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Front page picture:  Figure 8.1 Annual mean PM10 concentrations (μg·mP

-3
P), 2004. 
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Abstract 
 

In this paper, interpolation techniques are applied for the construction of detailed air quality maps for 
Europe, based on a combination of primarily air quality monitoring data and secondarily, modelling 
and other supplementary data. We note that this approach is complementary to the analysis for the 
European Thematic Strategy that relies primarily on modelling results supporting air emission 
reduction strategy and feasibility assessments. Subsequently, these maps are used as the basis for an 
assessment of air pollution related risks for public health and ecosystems. The paper describes the 
improvement and application of various interpolation methods that were evaluated in a previous paper 
to develop high quality Europe-wide interpolated air quality maps for the European Environment 
Agency. The earlier work was expanded by including more recent data (2004) and more air quality 
indicators: PMB10B, ozone, NOBx B and SOB2B are now covered. Insufficient data were available to support the 
mapping of PMB2.5B. Supplementary information used includes results from the Unified EMEP model 
calculations, altitude data, annual meteorological fields, and climatological fields. Separate urban and 
rural maps are merged using population density information. We conclude that kriging methods are 
generally to be preferred over inverse distance weighting, and in case of PMB10B lognormal kriging over 
ordinary kriging. Methodologies based on linear regression using supplementary data are generally to 
be preferred over pure interpolation methods. The usage of concurrent meteorological data gives better 
results than climatological data. In the study, three types of uncertainty are addressed: spatial 
representativeness, kriging interpolation variance, and exceedance uncertainty. 

The paper includes a preliminary combination of the interpolated air quality data with other data sets 
to analyse exposure and impacts of air pollution in terms of population and ecosystems at risk. We 
calculate the number of Europeans exposed to annual mean concentrations of PMB10B above the 
European limit value of 40 μg.mP

-3
P at 6 % of the total population in 2004. The estimated number of 

premature deaths calculated using 2004 as the reference year is estimated between 246,000 and 
327,000, depending on the choice of natural background concentration. The high end of this range is 
close to the estimates used in the CAFE strategy. For ecosystems, we find that more than 30 % of all 
agricultural land may be exposed to ozone exceeding the target value of 18 mg.mP

3
P.h and more than 80 

% may be exposed to levels in excess of the long-term objective of 6 mg.mP

-3.
Ph. In southern countries 

more than 90 % is estimated to exceed the target values, while in northern Europe the estimated ozone 
levels are below the target value for nearly 70% of the agricultural area. For forests, in northern 
Europe the critical ozone reporting level of 20 mg.mP

-3.
Ph is not exceeded in our calculations, but in 

southern Europe it is exceeded everywhere. The rural NOBx B map shows a few regions where the NOBx B 
limit value for the protection of vegetation is exceeded (the Benelux, the Rhone Valley and northern 
Italy). No significant exceedances for SOB2 Bwere expected as the interpolated map of annual average 
SOB2B confirms. 

In addition to the added value provided by visualization of air pollution indicators for public 
information purposes, the maps also improve the quality and relevance of the assessment of air 
pollution exposure and impacts in rural and urban areas across Europe. Potentially, it can be used for 
supporting the checking of compliance with air quality standards and for evaluation of national air 
quality reports. The current work focuses on longer-term indicators for European air quality. The 
application of the methods for near-real time reporting of air quality indicators might be a focus of 
future work. The paper provides suggestions for further work on methodologies (e.g., selection of the 
“best” methodology, alternative supplementary information), uncertainties (e.g., sub-grid variability, 
mapping of probabilities) and applications (e.g., combination with NATURA2000, near-real time 
mapping). 
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Extension and improvements in this paper 
This report deals with the improvement of methods and data input sources for producing air quality 
maps for Europe, with the extension of the set of pollutants for which these maps are created, and with 
the detailed analysis of uncertainties of the individual maps and the use of interpolation methods based 
on daily averages versus annual averages from measurements. Specifically, the examined methods are 
applied for creating maps for the year 2004, which are used in EEA's air quality related Core Set 
Indicators (CSI004 and CSI005) and in EEA Air Pollution reports.  

In this report the mapping methods are further developed in two directions:  

• improvement of the methods for those pollutants and indicators mapped previously (related to 
PMB10B and ozone);  

• development and application of methods for other pollutants and their indicators (SOB2B, NOBx B, 
PMB2.5B, AOT40 for forests and the 26P

th
P highest maximum 8-hour daily average concentration 

for ozone).  

Usage of additional data sources 
In relation to the improvements on methodological aspects, we focused on the use of actual 
meteorological data for the same year as the monitoring data, as well as on selecting those 
meteorological parameters which show a better correlation with the air quality data. For example, now 
we take the 6-hourly values for 2004 for solar surface radiation of the ECMWF MARS database 
(www.ecmwf.int/services/archive), instead of the 30-year annual averaged sunshine duration of the 
CRU climatological database (New et al., 2002). The actual data is expected to improve the 
interpolation results due to its better temporal correlation and resolution, despite its somewhat lower 
spatial resolution. For PMB10B and ozone this paper discusses these expected improvements for the year 
2004. 

The use of the altitude parameters from the European-wide high resolution dataset GTOPO30 (30 
seconds grid cells) instead of the altitudes reported with the AirBase monitoring data, is compared for 
the rural background stations in the production of the maps of PMB10 Bannual averages and the 36P

th
P 

maximum daily averages.  

It is expected that auxiliary data with a high spatial resolution such as traffic density maps or emission 
inventories, will further improve the interpolation. However, no suitable high resolution traffic density 
database with European wide coverage appears to be available for this purpose. Spatial emission data 
for NOBx B from the APMoSPHERE project (Briggs et al., 2005) is used in Section 5.8 only, as one of the 
supplementary parameters for estimation of urban PMB10B pollution. One could think of including 
environmental satellite imagery data. However, such data is not considered. The conversion of the 
aerosol layer characteristics measured by satellites into ground level pollutant concentrations is not 
well established yet. An illustrative example of such a study is Koelemeijer et. al. (2006a) on PMB2.5B. 
Another reason for not using satellite data is the voluminous data processing related to it and the 
limitations on project resources.  

Exploration of improved methods, their applicability and associated uncertainties 
Another improvement focuses on the analysis of the effects of using different temporal resolutions of 
observational data in particular using daily instead of annual statistics. The outcomes could contribute 
to the refinement of the calculation methods of exceedances proposed for legislations. Case studies use 
the annual mean, the 36P

th
P highest daily mean and the number of exceedance days derived from the 

PMB10B monitoring data for the year 2003. Chapter 6 discusses the results, including its uncertainties.  

Kalman Filter techniques were considered for explorative use in the data assimilations, but due to their 
complexity and capacity demands we decided not to include them in this project. It is however advised 
to follow their developments in the application in the field of air pollution and consider their usage at 
some time in the coming years.  
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Finally, we report on the quantification of uncertainties and errors in more detail. For this reason we 
focus additionally on the three following items: 

1. Cross-validation of errors between parameters by using the root-mean square error (RMSE) 
and several other statistical indicators, which is discussed throughout the paper in the sections 
on the spatial interpolations;  

2. Actual measurements compared to the interpolated and/or modelled values based on cross-
validation, also to be found throughout the paper;  

3. Spatial maps of the errors in the interpolation maps: maps with prediction standard error or 
standard deviations (SD). In Chapter 6 and 7 a first attempt is presented of producing such 
maps. 

The current work focuses on the mapping of annual related limit or threshold values. The applicability 
of the methods for near-real time or even forecast reports of air quality is not the primary scope of this 
project, but might be a focus of future work. Nevertheless, we emphasise that there is a need to stay 
alert and to recognise synergies across the diversity of thee project types. We can image that at some 
point in the future interpolation techniques and methodologies of this project could become applicable 
in a way for EEA's near-real time projects. For example, applying methods from this project for spatial 
interpolation using meteorological forecasts and other supplementary data, for which in the future a 
correlation with air quality concentrations might be established, to derive spatially interpolated air 
quality indicator prediction maps for Europe. Therefore, we should try to build bridges across projects 
and aim for shared and robust methods.  

Extensions for analysis of exposure and impacts 
In relation to the extension to the other pollutants and their indicators, we updated the indicator maps 
for the year 2004. This concerns the human health status indicators annual average and 36P

th
P maximum 

daily averages for PM10, and for ozone the indicator SOMO35, and the vegetation related indicator 
AOT40 for vegetation/crops, with addition of the AOT40 or forests.  

Additional to these updates, a preliminary human health impact assessment was performed. The 
approach follows as much as possible the algorithms of the relative risk functions on health impact due 
to air pollution as used in other (model based) assessment programmes and projects (CAFÉ). The 
assessment provides tables with the estimated population at risk per country and for Europe as a 
whole. Next to tables, the spatial distribution over Europe is presented in maps. Both tables and maps 
are intended to be included in future updates of the EEA Core Indicator on urban air quality (CSI004). 
For the vegetation-related indicators similar impact maps and tables were prepared expressing the 
areas of each land-cover type at risk, i.e. subject to damage, change or yield reduction.  

With respect to reaching current and future health-related limit or target values, the paper presents 
indicator maps based on 2004 data for PMB10 Bwith the number of exceedance days, for ozone with the 
26th highest 8-hour daily means. Vegetation-related indicator maps have been prepared for the SOB2B 
and NOBxB limit values set for the protection of ecosystems and vegetation. They are both relevant 
within the context of CSI005 of EEA, which includes impact estimates and maps. The paper includes 
preliminary Europe-wide maps of ecosystems and agricultural land at risk. 

Finally, options for interpolation and mapping of PMB2.5B are explored on special request of EEA. Both 
EEA and DG-ENV are highly interested in such information based on monitoring data next to results 
coming from model-based projects. However, in many countries the implementation of a PMB2.5B 
monitoring network is currently in progress: in 2004 only a limited number of PMB2.5B monitoring 
stations are reported to AirBase. In the course of time this problem is expected to be solved by itself, 
when the networks and country reporting come into full operation according to the intentions of the 
directives. Until then, interpolated maps produced on the basis of PMB2.5B measurements contain large 
uncertainties.  
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Road map to the report 
The setup of this report is as follows: 

• Chapter 2 presents the basic mapping methods, which are used in this report. 

• Chapter 3 gives in introduction on the separate rural and urban mapping including the method 
applied for their merger. 

• Chapter 4 documents all input data as well as the process of their preparation for the use in 
the analysis and mapping. 

• Chapter 5 addresses the further development of the mapping methods, detailed uncertainty 
analysis of these methods based on cross-validation and the extension of the number of 
mapped pollutants. Rural mapping is dealt with in Sections 5.1 - 5.6, urban mapping is 
covered in Section 5.7 - 5.9. Both in the case of rural and urban maps, individual pollutants 
are dealt with in separate sections of Chapter 5. In the case of rural maps this is applied for all 
examined pollutants, in the case of urban maps only pollutants PM and ozone affecting human 
health is covered. 

• Chapter 6 presents the detailed analysis of the comparison of exceedances mapping based on 
daily and annual statistics, including a discussion on uncertainty. 

• Chapter 7 presents the detailed analysis of uncertainties on the indicators dealt with in 
Chapter 5 including uncertainty mapping. 

• Chapter 8 describes the resulting combined rural and urban European maps for the relevant 
air pollution indicators and also some human health and ecosystem based risk maps with their 
related tables with areas and population numbers at risk. 

• Chapter 9 concludes and recommends on follow-up to this study. 

• The Annex presents the final set of maps and tables for the year 2004 that are described in the 
Chapter 8. 

 



 

 

ETC/ACC Technical Paper 2006/6  

 

15

2 Interpolation methodologies and supplementary data 
selection 

2.1 Introduction 
Air pollution measurements from ground stations are the most accurate source of air quality 
information. As the number of measuring sites is limited, the information obtained from these 
measurements has to be generalized to improve the spatial coverage. There are various ways to arrive 
at spatial maps on the basis of the data from the monitoring stations. One of the simplest is the use of 
linear regression models, where the regression is made with relevant supplementary data from other 
sources. A second approach is through spatial interpolation. If spatial interpolation does not use any 
further information (except altitude in some cases) in addition to the measurements (so called primary 
data), we speak about interpolation using primarily monitoring data only. If we include more 
supplementary information in the interpolation, one would expect that the results would become more 
accurate. The linear regression approach is primarily interesting to identify the most promising 
supplementary data sources that can be used in a third approach, that being linear regression models 
plus interpolation of their residuals and which generally provides better results. In some cases 
however, the additional benefit of this approach may only be marginal as compared to linear 
regression without interpolation.  

In summary, the types of methods are as follows: 

1. Linear regression models without interpolation (Section 2.2) 

2. Interpolation methods using primarily monitoring data (Section 2.3) 

3. Linear regression models plus interpolation of their residuals (Section 2.4) 

Different interpolation methods are applied only in the case of interpolation using primarily 
monitoring data only. These are Inverse Distance Weighting (IDW), ordinary kriging, ordinary 
cokriging, and lognormal cokriging.  

In urban areas one additional spatial interpolation type is examined: the interpolation using the urban 
increments, the Delta, added to the interpolated rural background concentration field, as explained in 
Section 3.2. This approach can be considered as a fourth type of spatial interpolation. 

One important source of supplementary (or secondary) data is formed by the results of chemistry 
transport and dispersion models. These have the advantage of full coverage of the whole territory, but 
are generally less reliable than the measured data. Secondary data also include other supplementary 
parameters which show statistical correlation with air pollution data and give spatially more resolved 
information on the whole territory than the pure air quality measurements, such as meteorological or 
topographical data, population density, or emissions.  

The basic mapping methods used in this report are the methods presented in Denby et al. (2005), 
especially the methods developed and presented in Horálek et al. (2005). The detailed description of 
these methods is presented in the respective reports; a brief description is given in the following 
sections. 

Linear regression models (type 1) can be used for combining the information from measurements with 
supplementary data. These are presented in Section 2.2. The methods of interpolation, using primarily 
the measurements only (type 2), are described in Section 2.3. The residuals resulting from the linear 
regression models can be further interpolated – the methods using the interpolation of residuals (type 
3) are described in Section 2.4. The method for the selection of preferred parameters for several linear 
regression models is described in Section 2.5, as well as the way of comparing these models. The 
methodology for comparing different mapping methods and different parameters used in these 
methods is described in Section 2.6. 
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Different linear regression models use different supplementary data, for example, besides output from 
a dispersion model they can include altitude or various meteorological parameters. The dispersion 
model can be used alone or in combination with other parameters. 

The spatial interpolation of residuals is carried out using interpolation methods, described in Section 
2.3, with the exception of lognormal kriging and lognormal cokriging because residuals have no 
lognormal distribution. 

2.5 Use of various supplementary data sources 
Different sources of supplementary data in linear regression models (as described in Section 2.2 and 
2.5) are used and their usage is mutually compared. Three basic varieties of the linear regression 
model equation 2.1 are used: 

1. Regression models using the Unified EMEP model 

2. Regression models using the Unified EMEP model + supplementary sources (e.g. altitude, 
meteorological parameters) 

3. Regression models using supplementary sources only (e.g. altitude, meteorological 
parameters) 

The basic reason for examining these three varieties is to verify the assumption that by using output 
from a chemistry transport model together with other supplementary data more accurate estimates can 
be obtained than by the use of output from a chemistry transport model alone or by the use of other 
supplementary data only. 

Within the varieties 1 and 3 several submodels can be constructed and examined. For preferred 
submodel selection, different approaches can be used. Firstly, it is necessary to choose supplementary 
data that really brings some additional information. Submodel selection is also a compromise between 
bias and variance: by decreasing the number of parameters, the predictive capability can improve (i.e. 
the variance decreases), while the bias increases. So we need to arrive at an optimal selection of 
parameters meeting sufficient accuracy of interpolation results as well as sufficient suppression of 
uncertainties. 

