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Abstract

In this paper, interpolation techniques are appleedhe construction of dailed air quality maps for
Europe, based on a combination of primarily cuiality monitoring data and secondarily, modelling
and other supplementary data. We note that {soach is complementary to the analysis for the
European Thematic Strategy that relies jarifly on modelling results supporting air emission
reduction strategy and feasibility assessments. §ubs#ly, these maps arsad as the basis for an
assessment of air pollution related risks for pubkalth and ecosystems. The paper describes the
improvement and application of vaus interpolation methods that werealuated in a previous paper

to develop high quality Europe-wide interpolatanl quality maps for the European Environment
Agency. The earlier work was expanded by inatgdmore recent data (2004) and more air quality
indicators: PMo, 0zone, NQand SQ are now covered. Insufficient data were available to support the
mapping of PMs. Supplementary information used includes results from the Unified EMEP model
calculations, altitude data, annual meteorologicatiiehnd climatological fids. Separate urban and
rural maps are merged using population densityrin&ion. We conclude #t kriging methods are
generally to be preferred over ingerdistance weighting, and in case of;PMgnormal kriging over
ordinary kriging. Methodologies based on linear esgion using supplementary data are generally to
be preferred over pure interpolation methods. Theaushgoncurrent meteorological data gives better
results than climatological data. In the studyree types of uncertainty are addressed: spatial
representativeness, kriging interpolaticariance, and exceedance uncertainty.

The paper includes a preliminary combination ofititerpolated air quality data with other data sets
to analyse exposure and impacts of air pollution in terms of population and ecosystems at risk. We
calculate the number of Europeans expos®dannual mean concentrations of ghMbove the
European limit value of 4Qg.m* at 6 % of the total population in 2004. The estimated number of
premature deaths calculated using 2004 as tfererece year is estimated between 246,000 and
327,000, depending on the choice of natural backgroandentration. The high end of this range is
close to the estimates used in the CAFE stratégyecosystems, we find that more than 30 % of all
agricultural land may be exposed to ozemeeeding the target value of 18 mghrand more than 80

% may be exposed to levels in excess of the long-term objective of 6%imglmsouthern countries
more than 90 % is estimated to exceed the tarde¢sawhile in northern Europe the estimated ozone
levels are below the target value for nearly 76f4he agricultural area. For forests, in northern
Europe the critical ozone reporting level of 20 mghris not exceeded in our calculations, but in
southern Europe it is exceeded everywhere. The ruralmip shows a few regions where the,NO
limit value for the protection of vegetation is excegdthe Benelux, the Rhone Valley and northern
Italy). No significant exceedances for Sfere expected as the interpolated map of annual average
SO, confirms.

In addition to the added value provided by wai&zation of air pollution indicators for public
information purposes, the maps also improve tjuality and relevance of the assessment of air
pollution exposure and impacts in rural and urbegas across Europe. Potentially, it can be used for
supporting the checking of compliance with air gyafitandards and for evaluation of national air
quality reports. The current work focuses on longemt indicators for European air quality. The
application of the methods for near-real time répgrof air quality indicators might be a focus of
future work. The paper provides suggestions fothfr work on methodologies (e.g., selection of the
“best” methodology, alternative sugphentary information), uncertaies (e.g., sub-grid variability,
mapping of probabilities) and applications (egpmbination with NATURA2000, near-real time

mapping).
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Extension and improvements in this paper

This report deals with the improvement of hds and data input sources for producing air quality
maps for Europe, with the extension of the sgiadfutants for which these maps are created, and with
the detailed analysis of uncertainties of the indigldunaps and the use of interpolation methods based
on daily averages versus annual averages from negasuats. Specifically, the examined methods are
applied for creating maps for the year 2004, whach used in EEA's air quality related Core Set

Indicators (CSI1004 and CSI005) and in EEA Air Pollution reports.

In this report the mapping methods argtiar developed in two directions:

* improvement of the methods for those pollusaatd indicators mapped previously (related to
PM;, and ozone);

 development and application of methods for other pollutants and their indicatgrsNSQ
PM, s AOTA40 for forests and the Ithighest maximum 8-hour daily average concentration
for ozone).

Usage of additional data sources

In relation to the improvements on methodological aspects, we focused on the use of actual
meteorological data for the same year as thonitoring data, as well as on selecting those
meteorological parameters which show a better taiioa with the air quality data. For example, now

we take the 6-hourly values for 2004 for sotarface radiation of the ECMWF MARS database
(www.ecmwf.int/services/archive), instead of they&@r annual averaged sunshine duration of the
CRU climatological database (New et al.,, 2002). The actual data is expected to improve the
interpolation results due to its better temporal @ation and resolution, despite its somewhat lower
spatial resolution. For P)dland ozone this paper discusses these expected improvements for the year
2004.

The use of the altitude parameters from theopean-wide high resolution dataset GTOPO30 (30
seconds grid cells) instead of the altitudes repori¢it tive AirBase monitoring data, is compared for
the rural background stations in the production of the maps af &Mual averages and the"36
maximum daily averages.

It is expected that auxiliary data with a hightsdaesolution such as traffic density maps or emission
inventories, will further improve the interpolatiddowever, no suitable high resolution traffic density
database with European wide coverage appears avdiable for this purpose. Spatial emission data
for NO from the APMoSPHERE project (Briggs et al., 2085)sed in Section 5.8 only, as one of the
supplementary parametefsr estimation of urban P} pollution. One could think of including
environmental satellite imagery data. However, sdata is not considered. The conversion of the
aerosol layer characteristics measured by satellitesgiound level pollutant concentrations is not
well established yet. An illustrative examplesofch a study is Koelemeijer et. al. (2006a) orn, M
Another reason for not using satellite data s #oluminous data processing related to it and the
limitations on project resources.

Exploration of improved methods, their applicability and associated uncertainties

Another improvement focuses on the analysis of ffects of using different temporal resolutions of
observational data in particular using daily insteddnnual statistics. The outcomes could contribute
to the refinement of the calculation methods afe®dances proposed for legislations. Case studies use
the annual mean, the Bighest daily mean and the numbereateedance days derived from the
PM;o monitoring data for the year 2003. Chaptersedsses the results, including its uncertainties.

