Air Quality and Air Quality Indices: a world apart ?

ETC/ACC Technical Paper 2005/5 November 2005

Frank de Leeuw, Wim Mol

The European Topic Centre on Air and Climate Change (ETC/ACC) is a consortium of European institutes under contract of the European Environmental Agency RIVM UBA-B UBA-V IIASA NILU AEAT AUTh CHMI Met.No NTUA ÖKO IEP TNO UEA *Front page photo: a source of smog: black smoke emissions from a sugar refinery. (photograph by Frank de Leeuw).*

Author affiliation:

FAAM de Leeuw and WJA Mol: Netherlands Environmental Assessment Agency (MNP) at National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Earlier versions of this paper have been reviewed by a number of colleagues throughout Europe who have been or are currently involved in the development and application of air quality indices. We thank them all for their much appreciated and valuable support.

Disclaimer:

This Technical paper has not been subjected to EEA member country review. It does not represent the formal views of the European Environment Agency.

© ETC/ACC, 2005. ETC/ACC Technical paper 2005/5 European Topic Centre on Air and Climate Change PO Box 303 3720 AH Bilthoven The Netherlands Phone +31 30 2743550 Fax +31 30 2744433 Email: etcacc@mnp.nl Website: http://etc-acc.eionet.eu.int/

SUMMARY

The Air Quality Index (AQI) is a widely used concept to communicate with the public on air quality. A growing number of national and local environment agencies use the AQI for (near) real-time dissemination of air quality information. A survey of five different AQI operational in four countries showed a common concept behind the AQI but a strongly different practical implementation. Using actual concentration data from 10 stations over Europe, it is shown that, although there is a reasonable correlation between the five AQIs, both the classification of the air pollution situation as well as the determining pollutant is different in the various AQI.

The EEA is extending the current OzoneWeb towards a more full grown exchange platform of (near real-time) air pollution information. It has been suggested to present the information by means of an AQI. Doing this both at the European and at the local level by using different AQI approaches, this might result in conflicting or, at least, confusing messages to the public. Harmonisation of AQI will be needed.

CONTENTS

CONTE	ENTS						
1. IN	TRODUCTION	5					
2. AI	R QUALITY STANDARDS	6					
2.1. 2.2.	EU DIRECTIVE ON NO2, SO2, PM10 AND O3 WHO GUIDELINES	6 7					
3. AI	R QUALITY INDICES						
3.1. 3.2.	GENERAL CONCEPT Some European examples	8					
4. AN	AQ INDEX IN MY NEIGHBOURHOOD?	15					
5. CO	ONCLUSIONS, RECOMMENDATIONS	17					
REFERENCES							
ANNEX	ANNEX 1. EXAMPLES OF AIR QUALITY INDICES						

1. Introduction

The Air Quality Index (AQI) has become part of the information routinely provided to the public. The AQI makes it possible to describe the air quality in a simple, understandable way. The development of AQI goes back to the period when the first automatic monitors became available (see e.g. Shenfield, 1970). Disputes in the past illustrate the complexity of creating an accessible, understandable and uniformly acceptable AQI. In the last decade, the IT revolution and the growing access to internet revived the discussion on AQI, now focussing on the description of (near) on-line air quality.

The purpose of this paper is to identify the current situation in Europe with regard to the usage of air quality indices and to identify possible problems and/or obstacles that might be faced in extending the OzoneWeb¹ (and its future extensions with other components like SO₂, NO₂ and PM₁₀) to include air quality indices.

In many countries, air quality indices are part of the information communicated to the public. The indices summarise the air quality state consisting of a complex mixture of a wide range of pollutants into one figure (e.g. expressed as a coloured pictogram or as number) which is easily understandable by the public. The required concentration data to estimate the air quality index is generally confined to those pollutants for which concentration data is routinely (on-line) available from automatic monitors. As a reference for the index classes, health-related limit, target or guideline values are generally used; these are summarized in Chapter 2. In Chapter 3 we present an overview of a number of indices currently in use in Europe. Similarities and differences between the indices are discussed. This is further illustrated in Chapter 4 by applying the different approaches to AIRBASE data. A discussion on the possibilities to apply an index in the "In Your Neighbourhood" project is also given in Chapter 4.

This document covers the first deliverable in the sub-project "Proposal for improved EEA near real-time air quality (ozone) information system" within the Neighbourhood project. It also covers the activities in Subtask 1 in task 1.3.1.1 within the ETC/ACC 2005 Implementation plan (ETC/ACC, 2005).

¹ OzoneWeb is a web site (<u>http://ozone.eionet.eu.int</u>) developed by EEA which shows near real-time ozone concentrations over Europe.

2. Air Quality Standards

2.1. EU directive on NO₂, SO₂, PM₁₀ and O₃

Table 1 presents an overview of limit and target values (set for the protection of human health) and of information and alert threshold values (set for information to the general public) as defined in the EU air quality framework directive and related daughter directives (EU, 1996; 1999; 2000; 2002). In addition to the health-protection limit and target values, values have been defined for the protection of ecosystems and vegetation. In AIRBASE information on exceedances of limit and target values and related statistics is routinely available for all station submitting information under the Exchange of Information Decision (EU, 1997; 2001). Annually a summary of all information available in AIRBASE (meta-information on networks and stations, raw air quality data, statistical parameters) is prepared by the ETC/ACC, see Mol *et al.* (2005) for the most recent version.

Compound	Limit/target value			Target year
PM10	Annual average:	40 μg/m ³		2005
	Daily average:	$50 \ \mu g/m^3$	may be exceeded up to 35 days a year	2005
NO ₂	Annual average	40 μg/m ³		2010
	Hourly average:	200 μg/m ³	may be exceeded up to 18 hours per year	2010
Ozone	Daily maximum 8- hourly running mean	120 μg/m³ (target value)	may be exceeded up to 25 days per year ¹⁾	2010
SO ₂	Daily average:	125 μg/m ³	may be exceeded up to three days per year	2005
	Hourly average:	350 μg/m ³	may be exceeded up to 24 hours per year	2005
CO	Daily maximum 8- hourly running mean	10 mg/m ³		2005
Pb	Annual average:	0.5 μg/m ³		2005 ²⁾
Benzene	Annual average:	5 μg/m³		2010
Compound	Information/Alert threshold			
Ozone	Information: hourly average	180 µg/m3		
	Alert: hourly average	240 µg/m3		
SO ₂	Alert: hourly average:	500 μg/m ³	During three consecutive hours over at least 100 km2	
NO ₂	Alert: hourly average	400 μg/m ³	During three consecutive hours over at least 100 km2	

Table 1. Overview of limit and target values and of information and alerts thresholds as defined in the first three daughter directives.

1) As an average over the three preceding years.

2) 2010 in the immediate vicinity of specific industrial sources, notified to EC before 19 July 2001.

2.2. WHO guidelines

The World Health Organisation (WHO) has prepared air quality guidelines (WHO, 1987, 2000). In relation to human health and current air quality, highest concern is on particulate matter (PM10, PM2.5) and ozone. Recent findings on the health impact of particulate matter and ozone are discussed in the reports of the WHO/CLRTAP Task Force on Health Aspects of Air Pollution (UNECE, 2003; 2004). The results can be summarized as:

- Ozone: the principal metric for assessing the effects of ozone on mortality should be the daily maximum 8-hourly mean. Ozone effects should be assessed over the full year. Current evidence is insufficient to derive a level below which ozone has no effect on mortality. However, for several reasons it was recommended to define an exposure parameter as the sum of excess of daily maximum 8-means over a cut-off of 35 ppb calculated for all days in a year. This parameter is usual referred to as SOMO35.
- PM: A causal relationship between PM exposure and mortality is assumed and the use of the annual mean of PM2.5 as an indicator for PM-related mortality is recommended.
- On nitrogen dioxide (NO₂) a WHO working group did not find sufficient evidence to reconsider the current hourly and annual WHO-guidelines for NO₂. These guidelines are in line with the limit values set by the EU.