The most often used approaches for submodel selection are forward selection, backward elimination, 
stepwise regression (forward or backward type) and all subsets. Forward selection begins with the 
“best” predictor and adds the next “best” to improve the fit. Backward selection begins with all 
variables and removes the least useful as long as the fit is not substantially “worsened”. Stepwise 
regression allows “good” predictors to re-enter at any step into the model. All improvements should lie 
within defined statistical criteria. 

In the APMoSPHERE project, for example, the so-called approach of “supervised forward stepwise 
procedure” is used to construct regression models. Only variables that (i) increased the adjusted RP

2
P by 

more than 1%, and (ii) had coefficients that conformed to the pre-specified directions (Briggs et al., 
2005) were included. 

In this study backward elimination is used and confirmed by automatic stepwise regression. For 
possible further elimination and for comparison purposes, several other submodels are also analysed. 
The list of examined submodels is stated separately for each component. Individual submodels are 
mutually compared by evaluating the coefficient of determination RP

2
P, adjusted RP

2 
Pand the root-mean 

square error RMSE: 
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where  )( isZ  is the measured concentration at the i-th point, i = 1, …, N, 
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)(ˆ
isZ  is the estimated concentration at the i-th point using other points, 

Z  is the arithmetic average of Z(sB1 B), …, Z(sBNB), 

Ẑ  is the arithmetic average of )(ˆ),...,(ˆ
1 NsZsZ . 
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where N is the number of the measuring points, 

 p is the number of parameters (i.e. c, a B1B, a B2B,, …) of the lin. regr. model (2.1),  
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       (2.13) 

Coefficients RP

2
P and adjusted RP2P are reported together in the whole report (where RP

2
P is mentioned in the 

text, both coefficient RP2P and adjusted RP2P are implied). However, for supplementary data selection 
adjusted RP

2
P is preferred. 

As was concluded and recommended in Horálek et al. (2005) it is further investigated as to what 
extent an improvement can be obtained when using logarithmically transformed air quality parameter 
values in the linear regression models. 

2.6 Criteria for comparing spatial interpolations  
Several interpolation methods are applied and mutually compared. The main criterion for comparison 
analysed in this paper is RMSE from cross-validation, followed by other statistical indicators from 
cross-validation. The cross-validation method computes the spatial interpolation for each measurement 
point using all the available information except from that one point (i.e. it withholds one data point 
and then makes a prediction at the spatial location of that point). The predicted and measured values 
are then compared and the procedure is repeated for all points. This way the performance of the 
various interpolation methods at areas without measurements can be evaluated. (Cross-validation 
simulates and examines the behaviour of the interpolation in the places with no measurement.) 

For each examined method several statistical indicators are presented. The particular indicators used in 
cross-validation are the following:  

root mean squared error (RMSE), according to the equation (2.13) 

mean prediction error (MPE), ∑
=

−=
N

i
ii sZsZ

N
MPE

1

))(ˆ)((
1

     (2.14) 

which is the same as the average bias. 

mean absolute error (MAE)  ∑
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minimum error, i.e. { }NisZsZ ii ...1);(ˆ)(min =−  

maximum error, i.e. { }NisZsZ ii ...1);(ˆ)(max =−  

median of absolute error (MedAE), i.e. { }NisZsZmedian ii ...1;)(ˆ)( =−  
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coefficient of determination RP

2
P of cross-validation scatterplot, according to the equation (2.11) 

mean prediction standard error (MPSE) which is the arithmetic average of the kriging standard errors.  

 

In the case of the methods described in Section 2.4 the cross-validation analysis is carried out only for 
residuals (not for the whole approach), because of calculation reasons. We suppose the difference 
would not be large (as the number of stations is large). For these methods RP

2
P is not computed, because 

the results would not be comparable with other methods. (Another possibility would be to calculate RP

2
P 

after adding the residuals to the linear regression results. This is a potential issue for the future.) 

For interpolation methods using primarily monitoring data, the scatter plots are presented in Chapter 5 
showing the interpolation estimates on the basis of cross-validation versus the measured values. In the 
case of an ideal linear correlation between the interpolation estimates and the measurements, the 
regression line fitted by the values of the scatter plot would be y =a·x with a=1, and with a coefficient 
of determination RP

2
P=1. RMSE and MAE should be as small as possible, and MPE as close to zero as 

possible. The standard deviation of error and the median of absolute error should be as small as 
possible. Both minimum error and maximum error values should be as close to zero as possible.  

The results of the cross-validation analysis are presented in Chapter 5 for each pollutant indicator, 
separately for the rural and urban areas. For the pollutant indicator the interpolation methods using 
primarily measurements are presented first, followed by the methods on interpolation of the residuals 
of the different linear regression models. For the geostatistical methods the two methods for variogram 
fitting, Section 2.3.5, are applied.  

2.7 Criteria for the selection of an interpolation method  
While for this report we have selected the RMSE as the main criterion for comparing interpolation 
results, it is important to note that the final selection of the best interpolation method depends also on 
application requirements of the assessment (e.g. EEA assessments and fact sheets) and therefore may 
relate to other (pragmatic) criteria as well. Such criteria include: 

a. Spatial coverage quality and extend. Some data sources may lead to better results of RMSE, but 
may have poorer spatial coverage. Some data sources may provide larger European coverage. 

b. Observations versus model results. It may be attractive to base the maps exclusively on 
observations, even if this may lead to lower spatial coverage. 

c. Continuity and robustness from year to year. The eventual availability of time series is interesting 
for assessments. Even if for a more recent year the optimal method, in terms of RMSE, is a method 
different from previous the same method as in previous years may be preferred. This is especially true 
for those cases in which the differences are relatively small. In case the differences are large, it may be 
considered to recalculate previous years with the new method.  

d. Resource intensity, physical basis for the supplementary data inclusion and the technical platform. 
The more (complex) supplementary data used, the more time, resources and sometimes more 
advanced computer facilities and capacity are needed. Choosing a second best option in terms of 
RMSE may therefore be sometimes preferred to keep demands within limits. 

e. Availability and reliability of the data. The analysis becomes dependent on the date and resolution 
that these data become available and will be updated or refreshed. Choosing a second best option, for 
example in terms of timeliness or reliable cyclic updating, therefore be sometimes preferred. 

f. Methodologically consistency to meet homogeneity between pollutants and indicators. This criterion 
is especially of interest in the case of different indicators of one pollutant type, such as AOT40 for 
crops and AOT40 for forests where it useful to select the same method for consistency and 
compatibility between the two AOT40 indicators. This is especially relevant when the different 
methods show small differences in terms of RMSE, since the interpolation result will likely differ little 
using one or the other method.  
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g. Agreement of the quality of the interpolated values versus the measured values at monitoring sites. 
Many interpolation methods do not preserve the measured value when the interpolation is made at, or 
very close to, the measurement point. Such methods are generally better in terms of RMSE from cross-
validation. However, for some purposes it may be desirable to produce maps where the interpolation 
has an exact correspondence at the measurement sites. 

Because different people will weigh these criteria differently, this paper does not make definite 
recommendations for the selection of best methods. Rather, the results are meant to provide input into 
a broader discussion on mapping of air quality. 

In this context it is also important to put the results in perspective. The uncertainties addressed in this 
paper are limited to the uncertainties caused by the process of interpolation between data from 
monitoring stations. Uncertainties in the supplementary data sources are not specifically addressed, 
nor are uncertainties related to the measurements instruments and procedures. These uncertainties may 
be larger than the uncertainties addressed in this paper. 
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3 Methods for the mapping of urban and rural areas 
One of the conclusions presented in Horálek et al. (2005) is that it is better to create air pollution maps 
separately for rural and urban areas. The reason lies in the different character of urban and rural air 
pollution. The final maps are constructed by merging the rural and urban maps together.  

3.1 Maps for rural areas 
For the creation of maps for rural areas the basic methods described in Chapter 2 are used and 
mutually compared. The methods are applied on rural background stations only (according to the 
AirBase classification). 

3.2 Maps for urban areas 
Two different approaches are considered in the creation of interpolated maps of urban areas:  

i) The first is the interpolation of the values measured at the urban and suburban background stations 
with the use of methods described in Chapter 2.  

ii) The second approach is the interpolation of the urban increment. This urban incremental 
concentration, the so called Delta, is the difference between the urban background station 
measurement and the interpolated rural background concentration field at the station coordinate. The 
Deltas are interpolated by ordinary kriging or IDW and the interpolated Delta concentration field is 
subsequently added to the interpolated rural background concentration field. The resulting European 
wide concentrations are now supposed to represent the urban backgound concentration field. This 
approach was explored earlier in Horálek et al. (2005). The advantage of this approach is its 
simplicity: the already interpolated result of the rural background concentration field is used again for 
the urban spatial interpolation. It is assumed that the interpolation improvements reached by using the 
supplementary parameters at the rural concentration fields propagate into the (sub)urban area 
interpolation results to a similar extend. The urban increment is calculated according to: 

)(ˆ)()( iruriurbi sZsZs −=Δ         (3.1) 

where Z BurbB(sBi B) is the measured value at the point sBi B, being an (sub)urban background station, 

)(ˆ
irur sZ  is the estimated value of the rural background field at the point sBiB,  

 Δ(sBi B) is urban increment Delta at the point sBiB. 

The final urban map is given by 

)(ˆ)(ˆ)(ˆ
iiruriurb ssZsZ Δ+=         (3.2) 

Interpolation of Δ(sBiB) is carried out using the methods described in Chapter 2. The methods are applied 
on urban and suburban background stations only. 

3.3 Merging of rural and urban maps 
The European-wide population density grid is used for merging the rural and urban maps into one 
combined air quality indicator map. Both the rural map and the urban map are created for the whole of 
Europe. The population density grid helps to determine for which part of the area the respective map is 
used. 

For areas with population density less than the defined value of αB1B, the rural map is applied, and for 
areas with population density grids greater than the defined value αB2 B, the urban map is applied. For 
areas with population density within the interval (αB1 B, αB2 B) the following relation is applied 
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where  )(ˆ sZ  is the resulting value of concentration at the point s, 

R(s) is the concentration at the point s for the rural map, 

U(s) is the concentration at the point s for the urban map, 

α(s) is the density of population at the point s. 
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4 Input data 

4.1 Introduction 
The input data used depends on the mapping methodology applied. The minimum input data necessary 
for interpolation are the measured air pollution concentrations with the respective geographical 
coordinates of the stations at which they were measured. The station altitude is also considered in this 
study. The advanced mapping methods use supplementary parameters, such as output from the Unified 
EMEP model, altitude data covering the whole study area, meteorological parameters, climatological 
parameters, emissions, land cover and population density. The resolution of such input data should be 
better than or comparable to the resolution of the maps constructed, which is 10 x 10 km. 

In most cases the input data were supplied as raw data – in various formats and time intervals. It was 
necessary to modify them before further processing. 

4.2 Measured air quality data  
The air quality data were extracted from the European monitoring database AirBase, supplemented by 
several rural EMEP stations which are not reported to AirBase. Only data for rural, suburban and 
urban stations, classified in by AirBase and EMEP as the type background were used. Industrial and 
traffic station types are not considered, since they represent local scale concentration levels that not 
applicable at the mapping resolution employed. The following components were considered:  

PMB10B  – daily average values [µg.mP

-3
P], year 2003  

– annual average [µg.mP

-3
P], years 2003 and 2004 

– 36P

th
P maximum daily average value [µg.mP

-3
P], years 2003 and 2004  

PMB2.5B  – annual average [µg.mP

-3
P], years 2003 and 2004 

Ozone  – SOMO35 [μg.mP

-3
P.day], years 2003 and 2004 

– 26P

th
P highest daily maximum 8-hour average value [µg.mP

-3
P], year 2004 

– AOT40 for crops [μg.mP

-3
P.hour], year 2004 

– AOT40 for forests [μg.mP

-3
P.hour], year 2004 

SOB2B  – annual average [µg.mP

-3
P], year 2004 

NOBx B  – annual average [µg.mP

-3
P], year 2004 

NOB2B  – annual average [µg.mP

-3
P], year 2004 (NOBx B mapping only) 

NO  – annual average [µg.mP

-3
P], year 2004 (NOBx B mapping only) 

SOMO35 is the annual sum of maximum daily 8-hour concentrations above 35 ppb (i.e. 70 μg.mP

-3
P). 

AOT40 is the sum of the differences between hourly concentrations greater than 40 ppb (i.e. 80 µg.mP

-

3
P) and 40 ppb, using only values measured between 7:00 and 19:00 UTC, calculated over the three 

months from May to July (AOT40 for crops), respectively over the six months from April to 
September (AOT40 for forests). 

In case of components affecting human health data from rural, urban and suburban background 
stations were considered. This applies to the components PMB10B, PMB2.5B and to the ozone parameters 
SOMO35 and 26PthP highest daily maximum 8-hour average value. In case of components affecting 
vegetation (SOB2B, NOBxB and both AOT40 parameters for ozone) only rural background stations were 
considered.  

In the case of annual indicators only the stations that have temporal data coverage of at least 75 
percent are used. For PMB10B 176 rural background stations and 656 urban/suburban background stations 
are used. For PMB2.5B 14 rural background stations and 68 urban/suburban background stations are used. 
For ozone 418 rural background stations and 731 urban/suburban background stations are used. For 
NOBx B 82 rural background stations with reported NOBX B data are used, supplemented by other 189 rural 
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background stations with reported both NOB2B and NO data and also with other 23 rural background 
stations with reported NOB2B data only (from which NOBx Bis calculated and estimated, see Section 5.4). 
For SOB2B 253 rural background stations are used. The air quality data have been extracted from 
AirBase, with addition of a few rural EMEP stations (these are 4 PMB10B stations, helpful for spatial 
coverage). 

The measured air pollution concentration data were obtained from the AirBase database as Excel 
tables. Since most geostatistical calculations are done in ArcGIS they were converted to ArcGIS 
format. Data from the stations that measured less than 75 % of the year were deleted. Furthermore, 
coordinates were checked. At 7 stations incorrect coordinates were detected; 3 stations were deleted 
from further processing and the coordinates of 4 stations were corrected (latitude and longitude were 
mutually exchanged). Additionally, two ozone stations (GR0110R, MK0042A) with highly 
questionable data were excluded from the analysis. The purified files were converted into dbf format 
and imported into ArcGIS on the basis of their geographic coordinates at the sites of the measuring 
stations. Finally, ArcGIS shape files were created and were consequently transformed from the 
geographical system WGS1984 (corresponding to geographic coordinates) into geographic projection 
system ETRS89-LAEA5210, which is the most commonly used EEA standard map projection. All 
maps presented in this paper comply with this projection with the map EEA predefined extent 1c 
(www.eionet.europa.eu/gis). 

4.3 Altitude 
In addition to the altitude presented with the measurement data in the AirBase (or EMEP) database a 
European covering gridded altitude dataset is used, namely GTOPO30 (Global Digital Elevation 
Model) at a resolution of 30 x 30 arcsec. (source: ESRI, Redlands, California, USA, 2005). The 
original format was the ArcGIS shapefile in the WGS1984 coordinate system. It was necessary to 
convert this grid to the geographic projection system ETRS89-LAEA5210 to enable further 
processing. This conversion was carried out with the use of ArcGIS to the resulting grid of 200x200 
meters. The altitude is always given in meters. 

4.4 Output from the Unified EMEP model 
The chemistry transport model used is the photochemical version of the Unified EMEP model 
(revision rv2_5_beta2), which is a Eulerian model with a resolution of 50 x 50 km. Output from this 
model is used for a subset of the measured parameters listed in Section 4.2: 

PMB10B  – daily average values [µg.mP

-3
P], year 2003, 

– annual average [µg.mP

-3
P], years 2003 and 2004, 

– 36P

th
P maximum daily average value [µg.mP

-3
P], years 2003 and 2004, 

PMB2.5B  – annual average [µg.mP

-3
P], year 2004, 

Ozone  – SOMO35 [μg.mP

-3
P.day], year 2004, 

– AOT40 for crops [μg.mP

-3
P.hour], year 2004, 

– AOT40 for forests [μg.mP

-3
P.hour], year 2004, 

SOB2B  – annual average [µg.mP

-3
P], year 2004, 

NOBx B  – annual average [µg.mP

-3
P], year 2004. 

