urban and background rural stations, respectively. These results indicate 
that the GAM model in general performs somewhat better in summer than in winter for PM10 at least 
for the background urban sites. This probably reflects that very local meteorological conditions such 
as temperature inversions are much less frequent in summer than in winter and thus that the ECMWF 
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data used as input to the GAM is better suited in summer than in winter. The NMGE, expressing the 
mean relative error is considerably lower in summer than in winter which is a further sign of a better 
model performance in summer. 
 

Figure 11: Same as Figure 8 for PM10 at urban background sites (top) and rural background sites 
(bottom) during the summer half year (April-September). 

 
 
 

4.4.5 Examples of time series 

The aggregated maps in the previous chapters give an indication of the overall performance of the 
GAM model. By experience, we know however, that simple time series with observed and predicted 
levels are much more suited to show what these statistical metrics really mean. With 18 years of data, 
many hundred stations and several pollutants, we could only provide an absolute minimum of these 
time series as example which are done in the following. 
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Figure 12: Observed and predicted ozone concentrations (MDA8 = max daily 8h running average) 
during the summer half year for station with the highest r score, DESN080, 2004-2017. 
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Figure 13: Observed and predicted NO2 daily mean concentrations during the winter half year for the 
station with the highest r score, station DENW134, 2001-2017. 

 
 

4.5 Trends 

The GAM function (Eq. 1) includes the trend term (X9 in Eq. 1) and all the other terms as smooth 
functions which could thus not be tabulated as single numbers as in the case of a linear function. In 
the following, the results from the GAM were merged for the 9 adjusted  PRUDENCE regions (Colette 
et al., 2016) as shown in Figure 4. 
 
Since the pollutant levels vary considerably between the stations, we focussed on the trends in the 
relative concentration levels, i.e. relative to the mean concentration for each station, individually, 
making the individual trends comparable. The GAM model finds a smooth trend function through the 
whole period and for each station we scaled this function by that station’s mean of the same function. 
Then we calculated the summer and winter seasonal means of these scaled trend values.  
 
A similar scaling of the observed pollutant levels was done. For each site individually, we calculated 
the seasonal mean each year and then scaled those values to the mean value for the whole period 
2000-2017.  
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This provided n relative GAM trend functions and n number of observed relative seasonal mean values. 
The smooth GAM trend functions represent the long-term trends adjusted for the meteorological 
variability and thus we calculated the difference:  

  

  = Xobs in,iy - Xgam in,iy for in = 1, …, n stations and iy = 2000, …, 2017 

 

where Xobs = the observed relative seasonal mean at one station, one year and Xgam = the relative 
GAM trend value for the same station and year.  
 
In the following, we show box-whisker plots for the relative GAM trend values, i.e. the meteorologically 

adjusted trend function, as well as the  values, year by year. The latter in principle represents the 
impact of meteorology alone, although one should consider that this impact could also be estimated 
directly from the GAM model and that these different methods for evaluating the meteorological 
impact could lead to different results.  
 
One main outcome from the GAM model is the meteorologically adjusted long-term trends, and 
another is to what extent the observations in individual years differ from the expected mean due to 
meteorological anomalies. In principle, this quantifies the split between the effect of emissions, 
chemistry, boundary conditions on one side and the influence of weather patterns on the other. In 

addition, a Theil-Sen slope was calculated for the  values in those cases where a Mann-Kendall trend 
test indicated a statistically significant positive or negative linear trend (p < 0.05). A significant linear 

tend in the  values would be the case if the inter-annual variations in meteorological effects alone 
have led to a significant trend in the observed pollutant levels during the whole period. The Theil-Sen 
slope is added to the box-whisker plots in the cases of significant trends. It turned out, though, that 
such a significant trend was found in very few cases which may reflect that the period we are looking 
at, 2000-2017 are sufficiently long that meteorological effects are cancelled out and too short to see 
any effects of climate change on the pollutant levels.  

4.5.1 O3 April – September 

The meteorologically adjusted relative GAM trends and the annual  values (the meteorology impact) 
for summer ozone for each of the nine Prudence regions are summarized in Figure 14. As explained 
above, these ozone data are based on the daily MDA8 values (max daily 8h running mean 
concentration) through April-September. Note that the number of stations vary substantially between 
the regions. A decline in the meteorologically adjusted trends is seen in all regions except the Inflow 
region that shows only small variations. The shape of the trend curve varies though, from a steady 
decline in some regions to a curve peaking in the early 2000s in other regions. Many of the regions 
show, however, an indication of a flattening of the trend the last part of the period.  
 