Kalman Filter techniques were considered for exploeause in the data assimilations, but due to their
complexity and capacity demands we decided notdodie them in this project. It is however advised
to follow their developments in the application i tield of air pollution and consider their usage at
some time in the coming years.
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Finally, we report on the quantification of uncertastand errors in more tad. For this reason we
focus additionally on the three following items:

1. Cross-validation of errors between paramebsrasing the root-mean square error (RMSE)
and several other statistical indicators, whikiscussed throughout the paper in the sections
on the spatial interpolations;

2. Actual measurements compared to the puakxted and/or modelled values based on cross-
validation, also to be found throughout the paper;

3. Spatial maps of the errors in the interpaatimaps: maps with prediction standard error or
standard deviations (SD). In Chapter 6 and first attempt is presented of producing such
maps.

The current work focuses on the mapping of anndateae limit or threshold values. The applicability

of the methods for near-real time or even forecastrtepd air quality is not the primary scope of this
project, but might be a focus of future work. Nelietess, we emphasise that there is a need to stay
alert and to recognise synergies across the diversityeef project types. We can image that at some
point in the future interpolation technigues and raddtogies of this project could become applicable
in a way for EEA's near-real time projects. For eplamnapplying methods from this project for spatial
interpolation using meteorological forecasts and rofupplementary data, for which in the future a
correlation with air quality concentrations might éstablished, to derive spatially interpolated air
quality indicator prediction maps for Europe. Therefave should try to build bridges across projects
and aim for shared and robust methods.

Extensions for analysis of exposure and impacts

In relation to the extension to the other pollutaarid their indicators, we updated the indicator maps
for the year 2004. This concerns the humealth status indicators annual average arftid&imum
daily averages for PM10, and for ozone the indic&OMO35, and the vegion related indicator
AQOTA40 for vegetation/crops, with addition of the AOT40 or forests.

Additional to these updates, a preliminary hameealth impact assessment was performed. The
approach follows as much as possible the algorithntiseofelative risk functions on health impact due
to air pollution as used in other (model basas3essment programmes and projects (CAFE). The
assessment provides tables witle tstimated population at risk per country and for Europe as a
whole. Next to tables, the spatial distribution okerrope is presented in maps. Both tables and maps
are intended to be included in future updatethefEEA Core Indicator on urban air quality (CSI1004).
For the vegetation-related indicators similar impaps and tables were prepared expressing the
areas of each land-cover type at risk, i.e.ettldjp damage, change or yield reduction.

With respect to reaching current and future headthted limit or target values, the paper presents

indicator maps based on 2004 data for;/AMth the number of exceedance days, for ozone with the
26th highest 8-hour daily means. gétation-related indicator maps have been prepared for the SO
and NQ limit values set for the protection of ecogmt and vegetation. They are both relevant

within the context of CSI005 of EEA, which inckeslimpact estimates and maps. The paper includes
preliminary Europe-wide maps of ecosystems and agricultural land at risk.

Finally, options for interpolation and mapping of PMire explored on special request of EEA. Both
EEA and DG-ENV are highly interested in such mfiation based on monitoring data next to results
coming from model-based projects. However, in many countries the implementation ofsa PM
monitoring network is currently in proggs: in 2004 only a limited number of PMmonitoring
stations are reported to AirBase. In the course of thizeproblem is expected to be solved by itself,
when the networks and country reporting come fatboperation according to the intentions of the
directives. Until then, interpolated maps produced on the basis of PERsurements contain large
uncertainties.
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Road map to the report
The setup of this report is as follows:

14

Chapter 2 presents the basic mapping methods, which are used in this report.

Chapter 3 gives in introduction on the separate rural and urban mapping including the method
applied for their merger.

Chapter 4 documents all input data as well as thecpss of their preparation for the use in
the analysis and mapping.

Chapter 5 addresses the further developmenth® mapping methods, detailed uncertainty
analysis of these methods based on crossat&id and the extension of the number of
mapped pollutants. Rural mapping is dealt withSections 5.1 - 5.6, urban mapping is
covered in Section 5.7 - 5.9. Both in the caseural and urban maps, individual pollutants
are dealt with in separate sections of Chaptém e case of rural maps this is applied for all
examined pollutants, in the case of urban n@apyg pollutants PM and ozone affecting human
health is covered.

Chapter 6 presents the detailed analysis of thenparison of exceedances mapping based on
daily and annual statistics, including a discussion on uncertainty.

Chapter 7 presents the detailed analysis of uncertainties on the indicators dealt with in
Chapter 5 including uncertainty mapping.

Chapter 8 describes the resulting combined runatlairban European maps for the relevant
air pollution indicators and also some humanitheand ecosystem based risk maps with their
related tables with areas and population numbers at risk.

Chapter 9 concludes and recommends on follow-up to this study.

The Annex presents the final set of maps and tableshfe year 2004 that are described in the
Chapter 8.
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2 Interpolation methodologies and supplementary data
selection

2.1 Introduction

Air pollution measurements from ground statioase the most accurate source of air quality
information. As the number of measuring siieslimited, the information obtained from these
measurements has to be generalized to improveptiial coverage. There are various ways to arrive
at spatial maps on the basis of the data from thdtaromg stations. One of the simplest is the use of
linear regression models, where the regression is made witlevant supplementary data from other
sources. A second approach is throggdtial interpolation. If spatial interpolation does not use any
further information (except altitude in some casesyddition to the measuremts (so called primary
data), we speak abounterpolation using primarily monitoring data only. If we include more
supplementary information in the interpolation, evmuld expect that the results would become more
accurate. The linear regression approach is primamilgresting to identify the most promising
supplementary data sources that can be used in a third approach, thdinbarnggression models

plus interpolation of their residuals and which generally provides better results. In some cases
however, the additional benefit of this approatiay only be marginal as compared to linear
regression without interpolation.

In summary, the types of methods are as follows:
1. Linear regression models withauterpolation (Section 2.2)
2. Interpolation methods using primarigonitoring data (Section 2.3)
3. Linear regression models plus intem@dn of their residuals (Section 2.4)

Different interpolation methods are applied orily the case of interpolation using primarily
monitoring data only. These are Inverse Distance Weighting (IDW), ordinary kriging, ordinary
cokriging, and lognormal cokriging.

In urban areas one additional spatial interpolatygre is examined: the interpolation using the urban
increments, the Delta, added to the interpolatedl nackground concentration field, as explained in
Section 3.2. This approach can be considessd fourth type of spatial interpolation.

One important source of supplementary (or seconddatd is formed by the results of chemistry
transport and dispersion models. These have the adpanf full coverage of the whole territory, but
are generally less reliable than the measured 8atzondary data also include other supplementary
parameters which show statistical correlation withpailution data and give spatially more resolved
information on the whole territory than the pure @uality measurements, such as meteorological or
topographical data, population density, or emissions.

The basic mapping methods used in this report are the methods presented in Denby et al. (2005),
especially the methods developed and presentetbialek et al. (2005). The detailed description of
these methods is presented in the respective remoisief description is given in the following
sections.