The model is described by Simpson et al. (2003) and Fagerli et al. (2004). The model results are based 
on different emissions for each year (i.e. 2006-Trend2003-V7 and 2006-Trend2004-V7, as 
documented in Appendices A of EMEP Status Reports 1/2006 and 4/2006, see Tarassón et al., 2006 
and Yttri et al., 2006) and actual meteorological data (from PARLAM-PS, i.e. special dedicated 2000 
version of HIRLAM numerical weather prediction model, with parallel architecture, see Sandnes 
Lenschow and Tsyro, 2000). 

In the original netCDF format each grid cell was represented by a point at its centre. Each such 
netCDF file was converted into dbf format and imported into ArcGIS as the point shapefile by its 
geographic coordinates of the centre of the grid cells. The ultimate grid (at resolution 10 x 10 km) was 
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created from this layer using IDW interpolation with the number of neighbouring points n=4 and the 
weight β=10, see Section 2.3.1. This setting of parameters ensures that the created interpolation is 
almost identical to the original EMEP grid. 

4.5 Meteorological parameters 
Actual meteorological surface layer parameter data for the years 2003 and 2004 are extracted from the 
Meteorological Archival and Retrieval System (MARS) of the ECMWF (European Centre for 
Medium-range Weather Forecasts; HThttp://www.ecmwf.intTH). MARS is the main repository of 
meteorological data at ECMWF from which registered users can freely extract archived data. It 
contains terabytes of a wide diversity of operational and research meteorological data as well as data 
from special projects. The datasets from which we extracted parameter data needed to provide a 
complete data coverage for the continuous period of at least 2000-2004 but preferably 1990-to date 
and for the complete area of study. At a later stage it allows for carrying out trend analyses on 
European-wide air quality indicators using any data of AirBase combined with a consistent set of 
concurrent meteorological parameter data with a comparable temporal resolution.  

Specifications of the data, including its exact MARS parameter code references, ultimately extracted 
are: 

 

Spatial grid resolution:  0.25 x 0.25 degrees latitude/longitude, i.e. 15 x 15 minutes.  
Geographic window:  Lower left corner 34 x -42 dgrs lat/long, Upper right corner 72 x 59.5 dgrs 

lat/long, i.e. covering the European-wide study area. 
Years:    2003 - 2004 

Data format:   GRIB 
 
From dataset:   Operational Surface Analysis Data Sets ('oper') 
Time resolution:  Daily 6-hour averages (00:00, 06:00, 12:00, 18:00)  

Parameters:   Name  Remark  Abbrev. Units Code (Table 128) 

   10 meter wind U  (W→ E)  10U m.sP-1P 165 
   10m wind V   (N → S) 10V  m.sP-1P 166 
   2 meter temperature   2T  K 167 
   2m dew point temperature  2D  K 168 

 
From dataset:   Tropical Ocean and Global Atmosphere ('toga') 
Time resolution:  Daily 12:00 average, derived from 24-hour forecast values, with values 

accumulated between time step 12 and time step 36 of the forecast  

Parameters:   Name    Abbrev. Units  Code (Table 128) 

   Total precipitation  TS  m.dayP

-1
P  228 

   Surface solar radiation  SSR  Ws.mP

-2
P  176 

 

Wind speed as used in the calculations, is derived from the 10 meter height wind speed in U (10U) and 

V (10V) direction with magnitude ( ) ( )22 1010 VU + . 

Temperature units were converted to [°C] using the relation T [°C] = T [K] + 273.15  

Surface solar radiation units were converted from [W.s.mP

-2
P] to [MW.s.mP

-2
P], by dividing by 10P

6
P. 

Relative humidity (%) is derived by means of the saturated water vapour pressure (eBt B) as a function of 
the temperature and of the dew point temperature at 2 meter height, according 



 

     Spatial mapping of air quality for European assessment 

30 

 100
2

2 ⋅=
T

D

e
eRH , with ))97.240/(502.17(1365.6 tt

te +⋅= where t is 2T and 2D respectively [°C].  

It should be noted that the 0.25 degrees spatial grid resolution is just above the current highest possible 
MARS grid resolution of 0.225 degrees (13.5 minutes) for extracting data through interpolation. Its 
cause lies in a typographic error in the extraction script discovered after finalisation of the extractions. 
It was decided not to repeat the extractions, since the resolution loss is acceptably small and the 
extraction is quite time and resource consuming.  

The meteorological gridded data for the years 2003 and 2004 was transformed into ESRI GRID 
format. The averaging of both the original 6-hour and the daily meteorological parameter values into 
annual averages on the given grid resolution needed to be executed in two steps as a way to cope with 
the limited calculation capacity of the relevant ArcGIS procedure. As a first step the 6-hour values 
were averaged into half-month values and the daily values into two-month averages. As second step 
the annual averages were derived from these intermediate average values. 

4.6 Climatological parameters 
The input data also includes the 10 x 10 minute grid of climatological averages for the 30-years period 
1961–1990 (source: CRU CL 2.0, HTwww.cru.uea.ac.uk/cru/data/TH; New et al., 2002). The individual 
parameters are as follows: 

• Temperature [K] – units subsequently converted to [°C] 

• Precipitation [mm.year-1] 

• Sunshine duration [%] 

• Wind speed [m.s-1] 

• Relative humidity [%] 

In the original format the data are given in txt files where each grid cell is represented by the point at 
its left bottom corner. Each such txt file was transformed into dbf format and imported into ArcGIS as 
the point shapefile by its geographic coordinates recalculated into the centre of the grid cell. The 
ultimate grid (in resolution 2 x 2 km) corresponding to the original grid was created from this layer 
using IDW interpolation with a number of neighbouring points n=4 and a weight β=10. 

4.7 Emissions 
Emissions are used for NOBx B only. Here the input data are given as NOBx B emissions [µg.mP

-2
P.dayP

-1
P] on a 

grid of 1 x 1 km in ArcGIS raster format, covering the western part of Europe (EU-15, Switzerland 
and Norway). These data are the output of the APMoSHERE project (Briggs et al., 2005) and the 
project concluded that NOBxB emissions validated well against the AirBase data. No other emission data 
are used due to the incomplete reporting by some countries. The intention behind the use of the 
emission data is to include emission information at a higher resolution than the EMEP model can 
currently provide. 

4.8 Land cover 
The input data from CORINE Land Cover 2000 (CLC2000) – grid 250 x 250 m, version 8/2005 
version 2, (Source and owner: EEA, lceugr250_00) is used. The countries missing in this database are 
Island, Norway, Switzerland, Serbia, Montenegro and Turkey.  

In an effort to reduce the time demanding calculations on large data quantity involved with the 
250 x 250 m grid resolution an aggregation to a 500 x 500 m grid resolution is performed first, before 
the exceedance mapping and table extraction takes place. The ultimate map and table results are not 
influenced by this resolution aggregation.  
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4.9 Population density  
Population density [inhbs.kmP

-2
P] is given at a resolution of 100 x 100 m (Source EEA, pop01c00v3int, 

official version Aug. 2006; Owner: JRC). These data are based on the degree of urbanisation from 
Eurostat and the population census of the European communes 2001, mapped on the basis of 
CLC2000 land cover. 

The current version of the population density database does not include the European countries 
Andorra, Albania, Bosnia-Herzegovina, Cyprus, Island, Lichtenstein, FYR of Macedonia, Norway, 
Serbia and Montenegro, Switzerland, and Turkey. An important objective of this project is to deliver 
European wide interpolated maps covering at least all EEA member and collaborating countries. 
Furthermore, spatial interpolations will perform better when gaps in the mapping area are avoided. To 
overcome the gaps the missing countries in the JRC population density database are filled with 
population density data from an alternative source, the ORNL LandScan (2002) Global Population 
Dataset. Its original resolution of 30 arc seconds was resampled to a 100 m grid resolution before 
merging it with the JRC database. To avoid possible non-continuous coverage at the borders between 
the JRC and ORNL databases the area of countries using the ORNL database in was enlarged with a 5 
km buffer at the borders. 

To enable further processing a two-step spatial data aggregation was carried out in ArcGIS. The first 
step resulted in the creation of a 1 x 1 km grid by coarse graining of the original 100 x 100 m grid. 
This aggregation is done to stay below the critical hardware limitations on the calculations capacity of 
current computer technology. In the second step each cell of the 1 x 1 km grid is given the average 
value of the surrounding 10 x 10 km square. This results in a grid at 1 x 1 km where each grid cell 
represents the average population density of the surrounding 10 x 10 km. This is done in order to be 
consistent with the grid resolution 10 x 10 in the final mapping. 
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5 Analysis of mapping methodologies 

5.1 Rural mapping 
The development of methods for mapping air quality in rural areas concerns mainly those using both the primary 
data (measured air pollution concentrations, or their parameters) and the secondary (supplementary) data, i.e. the 
methods described in Section 2.4. As compared with the approach used in Horálek et al. (2005), meteorological 
parameters (characteristic for the year 2004) are used as secondary data, instead of climatological parameters 
(averaged over the years 1961–1990). The presumption, that the concurrent meteorological data is better 
correlated with the air quality of the same year than the climatological data, is tested.  

The examined pollutants are PMB10B, ozone, NOBxB, SOB2 Band PMB2.5B. For each pollutant its relevant ecosystem, 
vegetation and human health indicators in the context of protocols and directives are subject of investigation, for 
example, for PMB10B different interpolation methods are examined for the 36P

th
P maximum daily average value and 

for the number of exceedance days. For the rural areas each pollutant is dealt with in a separate section. 

For each pollutant various linear regression models (as described in Section 2.2) are examined and mutually 
compared according to the procedure described in Section 2.5, followed by various methods of spatial 
interpolation as described in Section 2.3 and 2.4. Both pure interpolation methods as well as interpolation 
methods based on the residuals of those linear regression models are considered. All the interpolation methods 
are compared using cross-validation scatter plots and statistical parameters, as described in Section 2.6. Apart 
from its use for comparison purposes, cross-validation analysis enables the interpolation uncertainty to be 
estimated. 

For PMB10B a comparison is made of the interpolation results for the 36P

th
P maximum daily average and the number 

of exceedance days. This is intended to distinguish any differences that may occur as a result of the interpolation 
of two fields that should show the same exceedence contours. 

5.2 Rural areas – PMB10B 

5.2.1 Comparison of linear regression models for rural PM B10 B indicators 
Several linear regression models or submodels (Section 2.5) of model equation 2.1 are examined: 

Submodel Input parameters 

P.1  EMEP model output 
P.2a  EMEP model output, altitude, wind speed, surface solar radiation, temperature 
P.2b  EMEP model output, altitude, wind speed, surface solar radiation 
P.2c  EMEP model output, altitude, wind speed, temperature 
P.2d  EMEP model output, altitude, wind speed, relative humidity 
P.3a  altitude, wind speed, temperature 
P.3b  altitude, wind speed, surface solar radiation 

The input parameters for the stepwise selection are altitude, meteorological parameters (i.e. wind speed, surface 
solar radiation, temperature, relative humidity, total precipitation) and EMEP model output (only for submodel 
type 2 selection). The basic submodel of type 2 arrived at after a stepwise regression with a backward 
elimination of parameters (Section 2.5) is P.2a for the annual average and P.2b for the 36P

th
P maximum daily 

average value. Because of colinearity of temperature and solar radiation (see below), the submodels P.2b and 
P.2c are examined as well, each excluding one of the two parameters. Additionally, one other submodel, P.2d, is 
considered, with both temperature and solar radiation replaced by relative humidity, in order to illustrate the 
“best” submodel with use of relative humidity. 

The basic submodel of type 3 (i.e. without output from the EMEP model) selected by stepwise selection of 
backward type is model P.3a. Again for colinearity of temperature and solar radiation submodel P.3b is 
examined as well. 

Altitude from GTOPO30 (see Section 4.3) is used, after having tested its correlation with the AirBase altitude 
values at measurement stations, see the Section 5.2.3. 
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The performance of the different linear regression models is compared in Tables 5.1 and 5.2, which give the 
parameters c, a1, …, a6 for the different submodels.  

In the forthcoming tables the characteristics of the correlation coefficient RP

2
P and the RMSE are presented for 

each submodel showing the closeness of the linear relation with the measured air pollution values. RP

2
P should be 

as close as possible to 1 and RMSE as low as possible. If a parameter is not statistically significant, this is 
indicated by “n. sign.”. 

Table 5.1 shows the results for the PMB10B annual average concentration. The values of RP

2 
Pand RMSE for the 

submodels of the type 1 and 2 show quite clearly that the addition of supplementary parameters substantially 
improves the closeness of the regression relation by an increased RP

2
P of about 0.35 and a decreased RMSE by 

approximately 1.35, i.e. one fifth. Similarly, the RP

2 
Pand RMSE for the submodels of types 2 and 3 indicate that 

the closeness of regression is higher when the EMEP modelled concentration field is used in addition, than when 
only supplementary parameters are used. 

The best results (with regard to RP

2
P and RMSE) are obtained with model P.2a. However, there is a rather large 

correlation between temperature and solar radiation. This means it is possible that only one of the parameters, 
temperature or solar radiation, could be used; as model P.2d shows, the majority of the information that 
contributes to the accuracy improvement of the linear regression model is included in the other parameters. The 
comparison between models P.2b and P.2c shows that a better correlation is obtained by the model P.2b, 
because its RP2P is 0.05 higher and its RMSE is 0.22 µg.mP

-3
P lower, meaning that solar radiation improves the 

accuracy more than temperature as a supplementary parameter. 

The above mentioned findings lead to the preferred selection of the regression model P.2b, in which the EMEP 
model output and supplementary parameters altitude, wind speed, and solar radiation are used. 

Table 5.1 Comparison of different submodels of the linear regression model equation 2.1 describing the relation between 
the measured annual average PMB10B concentration for 2004 and various supplementary parameters in the rural areas. 

lin.regr.model (2.1) P.1 P.2a P.2b P.2c P.2d P.3a P.3b
c (constant) 12.0 n.sign. n.sign. 16.9 209.1 25.0 21.4
a1 (altitude GTOPO) not used -0.0122 -0.0100 -0.0089 -0.0098 -0.0114 -0.0134
a2 (temperature 2004) not used -0.716 not used 0.852 not used 0.728 not used
a3 (wind speed 2004) not used -2.43 -2.32 -2.95 -1.64 -2.45 -2.18
a4 (relative humidity 2004) not used not used not used not used -2.02 not used not used
a5 (s. solar radiation 2004) not used 2.71 1.94 not used not used not used 1.0436
a6 (EMEP model 2004) 0.83 1.28 1.24 0.82 1.06 not used not used
R2 0.109 0.456 0.446 0.395 0.411 0.314 0.313
adjusted R2 0.104 0.440 0.433 0.380 0.397 0.302 0.301
RMSE  [µg.m-3] 6.83 5.34 5.41 5.63 5.56 6.00 6.00  

 

Table 5.2 shows the results for the 36P

th
P maximum daily average PMB10B value. By comparing the submodels of 

types 1, 2 and 3 (using RP

2 
Pand RMSE) similar results are obtained as for the annual average: The addition of 

supplementary parameters substantially improves the closeness of the regression relation (by an increased RP

2
P of 

0.33 and a decreased RMSE of about one fifth); the closeness of the regression improves when output from the 
EMEP model is used in combination with supplementary parameters. The best results are provided by model 
P.2b. 