Another striking difference is the spread in the data among the stations. Whereas many of the regions 
show a narrow span in the data, like in East Europe, England, Mid Europe, North Italy and Scandinavia, 
indicating homogeneous data and a robust GAM trend, the stations from the Mediterranean and 
Iberian region show a much larger spread. For the latter regions, the results reflect the poorer GAM 
performance, implying that the method is less able to separate the meteorological influence from 
other processes. Additionally, it could reflect a higher difference between the stations and thus less 
homogeneous regions.  
 

The  values show a marked positive outlier in 2003 and less marked positive offsets in 2006 and 2015. 
In these years the high levels of summer ozone were the results of certain meteorological conditions, 
of which the 2003 anomaly is the most famous one. In one of the regions, the Mid Europe region with 
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129 sites, we calculate a statistically significant increase in ozone due to meteorology alone marked by 
a red line in the plot, while none of the other regions show a significant trend due to meteorology.  
 

Figure 14: Box-whisker plots for the relative GAM meteorologically adjusted trends of MDA8 ozone 
levels (April-September) for each of the different regions to the left and the corresponding 
difference between the relative observed MDA8 levels and the GAM trends to the right. 
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Figure 14 (contd.)  
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Figure 14 (contd.)  

 

 

 

4.5.2 NO2 November - February 

The meteorologically adjusted relative GAM trends and the annual  values (the meteorology impact) 
for the mean wintertime NO2 concentrations for the Prudence regions are summarized in Figure 15. 
As for the O3 data in the previous section, the number of sites in the various regions vary substantially, 
from 9 in the Scandinavian region to 273 in the Mid European region. The Inflow region had too few 
sites to apply the box-whisker plots.  
 
In all regions, the meteorologically adjusted trends show decreasing levels after 2007-2008. In the first 
part of the 2000s some regions show steady values or a slightly increasing trend, while other regions 
show a decline during the whole period 2000-2017.  
 

The  values, expressing the impact of meteorological anomalies varies considerably between the 
regions with peak values in 2006 and 2017 in some regions. None of the regions show a significant 
linear trend (as estimated by the Mann-Kendall test) in the meteorological impact but the variability 
induced by the meteorology on wintertime NO2 is much larger than for summer-timer ozone.  
 
The rather small span in the meteorologically adjusted GAM trend in many of the regions indicates 
that the estimated trend is robust and that the GAM method is successful in separating  the influence 
of meteorology vs that of other factors.  
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Figure 15: Box-whisker plots for the relative GAM meteorologically adjusted trends of mean 
wintertime NO2 levels (November-February) for each of the different regions to the left 
and the corresponding difference between the relative observed levels and the GAM 
trends to the right. 
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Figure 15 (contd.)  

 

 
 



 

Eionet Report - ETC/ATNI 2019/14 39 

4.5.3 PM10 November – February 

The meteorologically adjusted relative GAM trends and the annual  values (the meteorology impact) 
for the mean wintertime PM10 concentrations for the Prudence regions are summarized in Figure 16. 
The amount of PM10 data is much less than for NO2 and O3 and thus only four of the nine regions have 
enough sites to apply the box-whisker plots. For these four regions (East Europe, Iberian Peninsula, 
Mid Europe and Scandinavia) the meteorologically adjusted relative GAM trends show a marked 

decline as well as large spread in the  values, reflecting a larger meteorological influence on the 
wintertime PM10 concentrations from year to year than for NO2. For none of these four regions, there 

is a significant linear trend in the meteorology induced anomalies (the  values) as estimated by the 
Mann-Kendall trend test.  
 

Some patterns seen  in these  values are the same as for the wintertime NO2 data. The Mid European 
region which has by far the largest number of stations show high positive anomalies in 2006 and 2017 
both in NO2 and PM10. The PM10 data also indicate a positive anomaly in 2003 while the similar peak in 
NO2 is much smaller. Furthermore, marked negative anomalies are seen in 2001 and 2003 in the Iberian 
region both for NO2 and PM10, reflecting the winter weather conditions promoted lower pollutant 
concentrations these winters.  
 