Linear regression models (type 1) can be useddmbining the information from measurements with
supplementary data. These are presented in SecHoifif#® methods of interpolation, using primarily

the measurements only (type 2), are describégeittion 2.3. The residuals resulting from the linear
regression models can be further interpolated -rtbiods using the interpolation of residuals (type

3) are described in Section 2.4. The method fos#tection of preferred parameters for several linear
regression models is described in Section 2.5, as well as the way of comparing these models. The
methodology for comparing different mapping methadsd different parameters used in these
methods is described in Section 2.6.

15
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Different linear regression models use differam@ementary data, for example, besides output from
a dispersion model they can include altitudevarious meteorological parameters. The dispersion
model can be used alone or imdanation with other parameters.

The spatial interpolation of residuals is carried wsihg interpolation methods, described in Section
2.3, with the exception of lognormal krigingnda lognormal cokriging because residuals have no
lognormal distribution.

2.5 Use of various supplementary data sources

Different sources of supplementary data in linear regression models (as described in Section 2.2 and
2.5) are used and their usage is mutually coetghafhree basic varieties of the linear regression
model equation 2.1 are used:

1. Regression models using the Unified EMEP model

2. Regression models using the Unified EMEBd&l + supplementary sources (e.g. altitude,
meteorological parameters)

3. Regression models using supplementamyurees only (e.g. altitude, meteorological
parameters)

The basic reason for examining these three varietigs verify the assumption that by using output
from a chemistry transport model together with othgpplementary data moaecurate estimates can
be obtained than by the use of output from a chieynisansport model alone or by the use of other
supplementary data only.

Within the varieties 1 and 3 several submod=ds be constructed arekamined. For preferred
submodel selection, different appiches can be used. Firstly, it is necessary to choose supplementary
data that really brings some additional infotima. Submodel selection is also a compromise between
bias and variance: by decreasing the number ohpateas, the predictive capability can improve (i.e.
the variance decreases), while the bias increasesveSoeed to arrive at an optimal selection of
parameters meeting sufficient accuracy of imwéation results as well as sufficient suppression of
uncertainties.

The most often used approaches for submodeltsmieare forward selection, backward elimination,
stepwise regression (forward or backward type) and all subsets. Forward selection begins with the
“best” predictor and adds the next “best” to imprdhe fit. Backward selection begins with all
variables and removes the least useful as long edittlis not substantially “worsened”. Stepwise
regression allows “good” predictors to re-enter gt step into the model. All improvements should lie
within defined statistical criteria.

In the APMoSPHERE project, for example, thecatled approach of “supervised forward stepwise
procedure” is used to construct regression mo@eidy variables that (ilncreased the adjusted By
more than 1%, and (ii) had coefficients that comfed to the pre-specified directions (Briggs et al.,
2005) were included.

In this study backward elimitian is used and confirmed by automatic stepwise regression. For
possible further elimination and for comparison psg® several other submodels are also analysed.
The list of examined submodels is stated sapér for each component. Individual submodels are
mutually compared by evaluating the coefficient of determinatiorausted Rand the root-mean
square error RMSE:

2
n

[2sn-26)f
2

=1-1=
(z(sn-2)

Z(Z(si)—Z)(Z(si)—z‘)
(z(s)-Z). (z”(si)—zf)2

n n n
1=1 1=1 1=1

, (2.11)

R? =

where Z(s,) isthe measured concentration at the i-th poitl, ..., N,
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Z(Si) is the estimated concentration at ik point using other points,

Z is the arithmetic average 8(sy), ..., Z(Sn),

y4 is the arithmetic average é‘(sl),...,f(sN) :

adjusted _R?=R?-—P~1 q_R?) (2.12)
(N-p)

where N is the number of the measuring points,

p is the number of parameters (teay, a,,, ...) of the lin. regr. model (2.1),

18 S
RMSE = \/W;(Z(si)—Z(si )) (2.13)

Coefficients R and adjusted Rare reported together in the whole report (whéris Rentioned in the
text, both coefficient Rand adjusted Rare implied). However, fosupplementary data selection
adjusted Ris preferred.

As was concluded and recommended in Horalek .e€28105) it is further investigated as to what
extent an improvement can be obtained whengukigarithmically transformed air quality parameter
values in the linear regression models.

2.6 Criteria for comparing spatial interpolations

Several interpolation methods applied and mutually compared. The main criterion for comparison
analysed in this paper is RMSE from cross-validgtfollowed by other statistical indicators from
cross-validation. The cross-validation method comptiie spatial interpolation for each measurement
point using all the available information except frttmat one point (i.e. it withholds one data point
and then makes a prediction at the spatial locaifainat point). The predicted and measured values
are then compared and the procedure is repdatedll points. This way the performance of the
various interpolation methods at areas withowasurements can be evaluated. (Cross-validation
simulates and examines the behaviour of therpolation in the places with no measurement.)

For each examined method several statistical indicaterpresented. The particular indicators used in
cross-validation are the following:

root mean squared error (RMSE), according to the equation (2.13)

mean prediction error (MPE), MPE = % i (Z(s;) - ZA(si ) (2.14)

which is the same as the average bias.

mean absolute error (MAE) MAE = % :1 ‘Z(si) - ZA(si )‘ (2.15)
10 5 10 SN

standard deviation of error ~ sd = \/W ; (Z (si ) - Z(si ))— N 2 (Z (si ) - Z(si )) (2.16)

minimum error, i.e.min{Z (s;)- 2(Si);i = 1...N}
maximum error, i.ema>{Z (s;) - 2(si);i = 1...N}

median of absolute error (MedAE), i.m.edian{Z (s;) - ZA(Si )‘;i = 1...N}
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coefficient of determination #of cross-validation scatterplatccording to the equation (2.11)

mean prediction standard error (MPSE) which is titeraetic average of the kriging standard errors.

In the case of the methods described in Sectioth2.4ross-validation analysis is carried out only for
residuals (not for the whole approach), becanfsealculation reasons. We suppose the difference
would not be large (as the number of stations is large). For these meftied®Rcomputed, because
the results would not be comparable with othethmes. (Another possibility would be to calculate R
after adding the residuals to the linear regresssualts. This is a potential issue for the future.)

For interpolation methods using primarily monitoring data, the scatter plots are presented in Chapter 5
showing the interpolation estimates on the basisadsvalidation versus the measured values. In the
case of an ideal linear correlation between therpolation estimates and the measurements, the
regression line fitted by the values of the scatter plot would=4sex with a=1, and witha coefficient

of determination R>=1. RMSE andMAE should be as small as possible, ME as close to zero as
possible. Thestandard deviation of error and themedian of absolute error should be as small as
possible. Bottminimum error andmaximum error values should be as close to zero as possible.