Table 5.2 Comparison of different submodels of linear regression model equation 2.1 describing the relation between the 
measured 36P

th
P maximum daily mean PMB10B concentration for 2004 and various supplementary parameters in the rural areas.  
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lin. regr. model (2.1) P.1 P.2a P.2b P.2c P.2d P.3a P.3b
c (constant) 23.7 n. sign. n. sign. 30.2 375.2 44.1 39.2
a1 (altitude GTOPO30) not used -0.0151 -0.0151 -0.0135 -0.0149 -0.0179 -0.0212
a2 (temperature 2004) not used n. sign. not used 1.511 not used 1.2041 not used
a3 (wind speed 2004) not used -4.74 -4.74 -5.63 -3.37 -4.63 -4.23
a4 (relative humidity 2004) not used not used not used not used -3.63 not used not used
a5 (s. solar radiation 2004) not used 3.44 3.44 not used not used not used 1.6410
a6 (EMEP model 2004) 0.50 1.02 1.02 0.63 0.84 not used not used
R2 0.062 0.390 0.390 0.348 0.364 0.281 0.275
adjusted R2 0.056 0.376 0.376 0.332 0.349 0.269 0.262
RMSE  [µg.m-3] 12.04 9.74 9.74 10.04 9.92 10.54 10.59  

 

The results are similar to the findings in Section 4.3.5 of Horálek et al. (2005) on the selection of the most 
suitable supplementary data, but with the difference that we now use actual solar radiation instead of the 30-year 
averaged sunshine duration. A special remark should be made for the use of wind speed as a parameter. Whereas 
the 30-year average wind speed was not found to be significant in the findings of Section 4.3.4 of Horálek et al. 
(2005), the concurrent meteorological wind speed appears to significantly improve the linear regression results. 
See Section 5.2.3 for further discussion. 

5.2.2 Linear regression models after logarithmic transformation 
Following the recommendation made in Horálek et al. (2005) we further investigated the extent to which the 
linear regression results can be improved by logarithmic transformation of the measured air quality parameters, 
according to model equation 2.6. The results for the annual average concentration of PMB10B for the different 
submodels are listed in Table 5.3. 

 

Table 5.3 Comparison of different submodels of linear regression model equation 2.2 describing the relation between the 
logarithm of the measured annual average PMB10B concentration for 2004 and various supplementary parameters in the rural 
areas.  

lin. regr. model (2.2) P.1 P.2a P.2b P.2c P.2d P.3a P.3b
c (constant) 2.48 1.85 2.08 2.70 12.94 3.15 2.98
a1 (altitude GTOPO) not used -0.0006 -0.0005 -0.0004 -0.0005 -0.0006 -0.0007
a2 (temperature 2004) not used -0.037 not used 0.043 not used 0.0360 not used
a3 (wind speed 2004) not used -0.112 -0.120 -0.137 -0.067 -0.110 -0.097
a4 (relative humidity 2004) not used not used not used not used -0.108 not used not used
a5 (s. solar radiation 2004) not used 0.137 0.086 not used not used not used 0.0505
a6 (EMEP model 2004) 0.047 0.068 0.061 0.045 0.059 not used not used
R2 0.147 0.506 0.494 0.438 0.468 0.335 0.331
adjusted R2 0.142 0.491 0.482 0.425 0.456 0.323 0.319
RMSE, using backtransf. [µg.m-3] 6.86 5.33 5.37 5.59 5.56 5.99 6.02  

In addition, the same linear regression model equation 2.2 was examined for the 36P

th
P maximum daily mean value 

of PMB10B (see Table 5.4). 
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a. IDW 
b. Ordinary kriging (OK) – parameters of variogram selected automatically (b1) and manually 

fitted (b2) 

For all geostatistical methods (i.e. OK, OC, LC) variogram parameters (Section 2.3.2) are estimated in two 
ways: Automatically (optimisation/fitting of the variogram function) and manually (minimization of the cross-
validation RMSE), see Section 2.3.5. The comparison of the results obtained by these two methods of parameter 
setting enables the influence of an eventual automatic routine, as is used in the ArcGIS software, to be 
evaluated. Note that the minimisation procedure will always provide an equivalent or reduced cross validation 
RMSE, in comparison to the automatic fit. 

For the methods of linear regression, followed by interpolation of residuals (type 3), only IDW and ordinary 
kriging were performed. No ordinary cokriging or lognormal kriging is performed for the reasons explained in 
Section 2.4. Linear regression models with logarithmic transformation are not performed for the reasons 
explained in Section 5.2.5. 

The comparison of individual interpolation methods was carried out with the use of the root-mean square error 
(RMSE) and the other statistical uncertainty and error indicators from cross-validation (Section 2.6, Equations 
2.14 to 2.16). Moreover, cross-validation scatter plots are presented for interpolation methods using primarily 
monitoring data.  

Apart from their use for comparison purposes, the results of the cross-validation analysis are useful for 
expressing of the maps uncertainties. Scatter plots show the correlation between measured and cross-validation 
estimates. Indicators such as RMSE express the total uncertainty of the whole map (in µg.mP

-3
P). The nature of 

cross-validation (concentration measured in the estimated point is not used for estimation) enables the quality of 
the interpolation in the places with no measurement to be evaluated. (The quality of the interpolation at the 
position of the measurements is also examined in Section 7.2.)  

Figure 5.4 shows the cross-validation scatter plots for the annual average PMB10B concentrations for several 
interpolation methods using primarily monitoring data (i.e. only for interpolation methods of type 2), namely 
ordinary kriging, ordinary cokriging and lognormal cokriging, all with two setting of variogram parameters. The 
plots show that the best results among these methods, i.e. the highest RP

2
P, are obtained by lognormal cokriging 

with the manual optimization of variogram parameters using RMSE minimization (2-d2).  

The plots show that for all three methods the concentrations are smoothed. This is visible on the one hand from 
the linear regression equation (y = a·x + c when a < 1 and c > 0 ), and on the other hand directly from the 
graphs (comparing the values in the x and y axes).  

The smoothing is smaller in case of the manually fitted parameters (for all methods) and also for both ordinary 
and lognormal cokriging in comparison with ordinary kriging. This is visible e.g. from the parameters of linear 
regression: Smaller smoothing means higher slope a and lower intercept c. (High intercept means overestimation 
of low values, low slope means underestimation of high values.) 
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Figure 5.4 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the PMB10 B annual 
average for rural areas in 2004, for ordinary kriging (top), ordinary cokriging using altitude (centre) and lognormal 
cokriging (bottom), with parameters of variogram estimated automatically (left) and manually (right).  

 

Figure 5.5 shows the cross-validation scatter plot for the 36P

th
P maximum daily average value for various 

interpolation methods using primarily monitoring data. Again: the best results are obtained by lognormal 
cokriging with the manual optimisation of the variogram parameters using RMSE minimization (2-d2). Manual 
optimisation of the variogram parameters gives better results for all examined methods. (RP

2
P is higher and 

underestimation of high values is smaller.) 

The plots show that the high concentrations are underestimated and small concentrations are overestimated 
outside the measuring sites using all examined methods; the underestimation is smaller in the case of the 
manually fitted parameters of the variogram. 
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Figure 5.5 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for, the 36P

th
P maximum 

daily average PMB10B values for rural areas in 2004, for ordinary kriging (top), ordinary cokriging using altitude (centre) 
and lognormal cokriging (bottom) with parameters of variogram estimated automatically (left) and manually (right). 

 

The comparison of the different methods of all types against the other statistical indicators of the cross-
validation is presented in Table 5.8 for both the annual averages and the 36P

th
P maximum daily averages. The main 

criterion is RMSE, followed by MAE, MPE, MedAE and other indicators. Mean prediction standard error 
(MPSE) in principle can be computed for geostatistical methods only, thus its application is limited only to these 
methods. Similarly, also RP

2
P is not computed for all methods (see Section 2.6). SD gives, in general, very similar 

results as RMSE.  

RMSE, SD, MAE, median of absolute error and MPSE should be as small as possible. MPE, minimum error and 
maximum error should be as near to zero as possible; RP

2
P should be as close to 1 as possible. All the indicators, 

with exception of RP

2
P, are expressed in µg.mP

-3
P.  
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Table 5.8 Comparison of different interpolation methods showing RMSE and the other statistics for the PM B10B indicators annual averages and the 36th maximum daily 
averages for 2004 in rural areas. The smaller RMSE means the more accurate the estimation by the mapping method. Similarly, SD, MAE, median of absolute error and 
MPSE should be as small as possible; MPE, minimum error and maximum error should be as near to zero as possible; RP

2
P should be as close to 1 as possible. Apart of RP

2
P, all 

other statistical indicators are in μg.mP

-3. 

RMSE MPE SD min max MAE MedAE R2 MPSE RMSE MPE SD min max MAE MedAE R2 MPSE
(error) (error) (error)  (error) (error) (error)

1-P.1 lin. regr. P.1 6.83 0.00 6.83 -12.49 34.38 4.92 3.90 0.109 12.04 0.00 12.04 -21.32 53.54 8.65 6.71 0.062
1-P.2a lin. regr. P.2a 5.34 0.00 5.34 -12.14 22.45 3.86 2.89 0.456 9.74 0.07 9.74 -22.59 45.74 7.04 5.31 0.390
1-P.2b lin. regr. P.2b 5.41 0.04 5.41 -11.62 23.21 3.93 2.97 0.446 9.74 0.07 9.74 -22.59 45.74 7.04 5.31 0.390
1-P.2d lin. regr. P.2d 5.56 0.00 5.56 -12.44 24.01 3.99 2.81 0.411 9.92 0.00 9.92 -21.99 44.00 7.09 5.42 0.364
1-P.3a lin. regr. P.3a 6.00 0.00 6.00 -14.40 27.04 4.38 3.15 0.314 10.54 0.00 10.54 -24.21 49.89 7.85 6.09 0.281
1-P.clim. lin. regr. "clim." 5.63 -0.09 5.63 -10.31 24.31 4.08 3.35 0.398 10.29 -0.14 10.29 -20.37 47.64 7.34 5.43 0.319
2-a interp. IDW 5.84 0.30 5.83 -30.23 14.30 4.27 3.33 0.357 9.89 0.67 9.87 -46.67 27.89 7.19 5.46 0.378
2-b1 interp. OKrig-aut 5.95 0.17 5.94 -29.68 13.18 4.27 3.09 0.328 4.97 9.95 0.36 9.94 -45.96 21.38 7.06 5.42 0.362 8.29
2-b2 interp. OKrig-fit 5.91 0.21 5.90 -31.11 13.66 4.32 3.17 0.338 5.15 9.88 0.45 9.87 -48.24 22.38 7.25 5.34 0.373 8.45
2-c1 interp. OCokr-aut (altit.) 5.55 0.18 5.55 -27.57 12.15 3.91 2.77 0.417 5.04 9.44 0.36 9.43 -42.47 19.68 6.65 5.13 0.429 8.42
2-c2 interp. OCokr-fit (altit.) 4.68 0.19 4.68 -21.37 10.96 3.29 2.33 0.583 3.89 8.24 0.42 8.23 -33.44 21.19 5.94 4.18 0.562 6.47
2-d1 interp. LnCokr-aut (altit.) 5.57 0.02 5.57 -27.05 12.29 3.88 2.87 0.418 5.31 9.46 0.00 9.46 -42.40 19.85 6.52 5.07 0.439 8.57
2-d2 interp. LnCokr-fit (altit.) 4.58 -0.04 4.58 -18.76 10.51 3.27 2.31 0.601 3.33 8.01 0.07 8.01 -33.00 20.30 5.88 4.22 0.586 5.57
3-P.1-a lin. regr. 1 + IDW 5.51 0.06 5.50 -29.78 11.76 4.02 3.29 9.47 0.37 9.46 -46.20 27.12 6.94 5.33
3-P.1-b1 lin. regr. 1 + OKrig-aut 5.60 -0.02 5.60 -29.84 10.97 4.01 3.01 4.77 9.53 0.11 9.53 -46.30 19.61 6.81 5.55 8.03
3-P.1-b2 lin. regr. 1 + OKrig-fit 5.54 -0.03 5.54 -31.07 10.38 4.02 3.21 4.87 9.41 0.14 9.41 -48.42 20.09 6.94 5.15 7.67
3-P.2a-a lin. regr. 2a + IDW 4.75 0.09 4.75 -22.71 12.90 3.46 2.45 8.34 0.28 8.34 -34.85 28.28 6.09 4.63
3-P.2a-b1 lin. regr. 2a + OKrig-aut 4.64 0.03 4.64 -22.30 9.20 3.33 2.43 4.04 8.09 0.10 8.09 -33.64 18.67 5.85 4.65 6.93
3-P.2a-b2 lin. regr. 2a + OKrig-fit 4.61 0.06 4.61 -22.07 9.98 3.34 2.32 3.76 8.07 0.13 8.07 -33.33 21.68 5.83 4.54 6.47
3-P.2b-a lin. regr. 2b + IDW 4.77 0.09 4.77 -22.56 12.71 3.49 2.50 8.34 0.28 8.34 -34.85 28.28 6.09 4.63
3-P.2b-b1 lin. regr. 2b + OKrig-aut 4.65 0.03 4.65 -21.98 9.37 3.34 2.33 4.07 8.09 0.10 8.09 -33.64 18.67 5.85 4.65 6.93
3-P.2b-b2 lin. regr. 2b + OKrig-fit 4.61 0.06 4.61 -21.72 10.12 3.33 2.30 3.73 8.07 0.13 8.07 -33.33 21.68 5.83 4.54 6.47
3-P.2d-a lin. regr. 2d + IDW 4.86 0.10 4.86 -25.27 12.85 3.46 2.39 8.45 0.33 8.44 -39.63 25.79 5.92 4.27
3-P.2d-b1 lin. regr. 2d + OKrig-aut 4.67 0.06 4.67 -23.96 10.69 3.30 2.40 4.16 8.09 0.17 8.09 -37.31 19.40 5.67 4.32 7.02
3-P.2d-b2 lin. regr. 2d + OKrig-fit 4.65 0.09 4.65 -23.92 11.14 3.29 2.25 3.95 8.07 0.19 8.07 -37.18 20.31 5.68 4.22 6.69
3-P.3b-a lin. regr. 3b + IDW 5.05 0.37 5.04 -21.99 15.10 3.64 2.42 8.83 0.77 8.79 -34.07 29.62 6.34 4.55
3-P.3b-b1 lin. regr. 3b + OKrig-aut 4.85 0.23 4.85 -21.02 13.51 3.43 2.25 4.17 8.43 0.45 8.42 -35.27 22.52 6.01 4.53 7.05
3-P.3b-b2 lin. regr. 3b + OKrig-fit 4.83 0.25 4.82 -20.74 13.45 3.44 2.26 3.98 8.42 0.48 8.40 -34.75 22.48 6.04 4.45 6.68
3-P.clim-a lin. regr. 'clim' + IDW 4.82 0.23 4.82 -24.33 13.23 3.49 2.55 8.48 0.58 8.46 -38.23 29.19 6.15 4.67
3-P.clim-b1 lin. regr. "clim" + OKrig-aut 4.68 0.09 4.68 -23.59 8.77 3.35 2.63 4.04 8.17 0.24 8.17 -36.83 17.44 5.82 4.63 7.00
3-P.clim-b2 lin. regr. "clim" + OKrig-fit 4.64 0.12 4.64 -23.32 10.18 3.35 2.55 3.74 8.12 0.29 8.12 -36.58 21.92 5.85 4.37 6.48

mapping method
annual average PM10 [µg.m-3] 36th maximum daily average  [µg.m-3]
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A number of points can be concluded from the results provided in Table 5.8. 

• It can be seen that individual interpolation methods give similar results for both the annual 
average and the 36P

th
P maximum daily average value of PMB10B. 

• The use of interpolation methods, both interpolation using primarily monitoring data (type 2) 
and interpolation of the residuals of linear regression (type 3), give better results with regard 
to RMSE (and also MAE, SD, MedAE) than the methods using linear regression models 
without interpolation (type 1).  