Figure 16: Box-whisker plots for the relative GAM meteorologically adjusted trends of mean 
wintertime PM10 levels (November-February) for each of the different regions to the left 
and the corresponding difference between the relative observed levels and the GAM 
trends to the right. 
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Figure 16 (contd.)  

 
 
 

4.5.4 PM10 April - September 

The meteorologically adjusted relative GAM trends and the annual  values (the meteorology impact) 
for the mean summertime PM10 concentrations for the Prudence regions are summarized in Figure 17. 
Only five of the nine regions have enough sites to apply the box-whisker plots.  
 
As for the wintertime PM10 values, the meteorologically adjusted GAM trends indicate a marked 
decline for all regions during the period. Stable levels are seen however, for the Scandinavian region 

in the first part of the period. The spread in the  values, reflecting the meteorological induced 
variability is smaller for the summertime PM10 data than for wintertime, and as for wintertime, no 
significant linear trend is found by the Mann-Kendall trend test in any of the regions. 
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Figure 17: Box-whisker plots for the relative GAM meteorologically adjusted trends of mean 
summertime PM10 levels (April-September) for each of the different regions to the left and 
the corresponding difference between the relative observed levels and the GAM trends to 
the right. 
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Figure 17 (contd.)  

 
 
 

4.5.5 PM2.5 November – February 

The meteorologically adjusted relative GAM trends and the annual  values (the meteorology 
impact) for the mean wintertime PM2.5 concentrations for the Prudence regions are summarized in 
Figure 18. The amount of PM2.5 data is much less than for the other species and thus only the period 
2008-2017 is investigated.  
 
For the regions with a minimum number of stations during this period, the meteorologically adjusted 
relative GAM trends indicate a weak decline, most pronounced for the Scandinavian sites. The 

downward trend is much smaller than for PM10, though. There is a large spread in the  values, 
reflecting a substantial meteorological influence on the wintertime PM2.5 concentrations from year to 
year. For none of these regions, there is a significant linear trend in the meteorology induced anomalies 

(the  values) as estimated by the Mann-Kendall trend test.  
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Figure 18: Box-whisker plots for the relative GAM meteorologically adjusted trends of mean 
wintertime PM2.5 levels (November-February) for each of the different regions to the left 
and the corresponding difference between the relative observed levels and the GAM 
trends to the right. 
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Figure 18 (contd.)  

 
 
 

4.5.6 PM2.5 April - September 

The meteorologically adjusted relative GAM trends and the annual  values (the meteorology 
impact) for the mean summertime PM2.5 concentrations for the Prudence regions are summarized in 
Figure 19. 
Six of the nine regions have enough sites to apply the box-whisker plots. 
 
Except for the Iberian Peninsula, the meteorologically adjusted GAM trends for the summertime PM2.5 
data indicate a more pronounced decline than the data from the wintertime. Furthermore, the spread 

in the  values, reflecting the meteorological induced variability is smaller for the summertime PM2.5 
data than for wintertime. The Mann-Kendall statistics indicates a significant trend induced by 
meteorology for the Iberian Peninsula,  and a slight increase is estimated by the Theil-Sen slope. 
 

Figure 19: Box-whisker plots for the relative GAM meteorologically adjusted trends of mean 
summertime PM2.5 levels (April-September) for each of the different regions to the left and 
the corresponding difference between the relative observed levels and the GAM trends to 
the right. 
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Figure 19 (contd.)  
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Figure 19 (contd.)  

 
 
 

4.6 The impact of meteorology on observed seasonal pollutant levels 

In addition to the meteorologically adjusted long-term trends presented above; the GAM method 
could be used to estimate the meteorological perturbation of the pollutant levels for each year 
separately. The principle of the GAM method is to separate the influence of meteorology from other 
effects and thus, it could be used to analyse to what extent e.g. the observed mean NO2 winter-time 
concentration could be explained by weather anomalies or due to a gradual change in concentration 
levels. 
 