The recent WHO findings are not (yet) implemented in the air quality indices. For PM_{10} is must be concluded that with respect to health effects, the long term exposure is most important. The current indices are based on the short-term (daily) concentrations of PM_{10} and are more related to compliance with the PM_{10} limit value. A similar situation is the case for ozone.

3. Air Quality Indices

3.1. General concept

For different pollutants adverse effects on human health can be expected for a wide range of concentrations, e.g. in case of carbon monoxide concentrations of several mg/m³ are of concern while for heavy metals of toxic compounds like benzo(a)pyrene (B(a)P), concentrations orders of magnitude smaller (of ng/m³) are relevant. In communication with the general public providing information on the actual air quality is not meaningful to present concentration values unless the concentrations are related to the effect levels. Frequently this is done by converting the concentration into a dimensionless scale (between 1 to 10 or 1 to 100) which is also associated with an intuitive colour code (from green to red) and a linguistic description (e.g. from *very good* to *very poor*). Commonly the reference levels used in the conversion are based on health-protection related limit, target or guideline values set by the EU, at national or local level or by the WHO.

For describing the ambient pollutant mix, an overall air quality index (AQI) is constructed. In calculating such an overall AQI, firstly for each individual pollutant a sub-index is calculated. The overall index is set to the highest value of each of the pollutant considered. The AQI can be evaluated for a single station but also for a certain region, e.g. for an urban agglomeration. In this case, the regional or urban index might be based on the highest subindex at any of the stations within the considered region or urban agglomeration (this approach is, for example, taken in the French ATMO-index) or it might be based on the highest sub-index calculated from the *averaged* concentrations at all stations (as is done, for example, in the Belgium index).

3.2. Some European examples

The strength of an air quality index is that it is able to translate a complex air quality state into a health-risk related concept and to communicate this in a simple, strongly visualised way to the public. At the European level, the weakness of the AQI is that the number of pollutants and concentration data used, the temporal resolution, the underlying reference data and the calculation procedures are highly variable in the indices defined in various parts of Europe; see the short descriptions on indices currently in use in a number of NW European countries provided in Annex 1.

In this paper we like to sketch the difference between the current approaches. For this intercomparison we have selected the indices in use in Belgium, France, Germany (Lower Saxony)² and the United Kingdom. A fifth index as proposed by the Citeair³ project is included as well.

² In Germany, like in Austria, no common air quality index at the national level has been defined but a number of the Ländern has defined their own AQI. The German AQI discussed here is in use in Lower Saxony.

³ The Čiteair project is funded through the INTERREG IIIC programme and aims to foster the comparability of air quality data across European cities. For this, Citeair is developing a Common Air Quality Index. In this paper the definition of the index as presented during the Citeair workshop in March 2005, Rome is used which might be slightly different from the current definition.

The indices selected here do not form a complete list (for example, Helsinki, Finland has also introduced an air quality index, see <u>http://www.ytv.fi/ENG/airquality/ def_index.htm</u>; another pollution index is proposed for Naples, see Murena, 2004) but the given examples illustrate the different approaches⁴. More extended surveys of the application of indices in Europe and elsewhere are presented by Garcia and Colosio (2002) and by US-EPA (2002).

An overview of the characteristics of the selected indices is presented in Table 2. The upper class boundaries for the five indices are given in Figure 1.

⁴ All indicators mentioned here are based on the maximum value of sub-indices calculated for the individual pollutants. One example (<u>http://www.eurad.uni-koeln.de/index.html?/allgemeines/</u><u>links.html</u>) calculates a cumulative index based on the modelled daily mean concentrations of 6 pollutants. In an atmospheric dispersion model daily data are but in the real world the are not available for every day in a year. When based on monitoring data, an additive index is very sensitive for missing values. An additive index has similar drawbacks as the index based on the most polluting component (see below): there is no direct relation of the index value with the pollution mix and/or with health impacts. This additive approach will not be further discussed here.

				Air Quality Index			
# numerical levels (scale)	Belgium 10 (1-10)	France 10 (1-10)	Germany 6 (1-6)	UK 10 (1-10)	Citeair 5 (0- >100) ⁶	UK 10 (1-10)	Citeair 5 (0->100) ⁶
# colours # verbal classes ¹ Update frequency	10 10 daily	3 6 daily	6 6 daily	4 4 daily	5 5 daily	4 4 hourly	5 5 hourly
Pollutant included in	n Air Quality Inde	x:					
component averaging time	PM ₁₀ 24h mean	PM ₁₀ 24h mean	PM ₁₀ 24h mean	PM ₁₀ 7 daily max of 24h running means	PM ₁₀ daily max of 1h means ²	PM ₁₀ 24h running mean	PM ₁₀ 7 1h mean
component averaging time	O ₃ daily max of 8h running means	O3 daily max of 1h means	O ₃ daily max of 1h means	O ₃ daily max of 1h means or of 8h running means ³	O ₃ daily max of 1h means	O3 1h mean or 8h running mean ³	O3 1h mean
component averaging time	NO ₂ daily max of 1h means	NO2 daily max of 1h means	NO2 daily max of 1h means	NO2 daily max of 1h means	NO ₂ daily max of 1h means	NO2 1h mean	NO2 1h mean
component averaging time	SO ₂ 24h mean	SO ₂ daily max of 1h means	SO ₂ daily max of 1h means	SO ₂ 15 minute means ⁴	SO ₂ ⁵ daily max of 1h means	SO ₂ 1h mean	$\mathrm{SO}_2{}^5$ 1h mean
component averaging time			CO daily max of 8h running means	CO daily max of 8h running means	CO⁵ daily max of 8h running means	CO 8h running mean	CO⁵ 8h running mean

Table 2. Overview of Air Quality indices in use in Belgium, France, Germany and the United Kingdom and proposed by Citeair (see Annex 1 for further details).

Table 1, footnotes:

- (1) In the UK and by Citeair the classes are labelled by semi-quantitative terms (from *Low/Very low* to *High*). In Begium, France and Germany the classes are labelled in a less neutral, more qualitative way (from *excellent/tres bon/sehr gut* to *horrible/tres mauvais/sehr schlecht*).
- (2) The given description of the Citeair index is not clear. In the proposal it reads that for PM₁₀ *"max hourly value or daily average value or daily maximum"* is used. This point is under discussion within Citeair. Some of the cities participating in Citeair present only daily averaged PM10 values. On the other hand, hourly values will clearly demonstrate the impact of rush hours and are seen as a better approach in a forecasted AQI. Citeair is now re-analysing their datasets in search for a pragmatic solution. In this report the hourly mean value is used to calculate the index on a hourly basis. When calculating the index on a daily basis, the PM₁₀ daily mean value is used. Note that the use of the daily maximum hourly concentration will result in a systematic higher index value.
- (3) To calculate the hourly sub-index value for ozone, the maximum of the 8 hourly and hourly mean is used. In calculating the daily ozone sub-index, the maximum value of the daily maxima of hourly means and 8 hourly running means is used.
- (4) 15 minute mean values are not available in AIRBASE. In this paper we assumed that the maximum 15 minute mean is 20% higher than the hourly mean value.
- (5) In the Citeair index, CO and SO₂ are labelled as "additional pollutants".
- (6) In the Citeair proposal the index value runs from zero to a maximum of "more then hundred", see footnote 5, page 14. To make these index values more comparable with the other indices, all Citeair index values presented in this report have been divided by 10.
- (7) Note that the UK index defines two sets of boundary values for PM_{10} depending on the measuring principle (gravimetric or TEOM). In this report we adopted the numbers given for the gravimetric method as it is assumed that the data delivered to AIRBASE have been converted when appropriate.