• In the case of methods of interpolation with monitoring data only (type 2) the best results 
(with regard to RMSE and all other indicators) are obtained by lognormal cokriging using 
altitude, method 2-d. This confirms the results presented in the Horálek et al. (2005).  

• In the case of linear regression with interpolation of its residuals the best results (with regard 
to RMSE, MAE, MedAE, SD, MPSE) are obtained by (ordinary) kriging of the residuals of 
the linear regression model P.2b (method 3-P.2b-b), which uses EMEP model output, altitude, 
solar radiation and wind speed. In comparison with the results presented in the Horálek et al. 
(2005) meteorological data instead of climatological data were used, and wind speed was also 
considered. 

• An intercomparison of the best methods of the types 1, 2 and 3 shows slightly better results for 
lognormal cokriging (in spite of the fact that it is no more than an interpolation method using 
primarily monitoring data), based on RMSE (and also SD, MAE and MPSE; MedAE is better 
for the 3-P.2b-b method). The reason is that this method uses logarithmic transformation 
which corresponds to a logarithmic-normal distribution of PMB10B. For future applications we 
therefore recommend the examination of methods that enable logarithmic transformation of 
PMB10B values and the use of supplementary parameters.  

• If comparing the setting of variogram’s parameters, the manual optimization using RMSE is 
the best (naturally) based on RMSE, but also based on MAE, MedAE, SD and MPSE (for 
almost all methods). This leads to selection of this setting of parameters. However, MPE is 
slightly better for automatic optization of variogram function for all methods. This is an issue 
for further examination. 

The resulting rural maps for the annual mean PMB10B concentrations and 36P

th
P maximum daily average 

PMB10B using the two best methods, interpolation methods 2-d2 and 3-P.2b-b2, are shown in Figure 5.6 
and 5.7 below. The main difference directly visible in the maps is the effect of the inclusion of altitude 
and solar radiation (seen in the latitudinal variation) as regression parameters. 
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Figure 5.6 Maps showing the annual average PMB10 B concentration (in µg.mP

-3
P) on the European scale for rural 

areas in 2004, 10 x 10 km grid resolution, as a result of the interpolation methods 2-d2 (left) and 3-P.2b-b2 
(right). Uncertainty of both these maps expressed by RMSE is 4.6 µg.mP

-3
P. 

 

 
Figure 5.7 Maps showing the 36P

th
P maximum daily average PMB10 B values (in µg.mP

-3
P) on the European scale for 

rural areas in 2004, 10 x 10 km grid resolution, as a result of interpolation method 2-d2 (left) and 3-P.2b-b2 
(right). Uncertainty of these maps expressed by RMSE is 8.0 µg.mP

-3
P.(left) and 8.1 µg.mP

-3
P (right). 

 

Using RMSE (i.e. the most common indicator) the uncertainty of the maps can be expressed, in µg.mP

-

3
P. Alternatively, this uncertainty can be also expressed as a percentage of the mean of the values of 

relevant indicators across all stations. The relative uncertainty of the rural PMB10B annual average map is 
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23.1% for the method 2-d2 and 23.3% for the method 3-P.2b-b2. The relative uncertainty of the rural 
map of 36P

th
P maximum daily average PMB10B values is 23.6% for the method 2-d2 and 23.8% for the 

method 3-P.2b-b2.  

We now turn to the other PMB10B indicators of direct relevance to the current legislation. The daily PMB10B 
concentration limit value is expressed as the tolerated exceedance, i.e. it is allowed to exceed the limit 
value of 50 µg.mP

-3
P on 35 days in one year (see Directive 1999/30/EC). Thus the critical exceedance 

contour can be derived on the basis of two approaches, either from the map of the 36P

th
P maximum daily 

average concentration or from the map of the number of exceedance (NOE) days of the limit 50 µg.mP

-

3
P. The aim of the comparison presented here is to find out whether the results of both procedures 

correspond, as should in principal be the case.  

The comparison must use a comparable methodology. However, for the number of exceedance days 
the EMEP model cannot be used in the linear regression model. Although the model produces output 
for this parameter, the model strongly underestimates the concentrations and, consequently, the vast 
majority of the territory shows no exceedance. Unlike the other PMB10B indicators such as the annual 
average concentration or the 36P

th
P maximum daily average value, a linear regression between the EMEP 

model output and the measured values would not be useful for this indicator. (The use of linear 
regression model using only variables other than EMEP model would be in principle possible, but it 
was not tested.) 

The comparison was carried out only for the interpolation methods using primarily monitoring data, 
i.e. for IDW, ordinary kriging, and ordinary cokriging. Neither lognormal kriging nor lognormal 
cokriging can be used in case of the number of exceedance days because the value of the number of 
exceedance days may be zero, which does not enable logarithmic transformation. The possibility of 
using geostatistical methods (i.e. various types of kriging) for the mapping of the number of 
exceedances – although it is a discrete quantity – is demonstrated by Van de Kassteele (2006).  

Furthermore the comparison was carried out only for rural areas. Only those AirBase stations with 
valid values for both parameters (i.e. the 36P

th
P maximum daily average value and the number of 

exceedance days) were taken into account. 

Table 5.9 presents, for each of the three examined interpolation methods of type 2, their mapping 
results concerning the two exceedance indicators, including the share of the study area with values 
above the limit value and below the limit values. The examined interpolation methods are:  

• IDW (method 2-a) 

• Ordinary kriging (method 2-b2) 

• Ordinary cokriging (method 2-c2) 

 

Table 5.9 Comparison of the area (as percentage of the total mapped area) above or below the limit value (LV) 
for the interpolation of 36P

th
P maximum daily average value and for the interpolation of the number of 

exceedances (NOE) days, using different interpolation methods (rural areas, 2004). 

Area with indicator values IDW ord. kriging ord. cokriging
below LV, according to both maps 97.73% 99.36% 99.19%
below LV acc. to max36d, above LV acc. to NOE 1.30% 0.08% 0.12%
above LV acc. to max36d, below LV acc. to NOE 0.02% 0.14% 0.11%
above LV, according to both maps 0.95% 0.42% 0.58%  

 
The ideal results would show zero at the 2P

nd
P and 3P

rd
P row of Table 5.9, i.e. whole area should be either 

below or above the limit value, according to both approaches. The table shows that the correspondence 
of both maps with regard to the above-the-limit territory is bigger in the case of more precise 
geostatistical methods (ordinary kriging and cokriging) than with the simpler IDW method. 
Furthermore, it can be stated that the difference in the definition of the territory based on the 36P

th
P 



 

 

     Spatial mapping of air quality for European assessment 

48 

maximum daily average value and the number of exceedances is comparable with the difference in the 
definition of the territory based on various interpolation methods. 

Figure 5.8 shows the maps of air pollution limit exceedances, constructed with the use of ordinary 
cokriging using altitude, based on the 36P

th
P maximum daily average value and the number of 

exceedance days. It can be seen that the differences are relatively small.  

 

 
Figure 5.8 Rural areas above the limit value (LV) according to the interpolation of the 36P

th
P highest daily average 

value (left) and the number of exceedance days (right) for 2004, using ordinary cokriging with altitude. 

 

It can be concluded that when geostatistical methods are used the size of the above-the-limit territory 
defined by the 36P

th
P maximum daily average value and by the number of exceedance days is 

comparable for the year tested, but not equivalent. In Chapter 6 a similar test is applied for 2003 data, 
a year with a larger spatial exceedance territory, as part of the study on the use of daily mean 
interpolations. In that case, regression with the EMEP model was used and the differences between the 
two methods become visible more significant. This indicates that the residual kriging methods may not 
lead to coincident above-the-limit territories. This aspect of the interpolations should be clearly 
determined in future studies. 

5.2.7 Conclusions on the spatial interpolation for PMB10B, rural areas 

Various methods were used for spatial interpolation and were mutually compared using RMSE and 
other statistical indicators from cross-validation. 

• The best results, with regard to RMSE, were obtained by the interpolation method using 
lognormal cokriging of monitoring data with altitude, method 2-d. 

• The second best results were obtained by ordinary kriging of the residuals of the linear 
regression model, which uses EMEP model output, altitude, solar radiation and wind speed 
(method 3-P.2b-b). This method is similar to the method preferred in Horálek et al. (2005), 
with two small differences: the use of meteorological data instead of climatological data, and 
the additional inclusion of wind speed. 

• For the final mapping of both PMB10B indicators, the 36P

th
P maximum daily average value and the 

number of exceedance days, method 3-P.2b-b were selected for several reasons. Firstly, 
method 3-P.2b-b shows performances approaching the results of method 2-d. Secondly, only 
with the help of supplementary data is it possible to map the areas without measurement (e.g. 
rural map of Balkan). The third reason is better comparability with previous years results. In 
addition to this, the tests in Horálek et al. (2005) were executed for four years, i.e. the 
comparison of different methods is more robust.  



 

ETC/ACC Technical Paper 2006/6 

49

• On the basis of cross-validation analysis the uncertainty of the constructed maps was 
estimated.  

• Additionally, the two indicators for delimiting the area above the “daily” limit value, i.e. the 
36P

th
P maximum daily average value and the number of exceedance days, were compared by 

using three different spatial interpolation methods. The conclusion is that the two indicators 
show similar results when only spatial interpolation is used. Type 3 methods using regression 
and residual interpolation were not tested. The differences are smaller than the differences in 
the interpolation methods used within each indicator type. 

5.3 Rural areas - Ozone 
A similar comparison as for PMB10B was also carried out for ozone. Parameters relevant for human 
health (SOMO35 and the 26P

th
P highest daily maximum 8-hour average concentration) and for 

vegetation (AOT40 for crops and AOT40 for forests) were examined. First the relations between the 
measured values and various supplementary parameters were examined and individual linear 
regression models were compared. Furthermore individual interpolation methods were compared. 

5.3.1 Comparison of linear regression models for rural ozone indicators 
Several linear regression models (equation 2.1) are examined, for the different ozone indicators: 

Submodel Input parameters  

O.1  EMEP dispersion model  
O.2a EMEP dispersion model, altitude, surface solar radiation, relative humidity 
O.2b EMEP dispersion model, altitude, relative humidity, wind speed 
O.2c EMEP dispersion model, altitude, surface solar radiation 
O.2d EMEP dispersion model, altitude, relative humidity 
O.2e EMEP dispersion model, wind speed 
O.3a altitude, relative humidity, surface solar radiation, wind speed 
O.3b altitude, relative humidity, surface solar radiation 
O.3c altitude, relative humidity, temperature 
O.3d altitude, surface solar radiation  
O.3e altitude, relative humidity  

The input parameters into the stepwise selection are altitude, meteorological parameters (i.e. wind 
speed, surface solar radiation, temperature, relative humidity, total precipitation) and EMEP model 
output (only for submodel type 2 selection). The basic submodel of type 2 selected by stepwise 
selection of backward type is O.2b for SOMO35 and O.2a for both AOT40 parameters. To examine 
whether inclusion of several meteorological parameters results in substantial improvement of the 
models, also submodels of the type O.2c, O.2d and O.2e, each with only one meteorological parameter 
type, is included in the comparison.  

The basic submodel of type 3 selected by stepwise selection of backward type is O.3b for SOMO35, 
submodel O.3a for AOT40 for crops, and submodel O.3c for AOT40 for forests. Supplementary 
comparison is carried out with the submodels O.3d and O.3e, where O.3d was best scoring on RP

2
P and 

RMSE. To limit the size of Table 5.10, only the better results for O.3d are included. 

As for the 26P

th
P highest daily maximum 8-hour average value no EMEP model concentration field was 

available, the types 1 and 2 of the linear regression model could not be included in the comparison. 
The basic submodels of type 3 selected by stepwise selection of backward type is O.3f, supplemented 
by O.3g, are: 

O.3f altitude, temperature, relative humidity, wind speed 
O.3g altitude, relative humidity, wind speed 

The performance of the different linear regression models is compared in Table 5.10 which gives the 
parameters c, a1, …, a6 for the different submodels on SOMO35. Furthermore, characteristics of RP

2
P 
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and RMSE are presented for each submodel showing the closeness of the linear relation of the 
respective submodel with the measured air pollution values. The RP

2
P should be as close as possible to 1 

and RMSE as low as possible. If a parameter is not statistically significant, this is indicated by “n. 
sign.”. 

 

Table 5.10 Comparison of different submodels of linear regression model equation 2.1 describing the relation 
between ozone measurement parameter SOMO35 for 2004 and different supplementary parameters in the rural 
areas.  

lin. regr. model (2.1) O.1 O.2a O.2b O.2c O.2d O.2e O.3a=O3b O.3c O.3d
c (constant) 1214.6 22662 46866 -1450 41593 1039 31458 48800 -2171
a1 (altitude GTOPO30) n. used 3.48 3.78 3.47 3.42 3.32 3.84 4.51 3.88
a2 (temperature 2004) n. used n. used n. used n. used n. used n. used n. used 199 n. used
a3 (wind speed 2004) n. used n. used 348.0 n. used n. used n. used n. sign. n. used n. used
a4 (rel. hum. 2004) n. used -241.0 -493.6 n. used -420.6 n. used -335.4 -498.2 n. used
a5 (s. solar rad. 2004) n. used 238.3 n. used 366.5 n. used n. used 415.7 n. used 620.1
a6 (EMEP model 2004) 0.95 0.40 0.54 0.43 0.48 1.40 n. used n. used n. used
R2 0.329 0.580 0.581 0.575 0.573 0.544 0.552 0.545 0.541
adjusted R2 0.327 0.576 0.577 0.572 0.569 0.542 0.549 0.542 0.539
RMSE  [µg.m-3.days] 2410 1904 1902 1917 1921 1911 1966 1982 1991  

 

For SOMO35 (Table 5.10) the comparison of RP

2 
Pand RMSE for the submodels of types 1 and 2 shows 

quite clearly that the addition of supplementary parameters substantially improves the closeness of the 
regression relation with an increase of RP

2
P by 0.25 and a decreased RMSE by approximately one fifth. 

The comparison of submodels of type 2 and 3 shows the closeness of the linear relation, expressed by 
RP

2
P and RMSE, being naturally better in the case of submodels of type 2 using the EMEP model data. 

However, the difference is much smaller than in the case of PMB10B, which indicates that the EMEP 
dispersion model output could be substituted by supplementary parameters for the major part, in case 
of necessity, using preferably submodel O.3b.  

The submodels O.2a, O.2b, O.2c and O.2d give rather similar results with differences of RP

2
P less then 

0.01. In the case of similar results the use of fewer parameters is preferred (see Section 2.5), resulting 
in the selection of submodels O.2c and O.2d, with preference for O.2c with its slightly better (higher) 
RP

2
P and the best (lowest) RSME for all types of submodels. 

Table 5.11 presents the comparison of the individual types of the linear regression model equation 2.1 
for the 26P

th 
Phighest daily maximum 8-hour average value of type 3 only. The types 1 and 2 could not 

be tested due to lacking EMEP model data. The best RP

2
P and RMSE values are achieved by submodel 

O.3f (altitude, temperature, wind speed, relative humidity), however, submodel O.3g (altitude, relative 
humidity, wind speed) has almost a similar RP

2
P (0.01 lower) against the advantage of using less 

parameters and is hence preferred. 
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Table 6.5 Cross validation RMSE for residual kriging, regression model RMSE and SQRT(sill) for the annual 
based residual interpolations. 

Interpolation 
indicator 

Cross validation 
RMSE  

Regression model 
RMSE (SDres) 

SQRT(sill) 

Mean (μg·m-3) 6.7 8.3 8.4 

Percentile (μg·m-3) 12.6 16.0 16.3 

NOE days (days) 20.4 26.1 26.3 

 

The use of the single globally valid semivariogram model in the kriging interpolation also leads to a 
rather homogenous spatial view of the uncertainty, particularly far from stations, since it then becomes 
independent of local concentrations levels. This is likely not to be an appropriate representation of the 
true spatial uncertainty in the maps. 