The results of the cross-validation analysis presented in Chapter 5 for each pollutant indicator,
separately for the rural and urban areas. For thietaot indicator the interpolation methods using
primarily measurements are presented first, follolwedhe methods on interpolation of the residuals
of the different linear regression models. For thesggtistical methods the two methods for variogram
fitting, Section 2.3.5, are applied.

2.7 Criteria for the selection of an interpolation method

While for this report we have selected the RMSEhesmain criterion for comparing interpolation
results, it is important to note that the final setactdf the best interpolation method depends also on
application requirements of the assessment (e.g. &SAssments and fact sheets) and therefore may
relate to other (pragmatic) critaras well. Such criteria include:

a. Spatial coverage quality and extend. Some data sources may lead to better results of RMSE, but
may have poorer spatial covgea Some data sources may pdaviarger European coverage.

b. Observations versus model results. It may be attractive to base the maps exclusively on
observations, even if this magad to lower spatial coverage.

c. Continuity and robustness from year to year. The eventual availability aime series is interesting
for assessments. Even if for a more recent yeaotimal method, in terms of RMSE, is a method
different from previous the same method as in prevyaass may be preferred. This is especially true
for those cases in which the differences are relatistlgll. In case the differences are large, it may be
considered to recalculate previous years with the new method.

d. Resource intensity, physical basis for the supplementary data inclusion and the technical platform.

The more (complex) supplementary data usdé, more time, resources and sometimes more
advanced computer facilities and capacity aeeded. Choosing a second best option in terms of
RMSE may therefore be sometimes preferred to keep demands within limits.

e. Availability and reliability of the data. The analysis becomes dependent on the date and resolution
that these data become available and will be tggder refreshed. Choosing a second best option, for
example in terms of timeliness or reliable cyclic updating, therefore be sometimes preferred.

f. Methodologically consistency to meet homogeneity between pollutants and indicators. This criterion

is especially of interest in the case of differemdicators of one pollutant type, such as AOT40 for
crops and AOT40 for forests where it useful gelect the same method for consistency and
compatibility between the two AOT40 indicators.iShs especially relevant when the different
methods show small differences in terms of RMS8#&ge the interpolation result will likely differ little
using one or the other method.
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g. Agreement of the quality of the interpolated values versus the measured values at monitoring sites.
Many interpolation methods do not preserve the measwaie@ when the interpolation is made at, or
very close to, the measurement point. Such methmggenerally better in terms of RMSE from cross-
validation. However, for some purposes it may bsimble to produce maps where the interpolation
has an exact correspondencéhat measurement sites.

Because different people will weigh these criteriffedently, this paper does not make definite
recommendations for the selection of best methods. Rather, the results are meant to provide input into
a broader discussion on mapping of air quality.

In this context it is also important to put the resuitperspective. The uncertainties addressed in this
paper are limited to the uncertainties caused gy pglocess of interpolation between data from
monitoring stations. Uncertainties in the suppletagndata sources are not specifically addressed,
nor are uncertainties related to the measureniestteiments and procedures. These uncertainties may
be larger than the uncertaiggiaddressed in this paper.
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3 Methods for the mapping of urban and rural areas

One of the conclusions presented in Horalek et aOFP® that it is better to create air pollution maps
separately for rural and urban areas. The reason lidgeidifferent character of urban and rural air
pollution. The final maps are constructedrbgrging the rural and urban maps together.

3.1 Maps for rural areas

For the creation of maps for rural areas the dasethods described in Chapter 2 are used and
mutually compared. The methods are appliedrunal background stations only (according to the
AirBase classification).

3.2 Maps for urban areas
Two different approaches are considered in tkatan of interpolated maps of urban areas:

i) The first is the interpolation of the valuegasured at the urban angbsrban background stations
with the use of methods described in Chapter 2.

ii) The second approach is the interpolation tbé urban increment. This urban incremental

concentration, the so calleB®elta, is the difference between the urban background station
measurement and the interpolated rural backgroondemtration field at the station coordinate. The

Deltas are interpolated by ordinary kriging or IDAld the interpolated Delta concentration field is

subsequently added to the interpolated rurakgaind concentration field. The resulting European

wide concentrations are now supposed to reptedenurban backgound concentration field. This

approach was explored earlier in Horélek et (2D05). The advantage of this approach is its

simplicity: the already interpolated result of the hlrackground concentration field is used again for

the urban spatial interpolation. It is assumed tihatinterpolation improvements reached by using the
supplementary parameters at the rural concémtrafields propagate into the (sub)urban area

interpolation results to a similar extend.€Tiwrban increment is calculated according to:

A(Si ) = Zurb (Si ) - Zrur (Si) (31)
where Z,x(s) is the measured value at the painbeing an (sub)urban background station,
Zrur(si) is the estimated value of the rural background field at the gpint

4(si)) is urban increment Delta at the paint

The final urban map is given by
2\urb (Si) = 2\rur (Si) + A(Si) (32)

Interpolation of4(s;) is carried out using the methods descrilme@hapter 2. The methods are applied
on urban and suburban lgcound stations only.

3.3 Merging of rural and urban maps

The European-wide population density grid is utmdmerging the rural and urban maps into one
combined air quality indicator map. Both the ruradp and the urban map are created for the whole of
Europe. The population density gridpeeto determine for which paof the area the respective map is
used.

For areas with population density less than the defined valag tfie rural map is applied, and for
areas with population density grids greater than the defined wgJube urban map is applied. For
areas with population density within the intervad, (o) the following relation is applied
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~ a,—a(s a(s) —a.
Z(s) :2—().R(s)+LU (s) (3.3)
a, -, a, - a;
where 2(5) is the resulting value of concentration at the pgint
R(s) is the concentration at the poftor the rural map,
U(s) is the concentration at the pointor the urban map,

a(s) is the density of population at the posnt
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4 Input data

4.1 Introduction

The input data used depends on the mapping metbggabplied. The minimum input data necessary
for interpolation are the measured air pollutiooncentrations with the respective geographical
coordinates of the stations at which they were medsiitee station altitude is also considered in this
study. The advanced mapping methods use supptamgrarameters, such as output from the Unified
EMEP model, altitude data covering the whole statBa, meteorological parameters, climatological
parameters, emissions, land coaad population density. The resolution of such input data should be
better than or comparable to the resolutiothefmaps constructed, which is 10 x 10 km.