Figure 1. Boundaries between index points for O_3 , PM_{10} and NO_2 for each of the selected AQIs. The Citeair and German AQI-classes have been scaled to make them comparable with the other AQIs. The Citeair index has no upper value; the other AQIs have a maximum value of 10 (or, for the German AQI, 6).

Figure 1. continued.

The general concept of the indices implies that the direct relation between final index value and concentration value of the individual pollutant is lost. From one day to the next different pollutants may be responsible for the index value. One index value can therefore not be associate with one specific air pollutant mix let alone with a specific health effect. The link between index value and possible effects on human health is lost. Index values can only be related to health effects in more general terms.

A second shortcoming of the index approach is that synergistic or antagonistic effects by exposure to a pollutant mixture are neglected. Not the mixture itself but the pollutant having the highest concentration determines the index value. The index may therefore not be a measure of adverse effects. However, as the class bands are usually related to air quality standards, the index identifies the pollutant which is anticipated to have the largest health-effect for that specific day.

The indices are used for providing on-line information to the public and a frequent update of the index is required. The procedure of the UK and Citeair indices enable an hourly update, the daily value equals the maximum hourly value. The other indices are designed for a daily update; an hourly update might be made by using moving 24h-values instead of the daily (0-24h) values. A hourly update of a daily index gives a much more smoothed time series. An hourly may show strong variations caused by large concentration fluctuations in one pollutant, for example PM_{10} or NO_2 shows strong peak during the rush hours.

Table 2 shows that four indices are subdivided in 6 (Germany) or 10 discrete classes. The presentation of the Citeair index differs strongly from the other four indices. It has a continuous scale without an upper limit while the other have discrete values with a well-defined maximum. The advantage of a continuous over a discrete scale is not clear. The

uncertainties in the air quality measurements do not allow to make a difference in an AQIvalue of, say, 5.5 and 5.8 which corresponds to a difference in PM10 or ozone concentrations of 3 and 7 μ g/m³, respectively. By using discrete classes this problem is largely overcome. Defining an upper limit for the index value is advisable. Application of the Citeair procedure may result in extreme index values. Further, it is very sensitive for measuring artefacts. In the examples presented below (Chapter 4), a value of more than 90 is found caused by a reported hourly PM_{10} concentration of 958 μ g/m³. As this is the first valid number after the monitor had an off-line period of more than two days, this might be an artefact. However, during our calculations we have found several more examples giving an index of $20 - 40^5$. In the Belgium and German index the colour codes and the verbal classes parallel the numerical levels. In the UK index each colour is one-to-one associated with an verbal description but one colour/verbal class covers 2-3 numerical levels. In the Citeair index each colour is one-to-one associated with verbal class; having a continuous scale, it is obvious that many index values will fall within one colour/verbal class. The upper and lower bands of the index value for each colour/verbal class are well defined. In the French ATMO index the relations are more complex having ten numerical levels, 3 colours and 6 verbal terms.

The AQI have three components $(O_3, NO_2 \text{ and } PM_{10})$ in common. SO_2 is included in all although this component is seen as "additional" in the Citeair index. CO is not included in the Belgium and French ATMO index; it a an additional component in the Citeair index.

The boundaries between index point as shown in Figure 1 shows the difference between the AQI approaches. The figure suggests that, for ozone, the UK index clearly has the least stringent classification. For an ozone concentration of 100-150 μ g/m3, the ozone sub-index has a difference of two index points, the low end being given by the UK index while the high end is defined by the Belgian index. However, the comparison is hampered by the differences in averaging period. Belgium applies the daily maximum of the 8h running mean values which is systematically 10-20% lower than the daily maximum hourly values used in the other indices.

The upper boundary of the PM_{10} classification is equal for the Citeair and German index. However, the Citeair description is not clear which PM_{10} parameter should be used here, see also the comments in Table 1; when using the daily maximum of 1h means the Citeair index has the most stringent classification. Considering the 20-25% difference between the daily mean and the daily maximum of 24h running means the UK index will be in line with the German index. The French and to a larger extend the Belgium index, both based on daily mean – have the most relaxed classification. For a PM_{10} concentration of 50 µg/m³ the subindex ranges from 3 (UK, "low pollution", on a 10-pointscale) to 5 (DE, "bad air quality" on a 6-point scale).

There is consensus on the time averaging of NO₂: all indices are based on the daily maximum of 1h means., however for NO₂ concentrations of 100-200 μ g/m³ a difference in 5-6 index points is found. The upper boundaries in the Belgium, French and Citeair index are equal although the levels of the lower classes differ somewhat. The German and certainly the UK NO₂-subindices are less stringent.

 $^{^{5}}$ In a later discussion with the Citeair-group (Brussels, 30 September 2005) it became clear that this problem has been solved. In case an index value larger then 100 is calculated it is maximized to a value of 100 and presented to the public as "> 100". In this paper we have not implemented this modification.

4. An AQ Index in my neighbourhood?

The interest in the development of indices for providing information on actual air pollution level is demonstrated by the number of publication on this topic. Within the "in your neighbourhood" project (iYN) one of the goals is to provide information on the state of environment at a local scale anywhere in Europe. With respect to air pollution a start to provide information to the public on the current ozone concentrations has been made several years ago by OzoneWeb (see: http://ozone.eionet.eu.int). Currently work is in progress to extend OzoneWeb with more stations and at the longer run with more pollutants. Parallel with this the ETC/ACC is developing methods for interpolation of air pollution levels which enables the assessment of air quality at location where monitoring data is missing. When more then one pollutant is available the message to the public becomes more complex and an index approach might be selected. An AQI proving information at the European level as on the iYN-web sites should for a certain area give the same message as the AQI provided by the local air quality monitoring organisation. When large differences are found it will hard to explain to the public why - starting with the same health-related standards - the interpretation is so different at local and at European level. As discussed above, a number of AQI approaches are in use in Europe. The assumptions (Table 2, Figure 1) made in class bands, averaging times, components are so different that an application of the different AQI to the same set of "real-life" air quality data is the only way to compare the AQI's. From AIRBASE (http://airbase.eionet.eu.int) stations have been selected where all 5 pollutants are measured. To fulfil the requirements for the UK and Citeair AQI, only stations with hourly PM10 data have been selected. Stations have been selected in different regions, see Table 3. The 2003 data has been used to evaluate the AQI's. A characterisation of the selected stations is given in Table 3. As peak concentrations are the most important for the AQI, the station sare characterised by peak concentrations related to the EU limit or target values set for the protection of human health. The UK index requires a 15 minute averaged for SO2. In AIRBASE this value is not available; the hourly mean, increased with 20% was used as proxy for the 15 minute values.

To facilitate the intercomparison in the remaining of this paper the Citeair and German AQI have been scaled with a factor (1/10) and (10/6), respectively.