Despite this, the residual kriging standard deviation field (SDBkrigB) may be used to indicate the spatial 
uncertainty for the annual based statistics but this becomes more complicated when using daily 
statistics and when estimating the NOE days, as will be further discussed in Section 6.5.1 and 6.5.2.  

6.5.1 Uncertainty in the annual mean when using daily statistics 
To estimate the total variance for the annual mean, when it is based on the sum of daily mean values, it 
is not sufficient to simply ‘add up’ the daily variance fields calculated from the residual kriging, since 
there is a certain amount of correlation between concentration fields from day to day. A more 
extensive analysis is thus required. To estimate the total variance the temporal covariance matrix must 
be calculated since it is this that represents the correlations between all the days of the year. 
Mathematically it is useful to decompose the total variance into the sum of the variances and 
covariances, noting that in terms of the covariance matrix the variances are the diagonal terms and the 
covariances are the off diagonal terms. If we wish to calculate the total variance of the mean of a 
parameter X, based on the individual variances Var(X) then the variance can be written as 
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   (6.2) 

The first term on the right hand side of equation 6.1 represents the on-diagonal terms of the covariance 
matrix and the second term the contribution from the off-diagonal terms. When there is no correlation 
between the elements of X, in this case days of the year, then this second term is 0 and the variance of 
the mean can simply be determined by the first term on the right hand side. In that case it would be 
possible to use the daily determined kriging variance to represent Var(X) and simply divide by nP

2
P, 

where n is the number of days. However, there is quite high correlation in the concentration fields and 
this must be accounted for by estimating the other covariance terms. 

The above equation is rewritten, equation 6.2, to simplify interpretation. In its final form the total 
variance is simply the mean variance of all the days multiplied by a covariance factor F BcvB. This factor 
represents approximately the ratio of the mean off-diagonal terms with the mean on-diagonal terms. 
Thus when the days are completely correlated with one another this factor approaches 1. When they 
are totally uncorrelated they approach nP

-1
P. Writing the equations in this form allows us to estimate F Bcv B 
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by creating the temporal covariance matrix, and using the daily kriged variance fields to represent 
Var(X BiB). The individual elements of the covariance matrix are estimated by calculating the variance 
between the interpolated fields from day to day. In this case the covariance matrix elements are 
calculated using the residual kriging fields at the positions of the observational stations, instead of the 
entire model domain, since these are likely to give the most representative results. The covariance 
matrix created thus contains 365 x 365 elements, representing the covariance of every day with every 
other day of the year.  

Making the calculation in equation 6.2 gives F BcvB = 0.239 indicating a substantial contribution to the 
total variance from the covariance terms. This factor is then used to scale the sum of the kriged 
variance estimates, taken from the daily interpolations, to estimate the total variance of the daily 
averaged fields. The results of this calculation, along with the kriged standard deviation field 
calculated using annual statistics, are shown in Figure 6.9. The uncertainty calculated in this way is 
generally slightly lower for the daily statistical method, but only by a value of around 1 μg·mP

-3
P. It is 

possible to see reduced uncertainty, in the daily based method, at stations that are not represented in 
the annual calculations. 

 
Figure 6.9 Showing the uncertainty maps (SDBkrig B) for the annual mean PMB10 Bconcentrations based on (left) 
annual statistics and (right) daily statistics. See text for detailed description of their derivation. The annual mean 
concentration maps related to these can be found in Figure 6.6. 

6.5.2 Uncertainty in the exceedance fields when using daily statistics 
In order to compare the spatial uncertainty in the number of exceedance (NOE) days another, in this 
case more pragmatic, approach is required. From a statistical perspective the expected number of 
exceedances is the sum of the probability of exceedance for every individual day. It is in principle 
possible to calculate the probability of exceedance for every day if we know the probability density 
distribution of the daily mean concentration. If the probability density function is represented by a 
normal distribution we can use the residual kriging variance to represent the standard deviation and 
thus calculate the probability of exceedance for each day. If this is done in this fashion, then the final 
uncertainty in the NOE days will tend to be small, since it assumes each probability to be uncorrelated 
(which we have shown is not the case) and it does not take into account the question of 
representativeness and bias.  

Instead, the uncertainty in the expected number of exceedance days is calculated by adding up the 
individual probabilities of exceedance, as described above, but in addition adding and subtracting the 
annual mean variance, as shown in Figure 6.9, to represent the representativeness and model error. 
The uncertainty in NOE days is then interpreted as being the maximum deviation, in number of days, 
from the plus and minus calculations. For example, at one spatial point the annual standard deviation 
is calculated to be 5 μg·mP

-3
P and the expected NOE days at that point is calculated to be 20 days. By 

adding and subtracting 5 μg·mP

-3
P from the daily mean concentrations used in the probability calculation 

it is found that adding gives 29 exceedances and subtracting gives 15 exceedances. The uncertainty in 
the NOE days is then given as 9 days. Using this methodology accounts for the threshold nature of 
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exceedances, giving low uncertainty in NOE days when the daily mean values are well below the limit 
and giving high uncertainty in NOE days when the annual mean bias is uncertain and the daily mean 
values are close to the limit value. 

The results of this calculation, as well as the kriged standard deviation field for NOE days calculated 
using annual statistics, are shown in Figure 6.10. The annual uncertainty map gives a much more 
homogenous interpretation of the uncertainty, showing reduced uncertainty only in regions near 
observations. Such kriging is not actually suitable for mapping of this type when a threshold value is 
involved, and overestimates the uncertainty in areas where low numbers of exceedances occur. The 
daily based uncertainty map, on the other hand, shows low uncertainty in areas with low numbers of 
exceedances and in regions close to observations. High uncertainty is estimated in areas without 
observations and with large numbers of exceedances. 

 
Figure 6.10 Showing the uncertainty maps (SDBkrig B) for the NOE days for PMB10 Bbased on (left) annual statistics 
and (right) daily statistics. See text for detailed description of their derivation. The NOE maps related to these 
can be found in Figure 6.8. 

6.5.3 Comments on the kriging semivariogram 
The question also arises as to the applicability of the kriging assumptions and semivariogram models. 
One of the assumptions is that there is spatial correlation, as a function of lag distance, of the 
parameter to be interpolated. This is at the heart of the variance models used in the kriging 
methodology. Though this methodology has been fruitful in many geosciences, its application for air 
quality mapping is still open to debate. Investigation of the empirical semivariograms used in this 
study indicates a limited dependence of the variance with lag distance, Figure 6.11, though this may 
vary from year to year. This brings into discussion the spatial representativeness of the observations 
since even at small distances the variance of the observations is quite high. Even if kriging methods 
are applied, the form of the semivariogram model should also be assessed. In this report the spherical 
model has been applied, based on initial sensitivity tests carried out in Horálek et al. (2005), but 
investigation of the daily mean variograms used in this study implies that other models, such as power 
law models, may give better fits to the data on a daily basis. Alternative methods (e.g. Blond et al., 
2003) for determining the spatial variation of the covariance field may be more appropriate than the 
lag distance dependent method used in kriging. Such methods establish spatial covariance 
relationships based on analysis of a set of temporal data and creating functional relationships with 
model calculations. 
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Figure 6.11 Showing the annual statistics residual semivariogram, and estimated sill (solid line), for annual 
mean PMB10 B (left) and NOE days PMB10B (right), for the year 2003. The numbers indicate the number of station 
pairs used to calculate the variance. 

6.5.4 Conclusions on uncertainty mapping 
The estimated uncertainty in the annual mean rural PMB10B values, of 8 μg·mP

-3
P or less (Figure 6.9), 

should be considered quite reasonable, considering that spatial representativeness may contribute 
significantly to this value. Uncertainty in the percentile concentration and NOE days however, must be 
considered to be quite high, especially in areas where no measurements are available. The spatial 
variation of uncertainty in NOE days is also highly variable due to its threshold nature (Figure 6.10). 
In many areas of Europe the uncertainty in NOE is too large to make the assessment useful for policy 
implementation. However, it must be noted again that representativeness is an important aspect of this 
uncertainty. The maps produced should indicate the mean concentration, or NOE, in a 25 x 25 km 
grid. Clearly there is a large variability within such a grid, as is indicated in Figure 6.11 and the 
uncertainty discussed here will include that. This means, for example, that a significant part of the 
uncertainty in the NOE will not lie with the interpolation itself but with the variation of the observed 
concentration within the gridded region. More effort is thus required to assess this particular aspect of 
the interpolation uncertainty. 

Further to this it should be noted that the use of kriging, or residual kriging, to interpolate NOE days 
using annual statistics is not recommended as it does not deal well with the threshold nature of this 
parameter and does not provide uncertainty maps that give a suitable spatial representation. If annual 
statistics are to be used to map exceedances then the 36P

th
P percentile concentration field is 

recommended, though this does not provide all the information that may be required for assessment. 
The use of daily means, on which the NOE and percentiles are based, is recommended when spatially 
interpolating the NOE days. 

6.6 Discussion and conclusions concerning the use of daily and 
annual statistics 
A number of points regarding the interpolations carried out in this chapter require discussion. Firstly it 
is worth pointing out the advantages of using daily statistics. These are: 

1. The number of observation days used is larger when using daily statistics than annual statistics 
when a limit on the allowable coverage is applied. 

2. The quality of the maps is as good as, and generally better than, maps produced using annual 
statistics, based on the cross validation RMSE. 

3. There is consistency between the percentile and NOE fields. 
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4. The maps are more robust in regard to the use of automatic routines for defining interpolation 
parameters used in the kriging interpolation. 

5. Future improvements in the interpolation based on multiple regression with meteorological 
parameters will probably be better represented on a daily basis. 

The following disadvantages also exist: 

1. The data and calculation requirements are significantly higher for the daily than for the annual 
statistics 

2. The reduction in uncertainty may be small in regard to other possible improvements in the 
interpolation methodology that would be less data intensive 

3. The interpretation of uncertainty mapping is more complex 

Thus, there is no scientific reason for not carrying out the interpolation on a daily basis, however time 
and data constraints may be defining. 
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7 Uncertainty analyses on spatial interpolation 

7.1 Introduction 
One of the intensions of this year’s project was to report in more detail on a transparent quantification 
of uncertainties and errors. Sources of uncertainties and errors can be the measurements, the resolution 
and the interpolations. We focussed in this paper specifically on the interpolation uncertainties and 
errors. The following three approaches were considered: 

1. Cross-validation of errors between parameters by using the root-mean square error (RMSE) 
and other cross-validation parameters (Chapter 5) 

2. Actual measurements compared to the interpolated and/or modelled values (using 
scatterplots), based on cross-validation (Chapter 5) and non cross-validation approach 
(Section 7.2) 

3. Spatial maps of the errors in the interpolation maps: maps with prediction standard error or 
standard deviations (SD), (Section 6.5 and 7.3). As already mentioned in Chapter 6, this 
appears to be a complex issue. In this chapter additional attempts are presented specifically in 
context to the interpolations of Chapter 5. 

The cross-validation parameter root-mean square error (RMSE) and other cross-validation parameters 
are discussed throughout the paper in the chapters on the spatial interpolation comparisons. Chapter 6 
already explored and to some extent explained the uncertainties of the interpolations based on daily 
averages versus annual averages from measurements. Chapter 5 focuses in some more detail with 
additional statistical parameters on the analysis of uncertainties of the interpolation methods of the 
types 2 and 3 used to derive both rural and/or urban maps for 2004 of the air pollution indicators of 
PMB10B, ozone, NOBx B and SOB2B. It presents the scatterplots comparing the measured and interpolated 
values using cross-validation. 

In addition to this, Section 7.2 will present for some pollutants a simple and not cross-validating 
comparison of measured and interpolated values. Finally, in Section 7.3 a first version of the 
uncertainty maps are presented. 

The results of the uncertainty analyses could contribute to improve updates of EEA’s relevant air 
quality related Core Set Indicators (CSI004 and CSI005) and forthcoming EEA Air Pollution reports. 
They also can become important determinants for defining limit or target values and thresholds, 
including refinement of calculation methods of their exceedances proposed for legislation.  

7.2 Comparison of measured and interpolated values 
In addition to the more complex cross-validation analysis, a simple comparison between the measured 
and interpolated values is made for human health pollutant indicators. This comparison differs from 
the cross-validation scatter plots in two ways: 

First, the interpolation is constructed from all stations, thus the comparison is just for the sites with 
measurement data, whereas in the cross-validation the values are predicted for locations without 
measurement data. In case of a so-called exact interpolation method, i.e. a method in which the 
resulting interpolation values goes through the measured values, the scatter plot taken at the sites of 
the measuring stations should be of the form y = x. However, at sites without measurement data such 
method can be worse than the methods that smooth the interpolation field and do not hold all the 
measured values. (One of so-called exact interpolation methods is IDW, i.e the interpolation field goes 
through the measured values. Contrary to that, kriging in general smooths the interpolation field. 
Nevertheless, from the Chapter 5 is clear that IDW gives worse results for the whole map.) 

The second difference is that the interpolated value is the average of a 10 x 10 km grid, whereas in 
cross-validation it concerns the predicted value at the exact point of the monitoring station. Thus the 
scatter plot is not of the form y = x  even in case of so-called exact interpolation methods. 
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The results of this Section 7.2 have to be considered together with the cross-validation results, as 
presented in Chapter 5: Scatter plots of Chapter 5 show the uncertainty in the places without 
measurement (caused only by the interpolation method, without taken into account the uncertainty 
caused by the grid resolution), whereas the scatter plots presented here show the uncertainty in the 
places of measurement (caused both by the interpolation method and the grid resolution). 

Only the methods used in final mapping are presented, i.e. one method per parameter and the type of 
area (i.e. rural and urban). 

In Figure 7.1 the scatter plots for the PMB10B indicators are presented, for rural areas. In comparing these 
graphs with cross-validation scatter plots presented in Section 5.2.6 (i.e. with Figures 5.4 and 5.5) one 
has to bear in mind that the different methods are compared. In Section 5.2.6 the methods using 
primarily monitoring data only are examined, whereas here the method using the interpolation of 
residuals is presented.  
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Figure 7.1 Correlation between predicted values (y-axis) and measurements (x-axis) for the PMB10 B annual 
averages (left) and the 36th maximum daily average values (right) for 2004 in rural areas, for the linear 
regression model using EMEP model output, altitude, surface solar radiation and wind speed, followed by 
interpolation of its residuals by ordinary kriging (method 3-P.2b-b2). 

 

In Figure 7.2 the scatter plots for the PMB10B indicators are presented, for urban areas. These graphs can 
be directly compared with the Figures 5.26 and 5.27 (top, right), where the same method is presented 
as here, i.e. ordinary kriging (2-b2). Higher RP

2
P in the Figure 7.2 shows that the uncertainty in the 

places of measurement is lower than the uncertainty in the places without measurement, as expected 
(nevertheless uncertainty caused by grid resolution, which is not taken into account in Figures 5.26 
and 5.27).  
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Figure 7.2 Correlation between predicted values (y-axis) and measurements (x-axis) for the PMB10 B annual 
averages (left) and the 36P

th
P maximum daily average values (right) for 2004 in urban areas, for the interpolation 

method ordinary kriging (method 2-b2). 
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In Figure 7.3 the results for the human health ozone indicators are presented, for rural areas. 
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Figure 7.3 Correlation between predicted values (y-axis) and measurements (x-axis) for SOMO35 (left) and the 
26th highest daily maximum 8-hour values (right) for 2004 in rural areas. The interpolation method used for 
SOMO35 is linear regression model using EMEP model output, altitude and surf. solar radiation followed by 
interpolation of its residuals by ordinary kriging (method 3-O.2c-b2). For the 26th highest daily maximum 8-
hour values is used the ordinary cokriging using altitude (method 2-c2). 