In most cases the input data were supplied as réav-dm various formats and time intervals. It was
necessary to modify them before further processing.

4.2 Measured air quality data

The air quality data were extracte]dm the European monitoring datab@geBase, supplemented by
several rural EMEP stations which are meported to AirBase. Only data foural, suburban and
urban stations, classified in by AirBase and EMEP as the bgokground were usedlindustrial and
traffic station types are not considered, since theyesent local scale concentration levels that not
applicable at the mapping resolution emplayHae following components were considered:

PMy, - daily average values [ugih year 2003
— annual average [ug:f years 2003 and 2004
— 36" maximum daily average value [uginyears 2003 and 2004

PM,s - annual average [ug: years 2003 and 2004

Ozone — SOMO354g.m3.day], years 2003 and 2004
— 26" highest daily maximum 8-hour average value [jif,rgear 2004
— AOTA40 for cropsyig.m*.hour], year 2004
— AOTA40 for forestsig.m.hour], year 2004

SO, - annual average [ug:ih year 2004
NO, - annual average [ug.fh year 2004
NO, - annual average [ug-h year 2004 (NQmapping only)
NO  —annual average [ugi year 2004 (N@Qmapping only)

SOMO35 is the annual sum of maximum dailpy@ir concentrations above 35 ppb (i.e.igOm?®).
AOT40 is the sum of the differences between hocoogcentrations greater than 40 ppb (i.e. 80 ug.m
% and 40 ppb, using only values measured betwe@d and 19:00 UTC, calculated over the three
months from May to July (AOT40 for crops), respectively over the six months from April to
September (AOT40 for forests).

In case of components affecting human health data fumal, urban and suburban background
stations were considered. This applies to the components PM,s and to the ozone parameters
SOMO35 and 28 highest daily maximum 8-hour average value. In case of components affecting
vegetation (S@ NO, and both AOT40 parameters for ozone) onlyal backgroundstations were
considered.

In the case of annual indicators only the stations liaae temporal data coverage of at least 75
percent are used. For RM.76 rural background stations and @&Ban/suburban background stations

are used. For Pp4 14 rural background stations and 68 mwbaburban background stations are used.
For ozone 418 rural background stations and at®hn/suburban background stations are used. For
NO, 82 rural background stations with reported,Nfata are used, supplemented by other 189 rural
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background stations with reported both N&hd NO data and alsoittv other 23 rural background
stations with reported NQdata only (from which NQis calculated and estimated, see Section 5.4).
For SQ 253 rural background stations are used. &hequality data have been extracted from
AirBase, with addition of a fewural EMEP stations (these are 4 RMtations, helpful for spatial
coverage).

The measured air pollution concentration dataewabtained from the AirBase database as Excel
tables. Since most geostatistical calculations dimee in ArcGIS they were converted to ArcGIS
format. Data from the stations that measured less #b % of the year were deleted. Furthermore,
coordinates were checked. At 7 stations incorreotdinates were detected;stations were deleted

from further processing and the coordinates of 4mstativere corrected (latile and longitude were
mutually exchanged). Additionally, two ome stations (GRO0110R, MKO0042A) with highly
guestionable data were excluded from the aimlyhe purified files were converted indbf format

and imported into ArcGIS on the basis of their geographic coordinates at the sites of the measuring
stations. Finally, ArcGIS shape files were created and were consequently transformed from the
geographical system WGS1984 (corresponding to @@big coordinates) into geographic projection
system ETRS89-LAEA5210, which is the mostnonly used EEA standard map projection. All
maps presented in this paper comply with gisjection with the map EEA predefined extent 1c
(www.eionet.europa.eu/gis).

4.3 Altitude

In addition to the altitude presented with the measient data in the AirBase (or EMEP) database a
European covering gridded altitude dataset isdusiamely GTOPO30 (Global Digital Elevation
Model) at a resolution of 30 x 30 arcsec. (source: ESRI, Redlands, California, USA, 2005). The
original format was the ArcGIS shapefile inetWWGS1984 coordinate system. It was necessary to
convert this grid to the geographic projenticystem ETRS89-LAEA5210 to enable further
processing. This conversion was carried out withutbe of ArcGIS to the resulting grid of 200x200
meters. The altitude is always given in meters.

4.4 Output from the Unified EMEP model

The chemistry transport model used is thetpbhemical version of the Unified EMEP model
(revision rv2_5_beta2), which is a Eulerian modéhva resolution of 50 x 50 km. Output from this
model is used for a subset of the meadparameters listed in Section 4.2;

PMy, - daily average values [ugip year 2003,
— annual average [ug.f years 2003 and 2004,
— 36" maximum daily average value [uginyears 2003 and 2004,

PM,s —annual average [pg-fh year 2004,

Ozone — SOMO35ig.m?>.day], year 2004,
— AOT40 for cropsyig.m*.hour], year 2004,
— AOTA40 for forestsiig.m.hour], year 2004,

SO, - annual average [pug:th year 2004,
NO, - annual average [pug:fh year 2004.

The model is described by Simpson et al. (2008)Fagerli et al. (2004). The model results are based
on different emissions for each year .(i.2006-Trend2003-V7 and006-Trend2004-V7, as
documented in Appendices A of EMEP Status Repdf2006 and 4/2006, see Tarassén et al., 2006
and Yttri et al., 2006) and actual meteorologicaad&rom PARLAM-PS, i.e. special dedicated 2000
version of HIRLAM numerical weather predictianodel, with parallel architecture, see Sandnes
Lenschow and Tsyro, 2000).

In the originalnetCDF format each grid cell was representgd a point at its centre. Each such
netCDF file was converted intdbf format and imported intércGIS as the point shapefile by its
geographic coordinates of the centre of the grid .CEHg ultimate grid (at resolution 10 x 10 km) was
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created from this layer using IDW interpttan with the number of neighbouring poimts4 and the
weight /=10, see Section 2.3.1. This setting of parametsrsures that the created interpolation is
almost identical to the original EMEP grid.

4.5 Meteorological parameters

Actual meteorological surface layer parameter fatsghe years 2003 and 2004 are extracted from the
Meteorological Archival and Retrieval Syste(WMARS) of the ECMWF (European Centre for
Medium-range Weather Forecasthitp://www.ecmwf.inj. MARS is the main repository of
meteorological data at ECMWF from which registérusers can freely extract archived data. It
contains terabytes of a wide diversity of openadil and research meteorological data as well as data
from special projects. The datasets from which extracted parameter data needed to provide a
complete data coverage for thentouous period of at least 20@004 but preferably 1990-to date

and for the complete area of study. At a latage it allows for carrying out trend analyses on
European-wide air quality indicators using any data of AirBase combined with a consistent set of
concurrent meteorological panater data with a comparable temporal resolution.