In a first analysis the AQI have been calculated with and without including the CO and SO2 concentration data. For the selected stations, final index values are only incidentally determined by CO or SO₂ concentrations. Comparing the maximum CO and the 4th highest SO₂ concentration given in Table 3 with the class boundaries given in Annex 1, it is seen that the sub-index both for CO and SO₂ will never be larger than 4, that is, in the class indicated as *low to moderate*. A more detailed analysis on the daily AQI showed that on station GB0566A being the most sensitive for including CO and SO₂ in the AQI, CO and SO₂ determine the final index on about 50-55 days. This will be the days having lower index values and on many days other pollutants will co-determine the final index. Excluding CO and SO₂ change the annual mean index with less than one hundredths index point.

AQI on hourly data.

The UK and Citeair indices are the only two indices which can be applied with a time resolution of one hour. Figure 2 and 3 shows typical results of the hourly development of the two AQI's. Its clear that the UK index is systematically lower that the Citeair-index. The correlation between the two varies between 0.47 to 0.71. As Figure 3 shows there are many confusing situations in which one index qualifies the air pollution as *high to very high* while the other index qualifies it as *very low to low* and vice versa.

Table 3. Selected stations from AIRBASE used in the intercomparison of AQI.

EoI-code	CZ0065A	ES0125A	ES1426A	GB0566A	GB0620A
Station name	Pha5-Smichov	VILLAVERDE	MORATALAZ	LONDON BLOOMSBURY	LONDON N. KENSINGTON
Type of station	Traffic	Traffic	traffic	background	background
Type of area	Urban	Suburban	Urban	urban	Urban
Peak concentra	tions (1)				
PM10	102.8	68.5	52.1	39.8 (*)	48.2
O ₃	108.8	126.6	103	88.8	107.8
NO ₂	145	175	147	130	140
SO_2	35.9	20.0	31.8	25.8	21.4
CO	3.27	5.20	4.71	1.76	2.46
	CD 0000 L			NH 00404	NH 00404
Eol-code	GB0682A	GR0035A (2)	NL0204A (3)	NL0248A	NL0249A
Station name	LUNDUN MADVI EDONE	Lukomiai	Amsterdam-	Breukelen-	Wekerom-
Station name	ROAD	Lykoviisi	Florapark	Snelweg	Riemterdijk
Type of station	traffic	unknown	background	traffic	background
Type of area	Urban	suburban	Urban	Rural	rural
Peak concentra	tions (1)				
PM10	71	88.8	59.0	61.3	58.0
O ₃	52.8	142	100.1	95.5	121.1
NO ₂	285	135	114	138	83.8
SO ₂	28.5	42.6 (*)	11.3	11.7	8.0
CO	3.74	4.0	2.81	1.64	1.17

(1) Peak concentrations (in μ g/m3, CO in mg/m3) related to EU limit or target values are given. For PM₁₀ the 36th highest daily mean, for O₃ the 26th highest maximum daily 8h running mean, for NO₂ the 19th highest hourly concentration, for SO₂ the 4th highest daily mean, for CO the maximum value is given.

(2) SO2 concentration data taken from the nearby located (urban traffic) station GR0032Q, Patision.

(3) CO not measured here; CO data is taken from the urban background station NL0208A, Amsterdam Cabeliaustraat.

(*) less then 75% data coverage

AQI on daily basis

Annual mean values of the daily AQI are given in Figure 4. Evidently, the lowest index value is calculated using the UK approach while the highest index values are obtained by the German approach. The Belgium, French and Citeair indices are on an annual basis more or less equivalent. Correlation between the latter three AQI is high (> 0.90); the worst correlation (generally less then 0.7) is found between the UK and German indicator. The correspondence between indices becomes less when looking in more detail. The pollutant most frequently determining the final index varies from station to station. At the Prague station CZ0065A, PM10 is blamed according to all AQI as the most important, certainly for days with index values higher then 5. At the London-Marylebone Road station, GB0682A, conclusions are less clear. According to the UK index, air pollution is dominated by PM10, according to the BE, FR and Citeair index there is a NO2 problem while following the DE index it is a combined NO2/PM10 problem. Also at the other stations the UK index underestimates the importance of NO2 in comparison with the other AQI. Difference between AQI are even better seen at daily basis; differences as larges as 3 to 4 index points are noted; it is not uncommon that the AQI put the blame on different pollutants.

Figure 2. Hourly variation of the UK and Citeair index at the stations NL0249A (rural background) and ES0125A (suburban traffic).

Figure 3. Scatter plots of the UK versus the Citeair index values (hourly data) for the station CZ0065A.

Figure 4. Annual mean values of the AQI (based on daily values) calculated for the selected monitoring stations.

5. Discussion & Conclusions

Air Quality Index is a relatively simple instrument which enables the communication with the general public on air quality. AQI generally use 6-10 different classes where the class bands are based on some health-related standards. An index value combined with a short qualitative description and the use of colours will strengthen the message. A more extensive description of possible health effects for each of the classes should be part the information package made available to the public. This will be a difficult task as widely different air pollution mixtures leading to different effects, may result in the same index value.

A summary of AQI in use in various European countries shows that although the basic concepts are similar, the AQI show large differences in practical implementation. Differences are found in nearly all conceptual parts: number of index classes, their associated colour and descriptive terms, in the pollutants considered, in class bounds, in averaging times, in update frequency. When applying the AQIs on a common set of air quality data extracted from AIRBASE, large differences in index value and the determining pollutant are found. When for one region an air quality index is provided both by the local environmental agency as well as on the European level by the EEA, it is to be expected that the public receives conflicting, at least confusing messages when both agencies use different AQI-methodologies. There is a need for a more harmonised Air Quality Index which enables an easy comparison between regions in Europe.

The systematic review of health aspects of air pollution⁶, prepared by WHO for the EU-CAFE programmer, clearly showed that, with respect to health impacts the long-term exposure to air pollution, in particular of particulate matter and ozone is of more concern than the short-term exposure. These long-term effects are generally not well covered by the Air Quality Indices and a revison of the AQI might be needed.

None of the AQI discussed in this paper includes PM2.5. However, by the growing evidence on the health impact of smaller particles and the growing number of PM2.5 monitoring stations it might be considered to include in the AQI a PM2.5 sub-index. This might either be in addition to or in stead of the PM10 sub-index.

The development of the AQI over time might not a correct representation of the changes in air quality. The index is determined by the pollutant having the highest sub-index. When the problems with this pollutant are rather persistent (like for PM10), improvements in air quality caused by lower concentrations of other pollutants are not reflected in the AQI.

Given the definition of the current AQI, CO and SO2 are of minor importance in determining the final index values. In setting up a near on-line data exchange programme between member countries focus should be on ozone, PM10 and NO2.

All AQI studied here are based on the maximum value of sub-index values calculated for each of the pollutants considered. If calculating the index value for a certain area, the maximum value at all operational monitoring station is taken. Basing the index on maximum values makes it prone to monitoring errors. In on-line applications, working with non-validated data increases this risk. On the other hand, when an upper index value is defined, the impact of extreme measurements is damped. When applying the index to an urban agglomeration, it is recommended to use concentrations averaged over several stations. In this way, the index value will be more representative for the urban region as a whole and it will be less sensitive for monitoring artefacts.

⁶ See: http://www.euro.who.int/eprise/main/WHO/Progs/AIQ/activities/20030528_3

As alternative a cumulative index based on the addition of scaled concentrations of 4-6 pollutants has been proposed. When using monitoring data, a cumulative index is very sensitive for missing values and should therefore not be regarded.