Figure 20 shows the observed mean MDA8 (max daily running 8h average) ozone values for the 
summer half year for a few selected years together with the estimated perturbation due to 
meteorology for the same years as calculated by the GAM. The meteorology impact in 2003 is very 
clearly visible in Figure 20 and shows a marked positive perturbation for all of Europe corresponding 
with the well-known summer heat wave that year. Also, for 2006 and 2015, these results indicate that 
the weather conditions lead to higher levels than the expected mean, and the positive anomaly was of 
the order of 5 ppb, or around 10 % of the absolute level.  
 
For 2008 and 2010, meteorology lead to lower ozone levels than the mean in many areas, according 
to these calculations particularly in the southeast. In 2008 this ozone deficit was widespread whereas 
in 2010 it was most pronounced in the southeast.  
 
Similar maps for the observed 4-months winter-time mean concentration and the perturbation due to 
meteorology are shown in Figure 21. Note that the maps for each year are based on the mean of the 
diurnal mean levels for the months November and December the previous year + January and February 
the present year.  
 
These maps show that the winter mean NO2 levels depend strongly on the weather situations from 
one year to another. 2001, 2007 and 2016 were years in which the meteorology contributed to 
significantly reduced mean concentrations whereas 2009, 2011 and in 2017 were years where the 
weather conditions promoted high NO2 levels over large regions in Europe.  
 
Maps like those presented in Figure 20 and Figure 21 could be provided for any year and any species 
provided that there are sufficient data available to apply the GAM model and could be used in a routine 
manner to analyse previous observational data.  
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Figure 20: Observed mean summer half year MDA8 of ozone (left) and the perturbation due to 
meteorology (right) for a few selected years. Unit: ppb. 
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Figure 20 (contd.)  
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Figure 21: Observed mean winter (Nov-Feb) concentrations of NO2 (left) and the perturbation due to 
meteorology (right) for a few selected years. Unit: µg/m3. 
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Figure 21 (contd.)  
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4.7 Outlier time series detected by the GAM model 

A spin-off from the GAM model turned out to be the ability to detect what could be called outlier time 
series, i.e. time series with possible flaws in the data. These were detected either by particularly poor 
performance of the GAM model overall, or by a strong bias in certain years. We used the linear 
correlation coefficient, r, and the normalised mean gross error, NMGE, based on the entire time series 
for each station separately for the screening of data in the present project. Since this work was not 
part of the planned activity but just a valuable spin-off, we  
 
The time series identified in this way could not be presented in detail in the present report. Instead a 
list of such time series will be provided to EEA. Some examples of typical flaws are given below.  

4.7.1 Wrong unit of O3 

The unit of O3, i.e. whether it is given in ppb or µg/m3, is a well-known issue of potential confusion. 
Whereas the UV monitors deliver data in ppb, the air quality guidelines are given in µg/m3 and thus 

the data need to be scaled. Normally this is done by a factor of 2.00, i.e. O3 [µg/m3]  = 2O3 [ppb]. 
Sometimes this issue lead to data in the wrong unit in the databases. This kind of error is very easy to 
detect as it is just a matter of scaling. With more than thousand ozone monitoring sites there is still a 
risk that such obvious flaws are hidden in the database. This is apparently the case for data from Irish 
sites in the e-Reporting database for 2014 and 2015. Figure 22 shows the observed and GAM predicted 
daily O3 values at IE0090A for the period 2013-2016 and there is no doubt that the measurement data 
are wrong by a factor 2. Interestingly, the GAM model predicts the variation from day to day very 
closely, but with an offset reflecting the multiplicative factor 2.  
 
A similar pattern is found for the site PT04003 as shown in Figure 23. The measured values in the first 
part of 2003 and all of 2011 are likely given in wrong unit.  
 

Figure 22: Observed (black) and GAM predicted (red) time series of daily ozone levels in the years 
2013-2016 for the site IE0090A. The reported data for 2014 and 2015 are wrong by a 
factor 2.0. 
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Figure 23: Observed (black) and GAM predicted (red) time series of daily ozone levels in 2003 and 
2011 for the site PT04003. 

 
 
 

4.7.2 Missing data specified as zero 

For some time series, the errors are simply linked to wrong flagging of data. Figure 24 shows the 
observed and predicted time series of daily ozone in 2014 and 2015 at FR04038. Most of the data in 
the given period in 2014 are listed as zero while they obviously should be given as missing data. The 
data from 2015 shows that the GAM predicts the time series to a high degree although underpredicting 
the levels. Part of this underprediction is probably due to all the zero values in 2014. The flaws in the 
measurement data thus lead to reduced performance of the GAM model. 
 