 

The left graph showing SOMO35 results can be related with cross-validation scatter plots presented in 
Figure 5.9, although these are based on different methods. The right graph showing 26P

th
P highest daily 

maximum 8-hour values results can be directly compared with the Figure 5.10 (bottom, right), both 
presenting ordinary cokriging using altitude (2-c2). Higher RP

2
P in the Figure 7.3 shows that the 

uncertainty in the places of measurement is lower than the uncertainty in the places without 
measurement, as expected. From the comparison of parameters of linear regression y = a.x + c in the 
Figure 7.3 and 5.10 can be seen that the interpolation is more smoothed in the places without 
measurement, as expected (a is lower and c is higher in Figure 5.10). 

Higher RP

2
P in case of 26PthP highest daily maximum 8-hour values in comparing with SOMO35 is caused 

by the kriging parameter value chosen, i.e. a low value of the nugget in case of 26P

th
P highest daily 

maximum 8-hour values. By this parameter setting is caused that the interpolation is in this case 
almost “exact”, i.e. it almost respects the measured values. (Kriging respects the measured values in 
case of nugget parameter setting equal to zero.) However, the relevant cross-validation scatter plot in 
Figure 5.10 (bottom, right) shows clearly that the “exact” method is not necessarily better: RP

2
P in the 

places without measurement (as simulated by cross-validation) is only 0.55 (i.e. less than the relevant 
value of RP

2
P for SOMO35, see Figure 5.9, bottom right).  

In Figure 7.4 the results for the human health ozone indicators are presented, for urban areas.  
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Figure 7.4 Correlation between predicted values (y-axis) and measurements (x-axis) for SOMO35 (left) and and 
the 26P

th
P highest daily maximum 8-hour values (right) for 2004 in urban areas. The interpolation method used for 

SOMO35 is ordinary kriging (method 2-b2), while for the 26th highest daily maximum 8-hour values it is 
ordinary cokriging using altitude (method 2-c2). 
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The left graph showing SOMO35 results can be directly compared with the Figure 5.29 (top, right), as 
the same method is presented in these two graphs, i.e. ordinary kriging (2-b2). The right graph 
showing 26P

th
P highest daily maximum 8-hour values results can be directly compared with the Figure 

5.30 (bottom, right), both presenting ordinary cokriging using altitude (2-c2). 

All cases discussed in this section are geostatistical methods, all with two different sources of 
uncertainty at the points of measurement: 

1. uncertainty given by the method; geostatistical methods mostly smooth the values (except 
when the nugget is set to zero) 

2. spatial uncertainty; the point value of the measurement station is compared with the average 
predicted value on a 10 x 10 km grid cell. 

Thus the high correlation, for example, at the 26P

th
P highest daily maximum 8-hour value for rural areas 

(Figure 7.3) is caused by the chosen parameter value, i.e. low nugget. In fact the RMSE should in 
principle represent the nugget variance. The distinguishing of these two sources of uncertainty and the 
investigation of possible maps to reduce them is a task for the future. 

7.3 Uncertainty maps 
In addition to the cross-validation analysis of uncertainties, geostatistical methods (i.e. various types of 
kriging) enable spatial assessment of uncertainties. In fact, uncertainty maps can be obtained directly 
from the kriging methodology. The way of constructing the maps is presented in more details by 
Cressie (1993).  

In most cases more complex mapping methods give higher uncertainties in the uncertainty estimates. 
Therefore we started the uncertainty mapping by using simpler interpolation methods using primarily 
monitoring data only. Three uncertainty maps are presented, two of them for rural and one for urban 
area. 

Figure 7.5 shows uncertainty maps for the 26P

th
P highest daily maximum ozone values for the rural and 

the urban areas. These uncertainty maps relate to the concentration maps presented in Figure 5.14, left 
(rural areas) and 5.31, right (urban areas). Both the maps are created by ordinary cokriging using 
altitude, i.e. method 2-c2.  

Compared to the urban map, the rural map shows higher uncertainty values caused by a lower number 
of measurement stations combined with higher concentration values. The circles around the stations in 
the rural map are caused by the parameter value chosen, i.e. a low value for the nugget, assuming 
spatially little uncorrelated noise and error effects at measurements. 
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. 

Figure 7.5 Uncertainty maps for the 26P

th
P highest daily maximum 8-hour ozone values for rural areas (top) and 

urban areas (bottom). 

Figure 7.6 shows the spatial uncertainty map of the AOT40 for crops map as constructed with ordinary 
kriging using altitude. It is evident that the uncertainty is higher in regions with limited coverage of 
rural background measurement stations. 
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Figure 7.6 Uncertainty map for the ozone indicator AOT40 for crops for rural areas . 

 

The concentrations map and the uncertainties map can be combined into a map of exceedances. This 
map indicates the probability of exceeding the air pollution limit value in particular areas. One of the 
possibilities to do that is directly via so-called indicator kriging (for details, see Cressie, 1993). Figure 
7.7 shows such map of the probability of exceeding the limit value (120 μg.mP

-3
P) for the 26P

th
P highest 

daily maximum 8-hour values, separately for the rural and urban areas.  

Only first attempts are presented here on the construction of uncertainty maps and maps probability of 
limit value exceedances. The quality of these maps is not investigated yet and has to be tested before 
they can be qualified as more formal products to be used in assessments and such. 
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Figure 7.7 Probability maps of the limit value exceedances for ozone parameter 26P

th
P highest daily maximum 8-

hour ozone values for rural areas (top) and urban areas (bottom). 

 





 

ETC/ACC Technical Paper 2006/6 

117

 

8 Using the maps in impact assessments 

8.1 Introduction 
The procedures as described in the previous chapters have been used to produce a final set of maps for 
2004. These maps have been combined with the population and land cover maps (see Chapter 4 for 
details on these data sets) in order to estimate the exposure of population and vegetation/ecosystems to 
air pollutants. All concentration maps, information on the applied method and country-specific 
exposure tables are presented in the Annex. 

8.2 Population exposure and health impacts 

8.2.1 Health impact of particulate matter 
Epidemiological studies have reported statistical associations between short-term, and to a limited 
extent also long-term, exposure to increased ambient particulate matter (PM) concentrations (PMB10B, 
sometimes also PMB2.5B and ultra-fine PM) and increased morbidity and premature mortality. Whether 
these associations are causal and which PM properties and/or mechanisms (PMB10B, PMB2.5B, ultrafine-
mode particles, physical properties, chemical or biological components) are responsible for these 
health effects, is still unclear. It is currently assumed that there is no threshold below which health 
effects of PM are unlikely to occur. The recent update of the World Health Organisation Air Quality 
Guidelines for PM (WHO, 2006) proposed that, despite the apparent lack of a threshold value, 
guidelines should be set to minimise the risk of adverse effects of both short-term and long-term 
exposure to PM. These values were set as 20 µg mP

-3
P for an annual mean and 50 µg mP

-3
P as a daily mean 

for PMB10B, with corresponding values of 10 µg mP

-3
P and 25 µg mP

-3
P for PMB2.5B. It is often assumed that 

PMB2.5B is more toxic than PMB10B because it penetrates deeper into the lungs; however, the health effects 
of the ‘coarse’ particles (PMB2.5-10B) should not be neglected (Brunekreef and Forsberg 2005; Sandström 
et al., 2005). The European Commission has proposed to use PMB2.5B as an additional indicator because 
it reflects better the anthropogenic fine particle emissions and it is assumed to contribute significantly 
to the health effects of ambient PM exposure. 

Whilst evidence is growing that finer particle size fractions are perhaps more important, ambient air 
quality measurements and emission data at present are often only available for PMB10B, i.e. particles of 
average 10 μm diameter and below, including those smaller than 2.5μm. As discussed above, 
monitoring information is too limited to prepare a PMB2.5B concentration map over Europe. Therefore 
this chapter focuses on exposure to PMB10B and its associated health impacts. According to the 
recommendations of the WHO, the annual mean concentration is an important indicator to take into 
account the premature mortality associated with long-term exposure. 
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Figure 8.1 Annual mean PM10 concentrations (μg·mP

-3
P), 2004. 

The final concentration map of PMB10B annual mean concentrations is given in Figure 8.1. Increased 
PMB10B concentrations are seen in the urbanized areas, relatively low concentrations are observed in 
France. It can not be excluded that these low levels are caused by the low correction factor applied in 
the French networks for correcting the data of non-reference measuring configurations (de Leeuw, 
2005).  

For those countries for which information is available in the JRC population database (see Section 
4.9), the population weighted averaged concentrations are given in Table A1 of the Annex. Note that 
in preparing the final PMB10PB

-
Pmap (Figure 8.1) for those countries missing in the JRC population 

database, LandScan data (Section 4.9) has been used. The systematic difference observed between the 
two population databases hampers the comparability between countries. It was therefore decided to 
limit the exposure estimates to the countries included in the JRC database, see the Annex for further 
details. The EU27 with exception of Cyprus are covered. 

There might be large gradients in PMB10B concentration within a country. The weighted concentration 
does not give information on the (low) number of people exposed to the higher levels. Table A1 in the 
Annex and Figure 8.2 present the population frequency distribution for a limited number of exposure 
classes. A small fraction (2 %) is exposed to PMB10B levels below 10 μg.mP

-3
P. Up to a quarter is exposed 

to PMB10B concentrations below the stage-2 indicative limit value of 20 μg.mP

-3
P. It can be seen that the 

largest number of European inhabitants (i.e. two thirds) lived in 2004 in areas with PM10 levels 
between 20 and 40 µg.mP

-3
P. According to the presented mapping methodology, 6 % of the European 

population lived in areas above the limit value for the PMB10B annual average of 40 µg.mP

-3
P. However, 

this European number of 6 % was probably higher, because of the underestimation of high values at all 
interpolation methods in areas without measurements (Section 7.2). Furthermore, three countries had 
even more than 25 % of the population living above the limit value (Bulgaria, Greece and Romania), 
whereas in various other countries, including Germany, the Netherlands, there appears to be no 
exceedances of the limit values. For a few countries, e.g., Slovakia and Belgium, no areas above the 
limit value are identified, although some measuring stations show exceedances. This is caused by the 
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grid resolution of the map and particularly by the interpolation methodology (Section 7.2). 
Exceedances may occur at hot spot situation but they are not resolved in the interpolation procedures. 

Population exposure to PM10
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Figure 8.2 Population exposure to PMB10B concentration, annual mean (reference year 2004). 

 

The country-wide population weighted mean values calculated here can be compared with the 
information in the Eurostat Structural Indicator “Urban population exposure to air pollution by 
particulate matter” (Eurostat, 2007). In this indicator the population weighted mean values are 
calculated for all the urban agglomeration as defined by each Member States under the Air Quality 
Framework Directive and related daughter directives (EC, 1996; 1999, 2000, 2002, 2004). The number 
of inhabitants in an agglomeration has been provided by the Member States. For each agglomeration 
the PMB10B concentration is obtained by averaging the data of all available (sub)urban background 
stations in AirBase. In contrast to the map in Figure 8.1, the Structural Indicator (SI) is based on 
monitoring data only. Figure 8.3 shows the relation between the urban-only (SI) and total population 
(this report) estimates. The correlation between the two sets is high (RP

2
P = 0.88); the urban value is 

about 30 % higher than the country-wide averaged value.  
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Figure 8.3 Comparison between the population weighted PMB10 B concentration (annual mean) obtained from the 
Structural Indicator (for urban population only) and the weighted PMB10 B concentration using the total population 
(this report). 
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In the health impact assessment, (premature) mortality has been selected as the endpoint since it 
represents the major impact in economic terms and the baseline rate is well-documented. The health 
effects of a long-term exposure to particulate matter have been studied widely. From these analyses 
concentration-response relations have been obtained. In the impact assessment studies of, among 
others, CAFE, the risk coefficients from the American Cancer Society Study (Pope et al., 2002) are 
used to estimate the mortality effect from long-term exposure to PM. In this study a relative risk (RR) 
of 6 % increase in mortality rate (all causes) per 10 μg.mP

-3
P increase in PMB2.5B is estimated. In a 

European study covering Austria, France and Switzerland, Künzli et al. (2000) estimated a RR of 4.3 
% per 10 μg.mP

-3
P PMB10B for total mortality (excluding violent death). This meta-analysis estimate is the 

weighted average from two American cohort studies, also including the study by Dockery et al. 
(1993). Both Pope et al. and Künzli et al. use the age group of 30 years and older to estimate the RR in 
the age group 30 years and more. As we are not yet able to construct monitoring based PMB2.5B maps 
over Europe (see Sections 5.6 and 5.7) we have used here the RR from Künzli et al. (2000). Note that 
as the empirical ratio between PMB2.5B and PMB10B is in the range 0.53 to 0.83 (Putaud et al., 2003; EEA, 
2007) both relative risks are comparable. In urban areas, close to sources, the PMB2.5B/PMB10B ratio tends to 
be at the lower end and the relative risk-factor from Künzli et al. may result in slightly higher numbers 
than the RR-factor from Pope et al.  

According to WHO there is no evidence for a no-effect level of PM: even at low concentrations health 
impacts may be expected. In estimating the impact of anthropogenic air pollution, a natural 
background concentration has to be subtracted from the interpolated PMB10B concentrations. A similar 
approach is taken in assessments built on transport models (for example within the CAFE process): in 
the model only anthropogenic sources are included. The natural background over Europe is unknown 
and it will show large variations: high close to the coastline (sea-salt contribution) but also high inland 
because of contributions of resuspended soil or from secondary aerosol originating from biogenic 
organics. Here we have applied two scenarios assuming a constant European-wide natural background 
of 5 and 10 μg.mP

-3
P, respectively. As Figure 8.1 indicates, a non-anthropogenic background of 10 μg.mP

-

3
P is a clear overestimation for the NW part of Europe. 

Country-specific data on population, age distribution and baseline mortality has been taken from the 
UN Population Division (UN, 2005) and the WHO Burden of Disease project (WHO, 2004). The 
health impact assessment is performed according to standard population attributive risk principles.  

The estimated number of premature deaths attributable to long-term exposure to PMB10B is given in 
Table 8.1. In the EU24 countriesTPF

1
FPT the estimated number is 246,000 – 327,000 depending on the choice 

of the natural background concentration. In the CAFE Thematic Strategy an estimate of 348,000 
premature deaths for EU25 (reference year 2000) is given. In view of the differences in reference year 
and in methodology this corresponds with our estimate assuming a 5 μg.mP

-3
P natural background. It is 

encouraging that the model-based approach of CAFÉ and the monitoring-based approach used here 
give similar estimates. Künzli et al. (2000) report for Austria and France 5,600 and 31,700 premature 
deaths, respectively. Our outcomes are approximately 4,500 and 27,700 premature deaths, 
respectively. This difference is largely caused by the differences in concentration and assumed 
reference concentration. 

                                                      

 

 

TP

1
PT Note that Cyprus could not been included in the health impact assessment of PMB10B and ozone as Cyprus is not 

included in the JRC population database, see Section 4.9. 
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Table 8.1 Estimates of premature deaths attributable to the exposure to PMB10 B and ozone (cases per year). For 
PMB10 B results assuming a reference concentration of 5 and 10 μg.mP

-3
P are given.   

PM10 
Country 

Population 
(thousands) 

2004 5 μg.m-3 10 μg.m-3 
Ozone 

Austria 8171 4525 3254 334 
Belgium 10400 10311 8420 234 
Bulgaria 7780 12234 10476 491 
Croatia 4540 5238 4307 226 
Czech Republic 10229 9366 7443 413 
Denmark 5414 2887 1776 132 
Estonia 1335 605 282 29 
Finland 5235 1223 405 90 
France 60257 27711 18323 1698 
Germany 82645 53257 37475 2566 
Greece 11098 13003 10915 767 
Hungary 10124 11573 9358 465 
Ireland 4080 712 184 40 
Italy 58033 60226 49817 3488 
Latvia 2318 1401 790 56 
Lithuania 3443 1925 1192 84 
Luxembourg 459 176 110 11 
Malta 400 328 277 16 
Netherlands 16226 13223 10568 262 
Poland 38559 26380 20370 1055 
Portugal 10441 9302 7506 421 
Romania 21790 27225 22938 1100 
San Marino 29 24 19 2 
Slovakia 5401 4273 3335 230 
Slovenia 1967 1568 1238 87 
Spain 42646 33495 26617 1737 
Sweden 9008 3009 1329 203 
United Kingdom 59479 36536 24994 815 
Total 491510 371743 283716 17054 
Confidence 
interval (1) 

229287 - 
516491

174424 - 
395532 

5694 - 
22720 

 

P

 (1)
P Confidence interval resulting from uncertainties in the relative risk factors. (PMB10B: Künzli et al. (2000); 

ozone: WHO (2006)). 