References

ETC/ACC. 2005. Implementation Plan ETC/Air and climate change under the 005 subvention.

http://air-climate.eionet.eu.int/workplan/ETCACC_IP2005_webversion.pdf

- EU. 1996. Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management. Official Journal L 296, 21/11/1996, pp 55-63.
- EU. 1997. Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States. Official Journal L35, 05/02/1997, pp 14-22.
- EU. 1999. Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air (99/30/EC). Official Journal L 163, 29/06/1999, pp. 41–60. http://europa.eu.int/comm/environment/air/ambient.htm.
- EU. 2000. Directive 2000/69/EC of the European Parliament and the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air. Official Journal L313, 13/12/2000, pp 12-21
- EU. 2001. Commission Decision of 17 October 2001 amending the Annexes to Council Decision 97/101/EC establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States. Official Journal L282, 26/10/2001, pp 69-76
- EU.2002. Directive 2002/3/EC of the European Parliament and the Council of 12 February 2002 relating to ozone in ambient air. Official Journal L 67, 9/03/2002, pp. 14–30. http://europa.eu.int/comm/environment/air/ambient.htm.
- Garcia J., Colosio J., 2002. Air Quality Indices: Elaboration, Uses and International Comparisons. ISBN: 2-911762-36-3.
- Murena F. 2004. Measuring air qua; lity over large urban areas: development and application of an air pollution index at the urban area of Napels. Atmospheric Environment, 38, 6195-6202.
- Shenfield L. 1970. Note on Ontario's air pollution index and alert system. J. Air Pollution Control Assoc. 20, 612.
- UNECE. 2003. Modelling and assessment of the health impact of particulate matter and ozone. Summary report prepared by the joint Task Force on the Health Aspects of Air pollution of the WHO/ECEH and the Executive Body. EB.AIR/WG.1/2003/11.
- UNECE. 2004. Modelling and assessment of the health impact of particulate matter and ozone. Summary report prepared by the joint Task Force on the Health Aspects of Air pollution of the WHO/ECEH and the Executive Body. EB.AIR/WG.1/2004/11.
- US-EPA. 2002. Comparative Assessment and harmonization of the U.S. EPA Air Quality Indexx (AQI) with related air quality and pollutant standard indices in other nations – Phase 2. (Contract No. 68-D-98-030).
- Mol W.J.A. and Van Hooydonk P.R. 2005. European exchange of air quality monitoring meta information in 2003. ETC/ACC Technical paper 2005/2. ETC/ACC, Bilthoven, <u>http://air-climate.eionet.eu.int/reports/ETCACC_TechnPaper_2005_2_EoI_AQ_meta_info2003</u>
- WHO. 1987. Air Quality guideline for Europe. WHO Regional Office for Europe, Copenhagen.

WHO. 2000. Air Quality guideline for Europe; second edition. WHO Regional Office for Europe, Copenhagen.

Annex 1. Examples of Air Quality Indices

Short descriptions of Air Quality Indiced as in use by France, United Kingdom, Belgium and Germany. This information has recently been extracted from the national air quality web sites. If no English version was available at the internet, the descriptions have not been translated to avoid any subjective (mis)interpretation of the terminology of the indices. The aim of this annex is to illustrate the different approaches used by the various countries to construct an air quality index. This annex is not aiming at presenting a complete overview of the air quality indices in use in Europe and other region. More extended review are presented by Garcia and Colosio (2002) and US-EPA (2002).

France: the ATMO Index

(<u>http://www.airparif.asso.fr/page.php?article=atmo&rubrique=indices</u>; a daily AQI calculated for each of the 40 French networks is available on: <u>http://www.buldair.org</u>; this web site, specially developed to serve the general public provides further background information on air quality and a link to the web sites of the local networks)

ATMO : un chiffre pour tout savoir

L'indice ATMO caractérise la qualité de l'air globale pour l'ensemble de l'agglomération parisienne

L'indice ATMO concerne toutes les grandes agglomérations de plus de 100 000 habitants. Cet indice et son mode de calcul sont précisément définis au niveau national par l'<u>arrêté du Ministère de l'Écologie et du</u> <u>Développement durable du 22 juillet 2004</u> (qui annule et remplace les précédents arrêtés relatifs à l'indice de qualité de l'air du 10 janvier 2000 et du 25 juillet 2001, voir <u>ATMO change de peau</u>.

Cet indice est déterminé à partir des niveaux de pollution mesurés au cours de la journée par les stations de fond urbaines et périurbaines de l'agglomération et prend en compte les différents polluants atmosphériques, traceurs des activités de transport, urbaines et industrielles.

Le type de site de mesure pris en compte est précisément défini : il s'agit de sites de fond situés dans les zones fortement peuplées de l'agglomération parisienne.

Dans son calcul interviennent :

Ie dioxyde de soufre (d'origine industrielle)

- [S] les poussières (d'origine industrielle, liée au transport et au chauffage)
- le dioxyde d'azote (lié aux transports, aux activités de combustion et de chauffage)
- I'ozone (polluant secondaire issu principalement des transports et de l'utilisation des solvants et des hydrocarbures)

Pour chaque polluant un sous-indice est calculé. Chaque sous-indice est déterminé chaque jour à partir d'une moyenne des niveaux du polluant considéré sur l'ensemble des stations retenues.

Pour les particules, on prend la concentration moyenne journalière sur chaque site.

Pour le dioxyde de soufre, le dioxyde d'azote et l'ozone, c'est la concentration maximale horaire du jour qui est relevée sur chaque site.

C'est le sous-indice maximal qui est choisi comme indice ATMO final caractérisant le qualité de l'air globale de la journée considérée.

cliquez ici pour accéder à la grille des sous-indices

L'indice de qualité de l'air ATMO est en fait un chiffre allant de 1 à 10 associé à un qualificatif (de très bon à très mauvais)

Chaque jour à 11h30, une prévision de l'indice ATMO est réalisée pour le jour même et pour le lendemain disponible sur internet. Un bilan de l'indice à la mi-journée est calculé à 17h00. L'indice définitif de la journée est connu le lendemain dès 9h30.

L'indice prévu pour la journée en cours et le lendemain est par ailleurs annoncé chaque jour à la fin du journal régional de France 3, sur le télétexte de France 2 et dans différents quotidiens (le figaro, le parisien, ...), repris par de nombreuses radios qui émettent en IIe-de-France (Skyrock, BFM, ...) et sur les 170 panneaux d'information de la Ville de Paris.

Une information sur la qualité de l'air est diffusée quotidiennement depuis 1992 par AIRPARIF et s'est vue remplacée depuis 1995 par l'indice national ATMO.