Figure 24: Observed (black) and GAM predicted (red) time series of daily ozone levels in 2014 and 
2015 for the site FR04038. 

 
 

4.7.3 Strong shifts between years 

Poor GAM performance as measured by the linear correlation coefficient, r, could be an indication of 
strong shifts in the measurement data from one year to another. Figure 25 shows observed and 
predicted ozone levels at CY0002 in 2008 and 2009. The measured data are substantially higher in 2009 
compared to 2008 and based on just a visual look at the data it is very likely that the measurement 
during the first part of 2008 are flawed before a sudden shift in the levels.  
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Figure 25: Observed (black) and GAM predicted (red) time series of daily ozone levels in 2008 and 
2009 for the site CY0002. 

 

 
The number of time series of NO2 is considerably larger than for O3, but it also seems (without doing 
an objective selection) that the fraction of erroneous or dubious data are larger for the NO2 
measurements. An example of NO2 time series with a strong shift in the data are shown in Figure 26 
for the site CZ0BZNO in 2011 and 2012. The GAM fit in 2011 and most of the other years seem ok, 
while all measurement data reported for 2012 are substantially lower than the GAM predictions and 
compared to the observed levels in the other years. It is little doubt that the measurement data from 
2012 must be wrong and possibly linked to a scaling issue e.g. reflecting the difference in molecular 
weight of NO2 and N.  
 
A similar pattern is seen in Figure 27 for the site ES0584A in 2004 and 2005. In the first year the 
measured data show recurring peak values of around 30 µg/m3 whereas in the year after (as well as 
the year before, not shown) all peak values are of the order of 70-80 µg/m3. It seems very unlikely that 
these data reflect the reality except for the uncommon situation that some kind of local road 
constructions etc changed the overall pollutant levels substantial in one specific year.  
 
Patterns like those shown in Figure 27 and Figure 25 seem to be fairly common in the Airbase/e-
reporting data and creates significant challenges for those making use of the data for evaluation 
purposes.  
 
One last example is given in Figure 26 showing the NO2 station with the poorest GAM performance of 
all. Based on a visual inspection of the time series, it seems very likely that the reason for the poor 
GAM performance is due to flaws in the measurement data. 
 

Figure 26: Observed (black) and GAM predicted (red) time series of daily NO2 levels in 2011 and 2012 
for the site CZ0BZNO. 
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Figure 27: Observed (black) and GAM predicted (red) time series of daily NO2 levels in 2004 and 2005 
for the site ES0584A. 

 

 

Figure 28: Observed (black) and GAM predicted (red) time series of daily NO2 levels in 2006 and 2007 
for the site ES0777A. 

 

 
 
To sum up, a certain fraction of the measurement data shows clear signs of flaws in the data. This 
creates problems for anyone using the data for evaluation purposes, and screening  and «cleaning» of 
the database implies that substantial extra time and effort is needed. The GAM model has proven very 
useful for this purpose since it is based on recurring relationships between pollutant concentration 
levels and meteorology from year to year. Sudden deviations from this pattern, that typically could be 
seen from model performance indicators, is an indication that something might be wrong and that the 
measurement data should be inspected more closely. This is particularly useful when the amount of 
data is large (many sites/years) as has been the case in the present task.  
 
Based on the experience from the current work, which has involved a significant amount of time 
dedicated to data quality issues, we would strongly recommend that a set of data checking routines 
are developed to identify these problematic time series. It would probably be a small task to develop 
procedures that could pick out most of the questionable data. Whether these data then are removed 
from the database or just flagged as questionable is a political question though. In principle one could 
also imagine defining a set of particularly strong criteria to select the measurement data suited for 
trend analyses since such analyses require extra strong emphasis on data quality.  
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5 Conclusions and recommendations 

The previous studies on the link between trends and meteorology has shown that these links could be 
estimated by a careful design of model setups using CTMs (chemical transport models). Multi-year 
model scenarios designed in certain ways is thus a very valuable tool for predicting long term trends 
in pollutant concentration levels and the role of individual physio-chemical processes. There is a 
scientific consensus that state-of-the-art CTMs provide the best approach for predicting and analysing 
trends and variabilities of atmospheric pollutants.  
 