Specifications of the data, including its exact MAR&ameter code references, ultimately extracted
are:

Spatial grid resolution: 0.25 x 0.25 degs latitude/longitude, i.e. 15 x 15 minutes.
Geographic window: Lower left corner 34 x -d@rs lat/long, Upper right corner 72 x 59.5 dgrs
lat/long, i.e. covering the European-wide study area.

Years: 2003 - 2004
Data format: GRIB
From dataset: Operational Surface Analysis Data Sets (‘oper’)
Time resolution: Daily 6-hour averages (00:00, 06:00, 12:00, 18:00)
Parameters: Name Remark  Abbrev. Units Code (Table 128)
10 meter wind U (W> E) 10U mg 165
10m wind V (N— S) 10V mg 166
2 meter temperature 2T K 167
2m dew point temperature 2D K 168
From dataset: Tropical Oceand Global Atmosphere (‘toga’)
Time resolution: Daily 12:00 average, ded from 24-hour forecast values, with values
accumulated between time step 12 and time step 36 of the forecast
Parameters: Name Abbrev. Units Code (Table 128)
Total precipitation TS m.dady 228
Surface solar radiation SSR WE.m 176

Wind speed as used in the calculations, isvedrirom the 10 meter height wind speed inlQ) and
V (10V) direction with magnitudq((lﬂJ )2 + (10/ )2 :

Temperature units were converted to [°C] using the reld@ti6€] =T [K] + 273.15
Surface solar radiation units were converted from [W2tm[MW.s.m?, by dividing by 16.

Relative humidity (%) is derived by meanf the saturated water vapour pressedeaé a function of
the temperature and of the dew point temperature at 2 meter height, according
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RH =520 100, with g, = 6.1365°0212409™ ) wheret is 2T and 2D respectively [°C].
€or

It should be noted that the 0.25 degrees spatiakgsiolution is just above the current highest possible
MARS grid resolution of 0.225 degrees (13.5 minufes)extracting data tiough interpolation. Its
cause lies in a typographic error in the extractioipsdiscovered after finalisation of the extractions.
It was decided not to repeat the extractionscesithe resolution loss is acceptably small and the
extraction is quite time and resource consuming.

The meteorological gridded data for the years 2003 and 2004 was transformed into ESRI GRID
format. The averaging of both the original 6-hand the daily meteorological parameter values into
annual averages on the given grid resolution needbd &xecuted in two steps as a way to cope with
the limited calculation capacity of the relevant Al8Gorocedure. As a first step the 6-hour values
were averaged into half-month values and theydailues into two-month averages. As second step
the annual averages were derived from these intermediate average values.

4.6 Climatological parameters
The input data also includes the 10 x 10 minute gfriclimatological averages for the 30-years period

1961-1990 (source: CRU CL 2.@yww.cru.uea.ac.uk/cru/dataNew et al., 2002). The individual
parameters are as follows:

e Temperature [K] — units subsequently converted to [°C]
e Precipitation [mm.year-1]

e Sunshine duration [%0]

e Wind speed [m.s-1]

« Relative humidity [%0]

In the original format the data are giventihfiles where each grid cell is represented by the point at

its left bottom corner. Each suttt file was transformed intdbf format and imported intArcGIS as

the point shapefile by its geographic coordinates recalculated into the centre of the grid cell. The
ultimate grid (in resolution 2 x 2 km) correspondingthie original grid was created from this layer
using IDW interpolation with a number of neighbouring poirtd and a weighp3=10.

4.7 Emissions

Emissions are used for N®nly. Here the input data are given as,Nfnissions [ug.f.day'] on a

grid of 1 x 1 km in ArcGIS raster format, covagithe western part of Europe (EU-15, Switzerland
and Norway). These data are the output of ARMOSHERE project (Briggs et al., 2005) and the
project concluded that N@missions validated well against the AirBase data. No other emission data
are used due to the incomplete reporting by somantries. The intention behind the use of the
emission data is to include emission inforroatiat a higher resolution than the EMEP model can
currently provide.

4.8 Land cover
The input data from CORINE Land Cover 2000L(2000) — grid 250 x 250 m, version 8/2005

version 2, (Source and owm&EA, Iceugr250_00) is used. The countries missing in this database are
Island, Norway, Switzerland, Seah Montenegro and Turkey.

In an effort to reduce thente demanding calculations on large data quantity involved with the
250 x 250 m grid resolution an aggregation to a 5800«m grid resolution is performed first, before
the exceedance mapping and table extraction talkeg.pl'he ultimate map and table results are not
influenced by this resolution aggregation.
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4.9 Population density

Population density [inhbs.Kfhis given at a resolution of 100 x 100 m (Source EEA, pop01c00v3int,
official version Aug. 2006; Owner: JRC). These data based on the degret urbanisation from
Eurostat and the population census of theopean communes 2001, mapped on the basis of
CLC2000 land cover.

The current version of the population densityadlase does not include the European countries
Andorra, Albania, Bosnia-Herzegovina, Cyprudansl, Lichtenstein, FYR of Macedonia, Norway,
Serbia and Montenegro, Switzerland, and Turkeyimportant objective of this project is to deliver
European wide interpolated maps coveringeaitst all EEA member and collaborating countries.
Furthermore, spatial interpolations will perfornttbe when gaps in the mapping area are avoided. To
overcome the gaps the missing countries in IR€ population density database are filled with
population density data from an alternative seythe ORNL LandScan (2002) Global Population
Dataset. Its original resolution of 30 arc secomds resampled to a 100 m grid resolution before
merging it with the JRC database. To avoid possitdn-continuous coverage the borders between
the JRC and ORNL databases the area of countriieg e ORNL database in was enlarged with a 5
km buffer at the borders.

To enable further processing a two-step spatial datmegation was carried out in ArcGIS. The first
step resulted in the creation of a 1 x 1 km grid by coarse graining of the original 100 x 100 m grid.
This aggregation is done to stay below the criti@adware limitations on the calculations capacity of
current computer technology. In the second step ealttof the 1 x 1 km grid is given the average
value of the surrounding 10 x 10 km square. Thisltesn a grid at 1 x 1 km where each grid cell
represents the average population density of thewuding 10 x 10 km. This is done in order to be
consistent with the grid resolution 10 x 10 in the final mapping.