Répartition de l'indice ATMO selon ses différentes classes pour l'année 2004

@](🛎 Grilles - Microsoft Internet Explorer 📃 📕									
	Grilles de calcul des 4 sous-indices									
	Moyenne de de	es moyennes jo s différents sit	ournalières æs	Moyenne de	e des maximas s différents sit	horaires tes				
	sous-indice	seuil min.	seuil max.		sous-indice	seuil min.	seuil max.			
	Particules	en µg/m²	en µg/m²		NO2	en µg/m³	en µg/m³			
	1	0	9		1	0	29			
	2	10	19		2	30	54			
	3	20	29		3	55	84			
	4	30	39		4	85	109			
	5	40	49		5	110	134			
	6	50	64		6	135	164			
	7	65	79		7	165	199			
	8	80	99		8	200	274			
	9	100	124		9	275	399			
	10	> = 125			10	> = 400				
	Moyenne de	e des maximas s différents sit	horaires æs		Moyenne de	e des maximas s différents sit	horaires tes			
	sous-indice	seuil min.	seuil max.		sous-indice	seuil min.	seuil max.			
	03	en µg/m³	en µg/m³		SO2	en µg/m³	en µg/m³			
	1	0	29		1	0	39			
	2	30	54		2	40	79			
	3	55	79		3	80	119			
	4	80	104		4	120	159			
	5	105	129		5	160	199			
	6	130	149		6	200	249			
	7	150	179		7	250	299			
	8	180	209		8	300	399			
	9	210	239		9	400	499			
	10	> = 240			10	> = 500		-		

United Kingdom: Air Quality Index (source: http://www.airquality.co.uk/archive/standards.php#band)

Air Pollution Bandings and Index and the Impact on the Health of People who are Sensitive to Air Pollution

Banding	Index	Health Descriptor
	1	
Low	2	Effects are unlikely to be noticed even by individuals who know they are sensitive to air pollutants
	3	
Moderate	4	
	5	Mild effects, unlikely to require action, may be noticed amongst sensitive individuals.
	6	
	7	Significant effects may be noticed by sensitive individuals and action to avoid or reduce these
High	8	effects may be needed (e.g. reducing exposure by spending less time in polluted areas outdoors).
	9	
Very High	10	The effects on sensitive individuals described for 'High' levels of pollution may worsen.

Boundaries Between Index Points for Each Pollutant

Band	Index	Ozone 8 hourly running mean or hourly mean*		Nitrogen Dioxide Sulphur Dioxide hourly mean 15 minute mean		Sulphur Dioxide		Carbon N	lonoxide	PM10 Particles	
						8 hour me	running ean	24 hour running mean			
		µgm-3	ppb	µgm-3	ppb	µgm-3	ppb	mgm-3	ppm	µgm-3 (Grav. Equiv.)	µgm-3 (TEOM)
Low											
	1	0-32	0-16	0-95	0-49	0-88	0-32	0-3.8	0.0-3.2	0-21	0-16
	2	33-66	17-32	96-190	50-99	89-176	33-66	3.9-7.6	3.3-6.6	22-42	17-32
	3	67-99	33-49	191- 286	100- 149	177- 265	67-99	7.7- 11.5	6.7-9.9	43-64	33-49
Mode	rate										
	4	100- 126	50-62	287- 381	150- 199	266- 354	100- 132	11.6- 13.4	10.0- 11.5	65-74	50-57
	5	127- 152	63-76	382- 477	200- 249	355- 442	133- 166	13.5- 15.4	11.6- 13.2	75-86	58-66
	6	153- 179	77-89	478- 572	250- 299	443- 531	167- 199	15.5- 17.3	13.3- 14.9	87-96	67-74
High											
	7	180- 239	90-119	573- 635	300- 332	532- 708	200- 266	17.4- 19.2	15.0- 16.5	97-107	75-82
	8	240- 299	120- 149	636- 700	333- 366	709- 886	267- 332	19.3- 21.2	16.6- 18.2	108- 118	83-91

	9	300- 359	150- 179	701- 763	367- 399	887- 1063	333- 399	21.3- 23.1	18.3- 19.9	119- 129	92-99
Very High											
	10	360 or more	180 or more	764 or more	400 or more	1064 or more	400 or more	23.2 or more	20 or more	130 or more	100 or more
	* For ozone, the maximum of the 8 hourly and hourly mean is used to calculate the index value.										

The overall index describes air pollution on the basis of the highest band for any individual pollutant.

"Belgium Air Quality Index

source: http://www.irceline.be/~celinair/english/abindex_en.html

Definition of the air quality index

The index gathers as one representative number the concentrations of several polluants in ambient air. It is scaled from 1 (excellent air quality) to 10 (awful quality). The computation is performed by using data obtained from the telemetric networks that measure continuously the air quality in the 3 Regions. The index is thus a understandable representation of the measurement technical results for most of the public, allowing a global understanding of the ambient air quality.

Two indicies by Region

Two indices are computed daily for each Region : the general air pollution index and the urban air pollution index. The general index deals with the whole territory of the Region whereas the urban index deals with the urban centers of the main cities in the Region.

Which pollutants are used to compute the index?

The two indices (general as well as urban) are based on the concentrations of O3, NO2, SO2 and PM10 particles. A "characteristic value" is computed every day for these 4 pollutants and then compared to a concentration scale.

The concentration scales are based on the new European <u>guidelines</u> concerning the assessment and management of ambient air quality.

Based on the number of allowed exceedances of the new European limit values, an index value of 6, 7 or 8 is assigned to that limit value. The other scale divisions were defined by evaluating the range of concentrations measured in the telemetric networks of the three Belgian Regions.

The table below shows, for each pollutant, the relation between the measured concentrations mesured (in $\mu g/m^3$), the index value and the corresponding scale.

Polluta	nt						µg∕m³					
SO ₂	24h average	0	15	30	45	60	80	100	125	165	250	> 250
NO ₂	hourly max	0	25	45	60	80	110	150	200	270	400	> 400
O ₃	max 8-hour average	0	30	45	60	80	100	120	150	200	270	> 270
PM10	24h average	0	10	20	30	40	50	70	100	150	200	> 200
index			1	2	3	4	5	6	7	8	9	10
	rating	ех	ællent	very good	good	fairly good	moderate	poor	very poor	bad	very bad	horrible

Which stations are used to compute the index?

The "characteristic value" for a given pollutant, for the whole Region or for the urban centers is obtained by computation of the average of the concentrations measured in some representative stations. As far as the general index is concerned, all the <u>stations</u> of the Region are involved in the computation but for the urban index, one only uses the stations that are located in the urban centres. The characteristic value for each pollutant (also called sub-index) is presented, by Region, in the first four columns of the graphics. The characteristic value is however not computed when more than one half of the data are missing. The quality index is equal to the highest sub-index (i.e. the worst air quality) of the sub-indices of the 4 pollutants. The index is not computed whenever a sub-index is missing.

Warning

The index is only a qualitative representation of the ambient air quality. It has little scientific meaning. Reports, studies and other scientific interpretations should only be performed by using measurement data.

Some examples:

®IRCEL-CELINE

Germany: Air Quality Index

Source: <u>http://www.umwelt.niedersachsen.de/master/C9751204_N9725376_L20_D0_I598.html</u> Definition und Berechnungsverfahren

Der Luftqualitätsindex (LQI) ist ein aggregierter Indikator, der auf der Basis von Einzelschadstoffmessungen für die Luftschadstoffe Stickstoffdioxid (NO2), Schwefeldioxid (SO2), Kohlenmonoxid (CO), Ozon (O3) sowie der Schwebstaubfraktion PM10 gebildet wird. Der LQI berücksichtigt insbesondere die gesundheitliche Relevanz der einzelnen Luftschadstoffe. Die an ausgewählten stationären Messstationen gemessenen Konzentrationen der Schadstoffe werden täglich jeweils in eine von 6 Indexklassen eingruppiert, die an das Schulnotensystem angelehnt sind. Die Indexkassen sind dabei für jeden der 5 Luftschadstoffe unter Berücksichtigung epidemiologischer und toxikologischer Untersuchungen sowie Eu-Grenzwerten nach der Luftqualitäts-Rahmenrichtlinie 96/62/EG und deren Tochterrichtlinien abgeleitet. der Kurzzeit-Luftqualitätsindex ist dann definiert als der höchste Einzelstoff-Indexwert