Long-term model runs with several model scenarios do, however, require a large amount of 
computational resources and the set-up of scenarios could be sensitive to the selection of years. 
Furthermore, the predictions are based on model data only and not tied to the observed pollutant 
concentrations which could pose a challenge if there are systematic discrepancies between modelled 
and measured pollutant concentrations. 
 
Although CTMs without doubt constitute state-of-the art for modelling of the atmospheric 
composition, a large variety of scientific studies have been published the last few years on statistical 
models linking observed concentration levels to certain input data in a statistical way without any 
attempt to parameterize the physio-chemical processes. The GAM model that has been developed 
within the EEA tasks recently is one example of such models. The GAM model could be considered as 
complementary to the use of CTMs for separating the influence of meteorological variability from 
other processes.  
 
Results from applying the  model, linking observed pollutant concentrations to local meteorological 
data has been presented. As a model relating meteorology and air quality, the GAM is an efficient 
method for interpretation of data.  
 
The main limitation of the statistical model is that it contains no parameterisation of the real physio-
chemical processes and secondly, that it relies on a local assumption, i.e. that the observed daily 
concentrations could be estimated based on the local meteorological data. Although the latter 
assumption in principle is not valid for species like O3, PM and NO2, it turns out that the GAM model 
provides good predictions of the measurements for certain parts of Europe, while performances are 
more limited elsewhere.  
 
We see three main applications of the GAM method when used on a regular basis: 
 

1. Separate the long-term trend in observed concentration levels from the “noise” induced by 
meteorological variability and additionally look for any trends induced by meteorology alone.  

2. Evaluate to what extent the pollutant levels in one specific year deviates from the expected 
level due to meteorological anomalies that year 

3. Identify possible flaws in the measurement data. Since the statistical model is based on 
systematic patterns between meteorology and pollutant levels, a poor model performance 
could indicate errors in the observational data.  

 
We found clear differences in model performance both with respect to geographical area and 
atmospheric species. In general, the best performance was found for O3 with gradually lower 
performance for NO2, PM10 and PM2.5 in that order. With respect to area, the model produced the best 
predictions for Central Europe (Germany, Netherlands, Belgium, France, Austria, Czech Republic) and 
poorer agreement with observations in southern Europe.  
 
Over the 18 years period studied (2000-2017) we found very few cases for which the meteorology 
alone caused a statistically significant trend in the data. One exception is the O3 sites in Mid Europe. 
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For the sites in this region taken together, we estimate that meteorology alone caused a slight increase 
in the summer mean MDA8 levels. The general lack of meteorology induced trends in the data reflects 
the length of the time series in this study. Eighteen years is presumably a sufficiently long period that 
interannual variations in meteorology is not affecting the trend and still too short for climate change 
to have a noticeable effect. The advantage of the GAM method is that it can separate the long-term 
trend from the substantial interannual meteorological variability and thus provide robust trends.  
 
An important spin-off from the GAM model is the ability to identify flaws in the measurement data 
series. The observational databases apparently contain a certain amount of erroneous data and the 
GAM model could be used (in combination with other tools) to identify these and thus clean the data.   
 
To sum up, the GAM model is now in a phase that makes it ready for implementation and use on a 
regular  basis. A few minor adjustments and refinements could be considered but else it could be put 
into operational use. The outcome would be linked to the three main aims listed above: separation of 
the long-term trends from the interannual variability, evaluation of one year of data compared to the 
mean and finally, the identification of outlier data.  
 
Several specific action points to develop the GAM further is listed below: 
 

• A detailed screening of the measurement data to filter out obvious flaws are strongly 
recommended. 

• A comparison between data from EMEP and EEA should be carried out in order to identify 
discrepancies when looking at the same stations and species. 

• The GAM model could be extended by extracting the partial dependencies on a daily basis 
for each input variable. This would allow us to quantify the influence and possible trend from 
each parameter individually.  

• For long-term trend purposes, a subset of monitoring data with the stations showing the 
most reliable and well-documented data could be prepared.  

• The GAM model could be further developed to be used on a region basis instead of for each 
station individually. This could improve the robustness and skills of the method.  