31
ETC/ACC Technical Paper 2006/6






5 Analysis of mapping methodologies

5.1 Rural mapping

The development of methods for mapping air quality inlram@as concerns mainly those using both the primary
data (measured air pollution concentrations, or theimpaters) and the secondary (supplementary) data, i.e. the
methods described in Section 2.4. As compared wétagproach used in Horalek et al. (2005), meteorological
parameters (characteristic for the year 2004) are asexbcondary data, instead of climatological parameters
(averaged over the years 1961-1990). The presumptian,tlie concurrent metemogical data is better
correlated with the air quality of the same y#wan the climatological data, is tested.

The examined pollutants are PgMozone, NQ SQ and PMs For each pollutant its relevant ecosystem,
vegetation and human health indicators in the contextadbgols and directives are subject of investigation, for
example, for P\, different interpolation methods are examined for tH& @&ximum daily average value and
for the number of exceedance days. For the rural asspollutant is dealt with in a separate section.

For each pollutant various linear regression models (as described in Section 2.2) are examined and mutually
compared according to the procedure described datiéh 2.5, followed by various methods of spatial
interpolation as described in Section 2.3 and 2.4h Buwre interpolation methods as well as interpolation
methods based on the residuals of those linear regressidels are considered. All the interpolation methods

are compared using cross-validation scatter plots andtisttisarameters, as described in Section 2.6. Apart
from its use for comparison purposes, cross-validationysisaknables the interpolation uncertainty to be
estimated.

For PMy a comparison is made of the interpolation results for tHen®imum daily average and the number
of exceedance days. This is intended to distinguish anyaetiffes that may occur as a result of the interpolation
of two fields that should show the same exceedence contours.

5.2 Rural areas — PMy

5.2.1 Comparison of linear regression models for rural PM; indicators
Several linear regression models or submodelsi(®e2t5) of model equation 2.1 are examined:

Submodel Input parameters

P.1 EMEP model output

P.2a EMEP model output, altitude, wind speed, surface solar radiation, temperature
P.2b EMEP model output, altitude, wind speed, surface solar radiation

P.2c EMEP model output, altitude, wind speed, temperature

P.2d EMEP model output, altitudeind speed, relative humidity

P.3a altitude, wind speed, temperature

P.3b altitude, wind speed, surface solar radiation

The input parameters for the stepwise selection araddtitmeteorological parameters (i.e. wind speed, surface
solar radiation, temperature, relative humidity, tpiacipitation) and EMEP model output (only for submodel

type 2 selection). The basic submodel of type 2 arrived at after a stepwise regression with a backward
elimination of parameters (Section 2.5)FA<a for the annual average and P.2b for tH& B&ximum daily
average value. Because of colinearity of temperadncesolar radiation (see below), the submodels P.2b and
P.2c are examined as well, each excluding one of theoainrameters. Additionally, orather submodel, P.2d, is
considered, with both temperature and solar radiatiptaced by relative humidity, in order to illustrate the
“best” submodel with use of relative humidity.

The basic submodel of type 3 (i.e. without output from the EMEP model) selected by stepwise selection of
backward type is model P.3a. Again for colinearity temperature and solaadiation submodel P.3b is
examined as well.

Altitude from GTOPO30 (see Section 4.3) is used, afteingatested its correlation with the AirBase altitude
values at measurement stations, see the Section 5.2.3.
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The performance of the different linear regression modetompared in Tables 5.1 and 5.2, which give the
parameters, al, ..., a6 for the different submodels.

In the forthcoming tables the characteristics of the correlation coefficfean®the RMSE are presented for
each submodel showing the closeness of the lirdation with the measured air pollution value$sRould be

as close as possible to 1 and RMSE as low as possible. If a parameter is not statistically significant, tf
indicated by “n. sign.”.

Table 5.1 shows the results for the gMnnual average concentration. The values odriRl RMSE for the
submodels of the type 1 and 2 show quite clearly thataddition of supplementaparameters substantially
improves the closeness of the regression relation by an increasécaBout 0.35 and a decreased RMSE by
approximately 1.35, i.e. one fifth. Similarly, thé &d RMSE for the submodels of types 2 and 3 indicate that
the closeness of regression is higher when the EMEP modelhegntration field is used in addition, than when
only supplementary parameters are used.

The best results (with regard té Bnd RMSE) are obtained with modeR®. However, there is a rather large
correlation between temperature and solar radiation. mbans it is possible that only one of the parameters,
temperature or solar radiation, could be used; as @@ shows, the majority of the information that
contributes to the accuracy improvement of the linegiresssion model is included in the other parameters. The
comparison between models P.2b and P.2c showsatlostter correlation is obtained by the model P.2b,
because its Ris 0.05 higher and its RMSE is 0.22 pg hower, meaning that solar radiation improves the
accuracy more than temperature as a supplementary parameter.

The above mentioned findings lead to the preferreecieh of the regression model P.2b, in which the EMEP
model output and supplementgrgrameters altitude, wind speed, and solar radiation are used.

Table 5.1 Comparison of different submodels of the linear regression model equation 2.1 describing the relation between
the measured annual average PM;, concentration for 2004 and various supplementary parameters in the rural areas.

lin.regr.model (2.1) P.1 P.2a P.2b P.2c P.2d P.3a P.3b

¢ (constant) 12.0fn.sign. [n.sign. 16.9 209.1 25.0 21.4
al (altitude GTOPO) not used | -0.0122| -0.0100| -0.0089| -0.0098] -0.0114| -0.0134
a2 (temperature 2004) not used -0.716|not used 0.852|not used 0.728|not used
a3 (wind speed 2004) not used -2.43 -2.32 -2.95 -1.64 -2.45 -2.18
a4 (relative humidity 2004) Jnot used [not used [not used |not used -2.02[not used |not used
a5 (s. solar radiation 2004) |not used 2,71 1.94|not used |not used |not used | 1.0436
a6 (EMEP model 2004) 0.83 1.28 1.24 0.82 1.06]not used |not used
R 0.109] 0.456] 0.446] 0.395| 0.411] 0.314| 0.313
adjusted R 0.104] 0.440] 0.433] 0.380] 0.397] 0.302] 0.301
RMSE [ug.m"] 683 534 541 563 556 600 6.00

Table 5.2 shows the results for thé"3@aximum daily average Pivalue. By comparing the submodels of
types 1, 2 and 3 (using’®nd RMSE) similar results are obtainedfasthe annual average: The addition of
supplementary parametensbstantially improves the closeness a tegression relation (by an increasédR
0.33 and a decreased RMSE of about one fifth); theedess of the regression improves when output from the
EMEP model is used in combination with supplemenfaayameters. The best résuare provided by model
P.2b.