Bewertung	Index	NO2 1-h- Mittelwert (µg/m³)	SO2 1-h- Mittelwert (µg/m³)	CO 8-h- Mittelwert (mg/m ³)	O3 1-h- Mittelwert (µg/m³)	PM10 24-h- Mittelwert (µg/m ³)
sehr gut	1	0 - 24	0 - 24	0 - 0,9	0 - 32	0 - 9
gut	2	25 - 49	25 - 49	1,0 - 1,9	33 - 64	10 - 19
befriedigend	3	50 - 99	50 - 119	2,0 - 3,9	65 - 119	20 - 34
ausreichend	4	100 - 199	120 - 349	4,0 - 9,9	120 - 179	35 - 49
schlecht	5	200 - 499	350 - 999	10,0 - 29,9	180 - 239	50 - 99
sehr schlecht	6	500 -	1000 -	30,0 -	240 -	100 -

Klassengrenzen für den Luftqulitätsindex LQI

- Es werden die an einem Tag gemessenen maximalen 1-Stunden-Mittelwerte von NO2, SO2 und O3, der maximale gleitende 8-Stunden-Mittelwert von CO sowie der 24-Stunden-Mittelwert für die Schwebstaubfraktion PM10 herangezogen.
- Die jeweiligen Konzentrationswerte der einzelnen Luftschadstoffe werden entsprechend den abgeleiteten Klassengrenzen in eine Indexklasse eingeordnet.
- Der Luftqualitätsindex wird definiert als die höchste besetzbare Indexklasse, in die ein oder mehrere Luftschadstoffe eingeordnet wurden.
- Der Luftqualitätsindex wird als Indexzahl (ohne Nachkommastelle) zusammen mit der Bewertungskategorie angegeben.
- Zur genaueren Information werden die beiden am höchsten eingeordneten Schadstoffe mit ihrer Indexklasse angegeben, z.B. LQI: 5 "schlecht" (O3: Indexklasse 5; NO2: Indexklasse 3).
- Zur Ermittlung der Rangordnung bei mehreren Luftschadstoffen in der höchsten Indexklasse, zur Verdeutlichung der Lage eines Konzentrationswertes innerhalb einer Indexklasse (z.B. bei graphischen Darstellungen) und zur Ermittlung von Durchschnittswerten über einen längeren Zeitraum werden durch lineare Interpolation innerhalb der Indexklasse Zwischenwerte (gerundet auf eine Nachkommastelle) berechnet.

Index	Information	Spezifische Information zu einzelnen Luftschadstoffen

1	Keine nachteilige Wirkung auf die Menschliche Gesundheit	_
2	Keine nachteilige Wirkung auf die Menschliche Gesundheit	-
3	Kurzfristige nachteilige Wirkungen auf die Menschliche Gesundheit sind unwahrscheinlich; allerdings können Gesundheitseffekte durch Luftschadstoffkombinationen und langfristige Einwirkung des Einzelstoffes nicht ausgeschlossen werden	-
		Empfindliche Personengruppe:
		SO ₂ : Asthmatiker (Verstärkung von Symptomen z.B. in Verbindung mit Pollenexposition möglich)
		NO ₂ : Asthmatiker (Verstärkung von Symptomen z.B. in Verbindung mit Pollenexposition möglich)
	In Kombination mit weiteren. Luftschadstoffen in höherer Konzentration oder weiteren eine	CO: Patienten mit koronarer Herzkrankheit (Verstärkung von Symptomen möglich)
4	Reaktion der Atemorgane auslösenden Reizen, können geringgradige Gesundheitseffekte bei empfindlichen Personengruppen auftreten	O ₃ : Ozonempfindliche Personen (sind in allen Bevölkerungsgruppen etwa gleich häufig) Verstärkung von Symptomen bei zusätzlich bestehenden Erkrankungen der Atemwege möglich
		PM ₁₀ : Asthmatiker (Verstärkung von Symptomen z.B. in Verbindung mit Pollenexposition möglich)
		Verhaltensempfehlungen:
		Empfindliche Personengruppen sollten längerdauernde körperliche Anstrengungen im Freien reduzieren
		Empfindliche Personengruppe:
		SO ₂ : Asthmatiker (Verstärktes Auftreten von Symptomen wahrscheinlich)
		NO ₂ : Asthmatiker (Verstärktes Auftreten von Symptomen wahrscheinlich)
	Es können nachteilige Gesundheitseffekte	CO: Patienten mit koronarer Herzkrankheit (Verstärktes Auftreten von Symptomen wahrscheinlich)
5	bei empfindlichen Personengruppen sowie in Kombination mit weiteren Luftschadstoffen auch bei weniger empfindlichen Personen auftauchen	O ₃ : Ozonempfindliche Personen (sind in allen Bevölkerungsgruppen etwa gleich häufig) (Verstärktes Auftreten von Symptomen an den Atemwegen wahrscheinlich)
		PM ₁₀ : Asthmatiker (Verstärktes Auftreten von Symptomen wahrscheinlich)
		Verhaltensempfehlungen:
		Empfindliche Personengruppen sollten körperliche Anstrengungen im Freien vermeiden, andere Personengruppen sollten längerdauernde körperliche Anstrengungen im Freien vermeiden

		Empfindliche Personengruppe:
6	Nachteilige Gesundheitseffekte bei empfindlichen Personengruppen sind wahrscheinlich und auch weniger empfindlichen Personen möglich	SO ₂ : Asthmatiker (Verstärktes Auftreten von Symptomen wahrscheinlich) und weniger empfindliche Personen (Atemwegssymptome bei Personen mit Herz- /Lungenerkrankungen wahrscheinlich)
		NO ₂ : Asthmatiker (Verstärktes Auftreten von Symptomen wahrscheinlich) und weniger empfindliche Personen (Atemwegssymptome bei Personen mit Herz- /Lungenerkrankungen wahrscheinlich)
		CO: Patienten mit koronarer Herzkrankheit (Auslösung von Symptomen wahrscheinlich) und weniger empfindliche Personen (geringgradige Wirkung auf Funktionen des Zentralnervensystems)
		O ₃ : Ozonempfindliche Personen (sind in allen Bevölkerungsgruppen etwa gleich häufig) (Auslösung von Symptomen an den Atemwegen wahrscheinlich) und weniger empfindliche Personen (Auslösung von Atemwegssymptomen möglich)
		PM ₁₀ : Asthmatiker (Verstärktes Auftreten von Symptomen wahrscheinlich) und weniger empfindliche Personen (Symptome insbesondere bei Personen mit Herz- /Lungenerkrankungen wahrscheinlich)
		Verhaltensempfehlungen:
		Empfindliche Personengruppen sollten körperliche Anstrengungen im Freien vermeiden, andere Personengruppen sollten den Aufenthalt im Freien reduzieren

Aktueller Tages-Luftqualitätsindex (TQL) für den TQL: 4 (ausreichend)

Wirkungen:

In Kombination mit weiteren. Luftschadstoffen in höherer Konzentration oder weiteren eine Reaktion der Atemorgane auslösenden Reizen, können geringgradige Gesundheitseffekte bei empfindlichen Personengruppen auftreten

Empfindliche Personengruppe:

Ozonempfindliche Personen (sind in allen Bevölkerungsgruppen etwa gleich häufig) Verstärkung von Symptomen bei zusätzlich bestehenden Erkrankungen der Atemwege möglich

Verhaltensempfehlungen:

Empfindliche Personengruppen sollten längerdauernde körperliche Anstrengungen im Freien reduzieren

1: sehr gut, 2: gut, 3: befriedigend, 4: ausreichend, 5: schlecht, 6: sehr schlecht