• One could consider to define a set of performance criteria to decide if the GAM model is 
applicable for a specific station and parameter.  
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Annex 1 
Statistical method 
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As in the previous studies, the GAM model (Eq. (1)) is fitted using the GAM library “mgcv” (Wood, 
2017) in the statistical modelling system R (R Core Team, 2018) for each station for the period 2000-
2017. We use all data in each period in order to estimate the long-term meteorologically adjusted 
trend function β9 in Eq. (1) at each station.  
 
New in the current study is that we apply the function “bam” in the “mgcv” library first instead of using 
the “gam” routine as was used previously. Both routines fit GAM models to data, but “bam” is much 
faster than “gam”, which is important in the current study due to many stations and long period with 
data. The “bam” routine is therefore now tried first and only if this is found not to converge properly, 
the “gam” routine is used instead.  
 
The “bam” routine is run with method = “fREML” which is the default numerical solution method in 
“bam”. It stands for fast REML computations. For NO2, PM10 and PM2.5, for which we use a log link 
function, we use discrete = TRUE in “bam” which discretizes covariates for storage and efficiency 
reasons.  
 
The default fitting method in the “gam” routine is based on Newton-type optimization of the GCV 
(generalized cross-validation) scores in order to estimate or select the degree of smoothness. This was 
the method applied in previous years reports (Solberg et al., 2018a, 2018b). This method usually works 
fine but may sometimes get stuck in local minima close to but not equal to a more correct global 
minimum. The REML (restricted maximum likelihood) method is less prone to get stuck in such local 
minima. Another aspect is that the GCV method often tends to overfit and produce too wiggly smooths 
as its focus is on minimizing the prediction errors. The REML method in “gam” tends to produce less 
wiggly smooths in this regard and will less easily get stuck in local minima. The consensus in the GAM 
modelling community now seems to favour the REML method rather than the GCV approach to model 
fitting of GAMs in general. We have therefore switched to this method in “gam” by setting method = 
“REML” in the call to this routine. 
 
The “gam” routine generally does a good job of selecting smooth functions of the predictors but does 
not perform model selection by default. However, by setting “select = TRUE” in the call to “gam” a 
further penalty for having too many unnecessary predictors in the GAM is introduced. This may lead 
to one or more of the smooth predictors to be further penalized away to become zero functions. Thus, 
this setting can be used for more parsimonious models with no unnecessary predictors to be selected 
automatically by the “gam” routine. We believe this generally to be a good idea also in our application, 
so we have switched to this added model selection approach by using “select = TRUE” in the call to the 
“gam” routine.  
 
The same automatic model selection with “select = TRUE” is also used in the call to “bam”. 
We generally apply thin-plate splines which are the default in bam and gam for all smooth functions 
except for wind direction where we use circular splines (bs=” cc”). We use standard and default 10 
degrees of freedom for all smooth functions except for the time covariates “weekday”, “day of season” 
and “years” where we use 4 degrees of freedom in order to obtain less wiggly functions for these, but 
still informative with a minimum of residual noise. Note that the “weekday” variable takes discrete 
values 1, 2,…, 7 but is considered to be a continuous “time of week” 1-7 covariate in our system. 
Similarly, “day of season” is treated also as a continuous variable. 
 
A check for concurvity of the covariates has been added to the script. Concurvity is the same for GAM 
as collinearity is for multiple linear regression. It is important that covariates are genuinely different 
and that no smooth covariate function can be replaced by a combination of smooth functions of the 
other covariates. It is thus, important to check for this as part of the GAM modelling. We have thus 
introduced a call to the “concurvity” routine in the “mgcv” library in R as part of the script. 
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A “rmweather” method has also been added to the script, which is a non-parametric random forest 
type of approach to non-linear regression (Grange and Carslaw, 2019; Grange et al., 2018). This is an 
approach like the “deweather” boosted regression tree method (Carslaw, 2018) which was already in 
our system. The “rmweather” differs, however, from “deweather” in that it can also be used to predict 
concentrations in whole left-out years, enabling us to check its predictive performance in the same 
way as we do for GAM. This is not possible to do with “deweather” since only a random sample can be 
left out to perform testing, not whole years. 
 
These two latter approaches, “deweather” and “rmweather”, represents the two most complex and 
least interpretable approaches to the trend estimation problem, while a linear regression approach 
using only a single continuous “years” covariate represents the other end of the spectrum. Our GAM 
model falls in somewhere between these two extremes. 
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