Table 5.2 Comparison of different submodels of linear regression model equation 2.1 describing the relation between the
measured 36" maximum daily mean PM,, concentration for 2004 and various supplementary parameters in the rural areas.
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lin. regr. model (2.1) P.1 P.2a P.2b P.2c P.2d P.3a P.3b

¢ (constant) 23.7]n. sign.  In. sign. 30.2 375.2 44.1 39.2
al (altitude GTOPO30) not used -0.0151} -0.0151] -0.0135| -0.0149] -0.0179| -0.0212
a2 (temperature 2004) not used |n. sign. |not used 1.511|not used 1.2041|not used
a3 (wind speed 2004) not used -4.74 -4.74 -5.63 -3.37 -4.63 -4.23
a4 (relative humidity 2004) [not used [not used |not used |not used -3.63|not used |not used
a5 (s. solar radiation 2004) |not used 3.44 3.44[not used |not used |notused 1.6410
a6 (EMEP model 2004) 0.50 1.02 1.02 0.63 0.84|not used |not used
R® 0.062 0.390 0.390 0.348 0.364 0.281 0.275
adjusted R? 0.056 0.376 0.376 0.332 0.349 0.269 0.262
RMSE [ug.m™] 12.04 9.74 9.74 10.04 9.92 10.54 10.59

The results are similar to the findings in Section 4. Boralek et al. (2005) on the selection of the most
suitable supplementary data, but with the differenceviieatow use actual solar radiation instead of the 30-year
averaged sunshine duration. A specéahark should be made for the use of wind speed as a parameter. Whereas
the 30-year average wind speed was not found to be significant in the findings of Section 4.3.4 of Horalek et al.
(2005), the concurrent meteorological wind speed appeaignificantly improve the linear regression results.

See Section 5.2.3 for further discussion.

5.2.2 Linear regression models after logarithmic transformation

Following the recommendation made in Horalek et al. (20@5)urther investigated the extent to which the
linear regression results can be improved by logarithraicsformation of the measd air quality parameters,
according to model equation 2.6. The resfdtsthe annual average concentration of ;RPkér the different
submodels are listed in Table 5.3.

Table 5.3 Comparison of different submodels of linear regression model equation 2.2 describing the relation between the
logarithm of the measured annual average PM;o concentration for 2004 and various supplementary parameters in the rural
areas.

lin. regr. model (2.2) P.1 P.2a P.2b P.2c P.2d P.3a P.3b

¢ (constant) 2.48 1.85 2.08 2.70 12.94 3.15 2.98
al (altitude GTOPO) not used| -0.0006| -0.0005| -0.0004| -0.0005] -0.0006| -0.0007
a2 (temperature 2004) not used| -0.037|not used 0.043|not used] 0.0360]|not used
a3 (wind speed 2004) notused| -0.112| -0.120f -0.137| -0.067] -0.110| -0.097
a4 (relative humidity 2004) not used |not used|not used [not used | -0.108|not used |not used
a5 (s. solar radiation 2004) notused| 0.137 0.086|not used |not used |not used | 0.0505
a6 (EMEP model 2004) 0.047] 0.068] 0.061| 0.045| 0.059]not used |not used
R? 0.147|] 0.506| 0.494( 0.438( 0.468 0.335 0.331
adjusted R? 0.142] 0.491 0.482| 0.425] 0.456 0.323 0.319
RMSE, using backtransf. [ug.m™] 6.86] 5.33 5.37 5.59 5.56 5.99 6.02

In addition, the same linear regressiood®l equation 2.2 was examined for th& &aximum daily mean value
of PMy (see Table 5.4).
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a. IDW
b. Ordinary kriging (OK) — parameters of variagn selected automatically (b1) and manually
fitted (b2)

For all geostatistical methods (i.e. OK, OC, LC) varamgrparameters (Section 2.3.2) are estimated in two
ways: Automatically (optimisation/fitting of the vari@m function) and manually (minimization of the cross-
validation RMSE), see Section 2.3.5. The comparisadheofesults obtained by these two methods of parameter
setting enables the influence of aneptual automatic routine, as is usedthe ArcGIS software, to be
evaluated. Note that the minimisation procedure will gbvarovide an equivalent or reduced cross validation
RMSE, in comparison to the automatic fit.

For the methods of linear regression, followed by pakation of residuals (typ8), only IDW and ordinary
kriging were performed. No ordinary cokriging or logmat kriging is performed for the reasons explained in
Section 2.4. Linear regression models with loganith transformation are not performed for the reasons
explained in Section 5.2.5.

The comparison of individual interpolation methods wasi@a out with the use of the root-mean square error
(RMSE) and the other statistical uncertainty and d@ngicators from cross-validation (Section 2.6, Equations
2.14 to 2.16). Moreover, cross-validation scatter plogspaesented for interpolation methods using primarily
monitoring data.

Apart from their use for comparison purposes, the resfltthe cross-validation analysis are useful for
expressing of the maps uncertainties. Scatter plots #imworrelation between measured and cross-validation
estimates. Indicators such as RMSE express thé uocertainty of the whole map (in pg®n The nature of
cross-validation (concentration measured in the estinpatied is not used for estimation) enables the quality of
the interpolation in the places with no measurement tevaduated. (The quality of the interpolation at the
position of the measurements is also examined in Section 7.2.)

Figure 5.4 shows the cross-validation temaplots for the annual average BMoncentrations for several
interpolation methods using primarityionitoring data (i.e. only for interpation methods of type 2), hamely
ordinary kriging, ordinary cokriging and lognormal colnigy, all with two setting of/ariogram parameters. The
plots show that the best results among these methods, i.e. the hifhast Bbtained by lognormal cokriging
with the manual optimization of variogramrameters using RMSE minimization (2-d2).

The plots show that for all three methods the conciéoiaare smoothed. This is visible on the one hand from
the linear regression equation=a-x+c whena<1 andc>0 ), and on the other hand directly from the
graphs (comparing the values in thandy axes).

The smoothing is smaller in case of the manually figachmeters (for all methods) and also for both ordinary
and lognormal cokriging in comparison with ordinary krggiiThis is visible e.g. from the parameters of linear
regression: Smaller smoothing means higher sdoped lower intercept. (High intercept means overestimation
of low values, low slope means underestimation of high values.)
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Figure 5.4 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the PM;, annual
average for rural areas in 2004, for ordinary kriging (top), ordinary cokriging using altitude (centre) and lognormal
cokriging (bottom), with parameters of variogram estimated automatically (left) and manually (right).

Figure 5.5 shows the cross-validation scatter plot for tH® rB&ximum daily average value for various
interpolation methods using primariljonitoring data. Again: the best results are obtained by lognorma
cokriging with