CITEAIR

Within the CITEAIR-project (see <u>http://citeair.rec.org/index.html</u> for further information) the following air quality index has been proposed (see <u>http://citeair.rec.org/downloads/Workshop-Rome/Session2-AQ-Index-Karine-Leger.pdf</u>)

	Class	Main and the second			4.1.1:4: 1.11.4.4.4	
Index		NO2	ain pollutan 03	PM10	Additional	pollutants
	0	0	0	0	0	0
/ery low	25	50	60	25	5000	50
	25	50	60	25	5000	50
Low	50	100	120	50	7500	100
	50	100	120	50	7500	100
/ledium	75	200	180	75	10000	300
	75	200	180	75	10000	300
High	100	400	240	100	20000	500
erv high	> 100	>400	> 240	> 100	> 20000	> 500
fe air	◆ CO : 8	posed co	average maxir	nal value 1 grid (3/3 the sub-index by	CITEAIR Workshop 1	th March 2005, Rom
T air	CO: 8 Pro Conversion [SO2]: hour • For 0 < [S • For 100 < [S	posed ca sion between the rly maximal value (SO2]< 50 and 50 <	average maxir alculation concentration and s [SO2]< 100 300 < [SO2]< 500	mal value a grid (3/3 the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = 10	CITEAIR Workshop 1	th March 2005, Rom
C air	CO: 8 Pro Converse [SO2] : hour • For 100 < • For and [S • For and [S • NO21 : hour	sion between the rly maximal value (CO2)< 50 and 50 < (SO2)< 300 and (SO2)< 500	average maxir alculation concentration and concentration and conce	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	th March 2005, Rom
Cair	CO: 8 Pro Converse [SO2] : hour • For 0 < [S • For 100 < • For and [S [NO2] : hour • For 0 < [P [NO2] : hour • For 0 < [P • Fo	bours moving posed ca sion between the rly maximal value (SO2]< 50 and 50 < (SO2]< 300 and (SO2]< 500 rly maximal value (O2]< 100	average maxir alculation concentration and s :[SO2]< 100 300 < [SO2]< 500 e	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	th March 2005, Rom
T eair	CO: 8 Pro Converse [SO2]: hour • For 0 < [S • For 100 < • For and [S [NO2]: hour • For o < [C • For 0 < [C • For	sion between the rly maximal value (SO2]< 50 and 50 < (SO2]< 300 and (SO2]< 300 and (SO2]> 500 rly maximal value (SO2]< 100 (NO2]< 100 (NO2]< 400	average maxir alculation concentration and concentration and conce	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	th March 2005, Rom
Cair	CO: 8 Pro Conversion [SO2]: hour • For 0 < [S • For 100 • For and [S [NO2]: hour • For 0 < [P • For 100 • For 200 • For [NO2 • For [NO2	bours moving posed ca sion between the rly maximal value SO2]< 50 and 50 < [SO2]< 300 and SO2]< 300 and SO2]< 500 rly maximal value IO2]< 100 [NO2]< 100 [NO2]< 400]> 400	average maxir alculation concentration and e : [SO2]< 100 300 < [SO2]< 500 e	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	th March 2005, Rom
Cair	CO: 8 Pro Converse [SO2]: hour • For 0 < [S • For 100 < • For and [S [NO2]: hour • For 0 < [NO2]: hour • For 200 • For [NO2] • For [NO2] [O3]: hourd	bours moving posed co sion between the rly maximal value SO2] < 50 and 50 < [SO2] < 300 and SO2] > 500 rly maximal value [NO2] < 200 [NO2] < 400] > 400 y maximal value	average maxir alculation concentration and (SO2]< 100 300 < [SO2]< 500 e	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	rth East South West
Cair	CO: 8 Pro Converse [SO2]: hour • For 0 < [S • For 100 < • For and [S [NO2]: hour • For 0 < [P • For 100 < • For 100 < • For 200 < • For [NO2] [O3]: hourd	bours moving posed ca sion between the rly maximal value (C2] < 50 and 50 < (SC2] < 300 and 50 < (SC2] < 300 and 50 < (SC2] < 300 and 50	average maxir alculation concentration and concentration concent	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	th March 2005, Rom
f air	CO: 8 Pro Converse [SO2]: hour • For 0 < [S • For 100 < • For and [S [NO2]: hour • For 200 • For [NO2] • For [NO2] [O3]: hour [PM10]: data	bours moving posed ca sion between the rly maximal value SO2] < 50 and 50 < [SO2] < 300 and SO2] < 300 and SO2] > 500 rly maximal value NO2] < 100 [NO2] < 200 [NO2] < 400] > 400 y maximal value sily maximal value	average maxir alculation concentration and s (SO2]< 100 300 < [SO2]< 500 e	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$	CITEAIR Workshop 1	th March 2005, Rom
Cair	CO: 8 Pro Converse [SO2]: hour For 0 < [S For 100 < For and [S [NO2]: hour For 200 < For 200 < For [NO2 [O3]: hourd [PM10]: data [CO]: 8hour	hours moving posed ca sion between the rly maximal value 302]< 50 and 50 < [S02]< 300 and 302]< 300 and 302]< 300 and 302]< 100 [N02]< 400 [N02]< 400]> 400 y maximal value nily maximal value	average maxir alculation concentration and concentration and conce	mal value a grid (3/3) the sub-index by \rightarrow index = 1/8 \rightarrow index = 1/3 \rightarrow index = 1/4 \rightarrow index = 1/4 \rightarrow index = 5/1 \rightarrow index = [Pi	CITEAIR Workshop 1	th March 2005, Rom
Cair	CO: 8 Pro Converse [SO2] : hour For 0 < [S For 100 < For and [S [NO2] : hour For 0 < [NO2] : hour For 200 < For [NO2] [O3] : hourl [PM10] : data [CO] : Shour For 0 < [C For 0	bours moving posed ca sion between the rly maximal value (SO2] < 50 and 50 < (SO2] < 300 and 3 (SO2] < 300 and 3 (SO2] < 300 and 3 (SO2] < 100 rly maximal value (NO2] < 100 (NO2] < 400 J> 400 y maximal value nily maximal value sing moving average (SO2] < 5000 < (SO2) < 7500	average maxim alculation concentration and concentration and conce	mal value a grid (3/3 the sub-index by \rightarrow index = ½ \rightarrow index = 1/2 \rightarrow index = 1/2 \rightarrow index = 1/4 \rightarrow index = 1/4 \rightarrow index = 5/1 \rightarrow index = [P] \rightarrow index = 1/2	CITEAIR Workshop 1	Ith March 2005, Rom
Te air	CO: 8 Product of the second	bours moving posed ca sion between the rly maximal value (C2] < 50 and 50 < [SO2] < 300 and 50 < [SO2] < 400 [NO2] < 400 [NO2] < 400]> 400 y maximal value sily maximal value sily maximal value (C0] < 5000 < [CO] < 7500 and 50 (C0] < 7500 and 50	average maxir alculation concentration and concentration and conce	mal value a grid (3/3) the sub-index by \rightarrow index = $\frac{1}{2}$ \rightarrow index = 1/8 \rightarrow index = 1/3 \rightarrow index = 1/4 \rightarrow index = 1/4 \rightarrow index = $\frac{1}{2}$ \rightarrow index = $\frac{1}{2}$ \rightarrow index = 1/2 \rightarrow index = 1/2 \rightarrow index = 1/2	CITEAIR Workshop 1	Ith March 2005, Rom