8.2.2 Health impact of ozone 
Epidemiological studies show that enhanced ozone levels during summer smog episodes appear to be 
associated with increased premature mortality and morbidity, lung function decline, airway irritation, 
worsening of asthma, and airway and lung tissue damage and inflammation. Many of these effects 
have also been found in controlled toxicological studies. In 2000 the WHO recommended an Air 
Quality Guideline for ozone (WHO 2000) of a daily maximum 8-hour mean value of 120 µg/mP

3
P, 

which has been adopted by the EU not to be exceeded on more than 25 days per year. Looking at the 
current epidemiological evidence for health effects of ozone, with often effects seen at much lower 
levels, it has been recognized that the WHO 2000 guideline may offer inadequate protection of public 
health from acute and maybe also from repeated and long-term exposures (although the evidence for 
effects from long-term exposure is still insufficient to consider a separate guideline). Therefore, the 
WHO has recently updated the Air Quality Guidelines for ozone (WHO, 2006). The new guideline is a 
daily maximum 8-hour mean value of 100 µg/mP

3
P, assuming that this concentration will provide further 

protection of public health, though some health effects may occur below this level. 



 

 

     Spatial mapping of air quality for European assessment 

122 

 

Figure 8.4 Ozone concentrations expressed as SOMO35, unit: μg.mP

-3
P.day.  

 

The WHO recommends a daily maximum 8-hour mean concentration as the principal benchmark for 
assessing impact on mortality, with assessment over a full year. The WHO stated that it was not 
possible to identify a threshold for the effects of ozone on mortality. At the same time, it was 
acknowledged that there were increasing uncertainties concerning the shape of concentration-response 
function for the associations between effects and ozone levels at very low concentrations. The WHO 
noted that for the integrated assessment modeling, these uncertainties should be kept in mind when 
selecting an indicator for ozone-related mortality. Therefore, current evidence is insufficient to derive 
a level for this 8-hour mean below which ozone has no effect on mortality. However, the practical use 
of a cut-off for integrated assessment modeling at 35 ppb, considered as a daily maximum 8-hour 
mean ozone concentration, was recommended for the IIASA modeling exercise for the European 
CAFE programme (IIASA, 2005). For days with ozone concentration above 35 ppb as maximum 8-
hour mean, only the increment exceeding 35 ppb has been used to calculate effects. No effects of 
ozone on health would then be calculated on days below 35 ppb as maximum 8-hour mean. 
Effectively, this meant that the exposure parameter was the sum of excess of daily maximum 8-h 
means over the cut-off of 35 ppb calculated for all days in a year. This parameter, the SOMO35 (sum 
of means over 35 ppb), is a measure of accumulated high exposure and is mapped for Europe in Figure 
8.4. The cut-off recommendation was based on the application of a very conservative approach to 
integrated assessment modeling and took account of the uncertainties in the slanted shape of the 
concentration-response function at low ozone concentrations. It also reflected the seasonal cycle and 
geographical distribution of background ozone concentrations, as well as the range of concentrations 
for which models provided reliable estimates. It was considered highly likely that the overall health 
impact of ozone were underestimated by this approach. 

Population weighted concentration data for this ozone indicator SOMO35 is presented in Table A2 of 
the Annex. It can be seen that almost half of the European population lived in areas above 3,000 and 
below 6,000 µg.mP

-3
P.days and about a quarter of the population lived in areas below 3,000 µg.mP

-3
P.days 
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and the other quarter of inhabitants in areas above 6,000 µg.mP

-3
P.days. The population weighted 

average SOMO35 concentration in Europe is about 4,460 µg.mP

-3
P.days. The EU has neither defined a 

limit or target value nor a long-term objective for SOMO35. However, a regression between observed 
SOMO35 and 26PthP highest daily maximum ozone values at urban background stations shows that the 
target value of 120 μg.mP

-3
P corresponds with a SOMO35 in the range of 4,500 to 6,500 (μg.mP

-3
P.day).  

Figure 8.5 gives a comparison between the country-wide population weighted ozone concentrations 
with the data presented in the Structural Indicator “Urban population exposure to air pollution by 
ozone”. As is the case for the PM-structural indictor, a fair – but slightly worse – correlation is found.  

Following the recommendation of the WHO (WHO, 2006), a relative risk for all-cause mortality of 
1.003 (confidence interval 1.001 to 1.004) for a 10 μg.mP

-3
P increase in the daily maximum 8-hour mean 

is used in the health impact assessment. The estimates of premature deaths attributable to the exposure 
to ozone are presented in Table 8.1. Total number for the EU25 (not including Cyprus) is about 
17,000. In the CAFÉ calculations (IIASA, 2005) a total of 21,000 has been estimated for the year 
2000. Our slightly lower number will not be caused by differences in concentrations (in contrast to 
many other pollutants, ozone hardly shows a decreasing trend over the recent years) but it is due to the 
treatment of the urban background concentrations. The CAFE calculations are based on regional scale 
ozone calculations on a 50 x 50 km grid, not resolving urban areas; as urban levels are systematically 
lower then rural concentrations, CAFÉ may overestimate the attributable deaths. We have included the 
measured urban background concentration in the interpolation scheme and health impact assessment. 
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Figure 8.5 Comparison between the population weighted ozone concentrations (expressed as SOMO35) 
obtained from the Structural Indicator (for urban population only) and the weighted ozone SOMO35 
concentration using the total population (this report). 

8.2.3 Other pollutants 
In the first and second Daughter Directive, limit values for the protection of human health have also 
been set for SOB2B, NOB2B, Pb, CO, and benzene. Exceedance maps and estimates of population exposure 
have not been made for these pollutants. For SOB2B, Pb, CO, and benzene no frequent or widespread 
exceedances of the limit values are expected. According to an overview of the air quality reports on 
2004 under the Air Quality Framework Directive (Van de Hout, 2006) exceedances have been 
observed in 0.4 %, 1.1 % and 2.5 % of all zones in the EU25 for Pb, CO and benzene, respectively. In 
most cases this will concern traffic or industrial hotspots within the zone; the current interpolation 
methodologies are not suitable for these hotspot situations with a typical spatial scale of less then 
several hundred meters. For SOB2 Bslightly more zones in exceedance can be identified: the hourly limit 
value is exceeded in 3.1 % of the zones, the daily limit values in 2.3 %. In the Core Set Indicator on 
urban air quality it has been estimated that less then 1 % of the urban population is exposed to SOB2 

Blevels above the limit value.  
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With respect to NOB2B, a more frequent violation of the limit values, especially the annual mean, is 
observed: in 23 % of the zones exceedances are reported (van den Hout, 2006), 23 % of the urban 
population is exposed to levels above the limit value for annual mean. The health effects of NOB2B 
exposure are less clear than those from particulate matter and ozone. Epidemiological studies show 
that health effects like increased mortality and morbidity are associated with ambient NOB2B levels; 
however, it is possible that NOB2B in these studies has not acted as a causal agent because NOB2B is highly 
correlated with other pollutants and could possibly act as a surrogate or indicator of the combustion-
generated particulate air pollution. In its 2006-update of the air quality guidelines, the WHO therefore 
concludes that there is not sufficient evidence to justify a change (lowering) of the annual mean NOB2B 
guideline value. Therefore no separate health impact assessment for NOB2B has been made; its effects 
will probably be largely included in the PM assessment. 

8.3 Exposure of vegetation  
In the EU air quality legislation limit or target values for the protection of vegetation and ecosystems 
have been set for SOB2B, and NOBx B (first Daughter Directive) and for ozone (third Daughter Directive). 
For these pollutants, interpolated maps have been made in order to estimate the exceedance area. In 
the preparation of these maps only rural background stations have been included.  

8.3.2 Ozone 
In the ozone directive a target value (TV) and a long-term objective (LTO) for the protection of 
vegetation have been defined. TV and LTO are defined as AOT40, calculated from 1-hour values 
(daylight hours only, defined as the period between 8:00 and 20:00 CET) from May to July. The TV 
for 2010 is 18,000 μg.mP

-3
P.h; the LTO is 6,000 μg.mP

-3
P.h. The term vegetation is not further defined in 

the ozone directive. The UNECE Working group on Effects describes in its Mapping Manual 
(UNECE, 2004) also the AOT40 as the main indicator for quantifying vegetation damage. The 
Mapping Manual defines critical loads for crops, forests and semi-natural vegetation in terms of 
different levels of AOT40, calculated over different time windows. Comparing the definitions in the 
Mapping Manual and those in the ozone directive suggests that we have to interpret the term 
vegetation in the ozone directive as agricultural crops.  

The exposure of agricultural crops has been evaluated here on basis of the AOT40 for vegetation as 
defined in the ozone directive. In addition, exposure of forests has been estimated on the basis of the 
corresponding definition in the Mapping Manual: critical level of 10 mg.mP

-3
P.h (corresponding to 5 

ppm.h), accumulation over the full vegetation period, April 1 – September 30. 

 

Agricultural crops 

The rural map for ozone, AOT40 for vegetation, is given in Figure 8.6. This map has been combined 
with the land cover CLC2000 map. Exposure of agricultural area (defined as the land cover level-1 
class 2 Agricultural areas encompassing the level-2 classes 2.1 Arable land, 2.2 Permanent crops, 2.3 
Pastures and 2.4 Heterogeneous agricultural areas) has been calculated at the country-level. Table 
8.2 gives the agricultural area where the target value and long-term objective for ozone are exceeded. 
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Figure 8.6 Rural concentration map of ozone, AOT40 for vegetation, 2004. 
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Table 8.2 Agricultural area (kmP

2
P) where the Long-term objective (LTO) and target value (TV) are exceeded, and 

forest area (kmP

2
P) where the critical level (CL) and reporting value (RV) for ozone are exceeded. 

Agricultural area [km 2] Forest area [km2] 
Country 

total area 
(1) 

above 
LTO  

above TV total area 
(2) 

above CL 
(4) 

above RV
(5) 

Andorra  14 14 14 61 61 61
Austria 27451 27451 3224 37598 37598 37598
Belgium 17654 17654 0 6095 6095 4766
Croatia 24168 24168 11509 20155 20155 20155
Cyprus 4269 4269 4269 1541 1541 1541
Czech Republic 45570 45570 0 25471 25471 25471
Denmark 32232 21151 0 3702 3702 0
Estonia 14680 1960 0 20781 20781 0
Finland 28893 15430 0 193300 193132 0
France 328400 321917 67089 144868 144868 133985
Germany 213603 184150 22665 103785 103785 81435
Hungary 63108 63108 0 17321 17321 17321
Ireland 46396 0 0 2908 0 0
Italy 155704 155704 155704 78801 78801 78801
Latvia 28324 0 0 26945 25313 0
Liechtenstein 41 41 41 61 61 61
Lithuania 40002 532 0 18671 13486 0
Luxembourg 1410 1410 0 910 910 910
Malta 122 122 122 2 2 2
Monaco 0 0 0 0 0 0
Netherlands 24920 19828 0 3105 3105 0
Poland 200543 194625 0 91776 91776 52046
Portugal 42553 42553 42553 24301 24301 24301
San Marino 43 43 43 5 5 5
Slovakia 24383 24383 199 19270 19270 19270
Slovenia 7133 7133 5573 11479 11479 11479
Spain 252381 252381 235882 91795 91795 91795
Sweden 38640 16453 0 249898 249898 0
United Kingdom 141878 16286 0 19693 5399 0

Total 1804515 1458336 548887 1214297 1190110 601002
Northern (3) 182770 55526 0 513298 506312 0
North-western 492992 309429 29262 122288 105087 84629
Central & eastern 574697 539326 26129 295281 295281 233202
Southern 554052 554052 493496 283430 283430 283171

 

(1) Total agricultural area. 
(2) Total forest area. 
(3) See footnote at Agricultural crops of Section 8.3.2 for definition of the European regions. 
(4) Area where the critical level of ozone (10 mg.mP

-1
P.h) is exceeded. 

(5) Area where the “reporting” level of ozone (20 mg.mP-1P.h, see text for explanation) is exceeded. 
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A frequency distribution of exposure classes for 4 European sub-regionsTPF

2
FPT is presented in Figure 8.7. 

More detailed information is presented in the Annex. 

Table and Figure illustrate that more than 30 % of all agricultural land is exposed to ozone exceeding 
the target value of 18 mg.mP

-3
P.h and more than 80 % is exposed to levels in excess of the long-term 

objective of 6 mg.mP

-3
P.h. In southern countries about 90 % is exceeding the target values (Spain, 

Portugal, Italy and some small countries). In northern Europe the ozone levels are below the target 
value for nearly 70 % of the agricultural area. 
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Figure 8.7 Exposure of agricultural area in Europe to ozone (AOT40 for vegetation). 

 

Forest 

The ozone directive does not give a target value or a long-term objective for the protection of forest. 
However, Annex III - which defines the information to be submitted to the Commission - mentions a 
level of 20 mg.mP

-3
P.h. In this paper we will use this level (indicated as: reporting value or RV) as 

reference in combination with the critical level (CL) of 10 mg.mP

-3
P.h as defined in the Mapping 

Manual. 

The rural ozone map for ozone, AOT40 for forest, is given in Figure 8.9. The gradients in this map are 
very similar to those in the map of AOT40 for vegetation: increasing concentrations from north to 
south. Table 8.2 gives the forest area where the critical level for ozone is exceeded. Similar to the 
finding in CAFE, we observe that in many countries, except for the UK and some of the northern 
countries, all forest area is exposed to levels above the critical level. The reporting level is exceeded in 
50 % of the European forest area. The frequency distribution of forest exposure is given in Figure 8.8. 

                                                      

 

 

TP

2
PT Northern Europe: Norway, Sweden, Finland, Estonia, Lithuania, Latvia, Denmark and Iceland 
North-western Europe: United Kingdom, Ireland, the Netherlands, Belgium, Luxembourg, France north of 45 
degrees latitude  
Central and Eastern Europe: Germany, Poland, Czech Republic, Slovakia, Hungary, Austria, Switzerland, 
Liechtenstein 
Southern Europe: France south of 45 degrees latitude, Portugal, Spain, Andorra, Monaco, Italy, San Marino, 
Slovenia, Croatia, Greece, Cyprus, Malta 
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It is clear that in northern Europe the reporting level of 20 mg.mP

-3
P.h is not exceeded but in southern 

Europe it is exceeded everywhere. 
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Figure 8.8 Exposure of agricultural area in Europe to ozone (AOT40 for forest). 

 

 
Figure 8.9 Rural concentration map of ozone, AOT40 for forest, 2004. 
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8.3.3. SOB2 B and NOBxB  
In the first Daughter Directive the SOB2B limit value for protection of ecosystems is 20 μg.mP

-3
P both for 

the annual mean as for the winter period. An initial assessment suggested that the interpolated map of 
annual average SOB2B based on the 2004 measurements would show no ecosystem exceedances of 
significance throughout Europe. In other words, the annual mean limit value set in the Directive is not 
exceeded in Europe except for some small areas in the most eastern parts, see also Figure 5.23.  

Also, no indicator map was produced for average SOB2B concentrations in the winter season (1 October – 
31 March next year). Although the winter mean will be systematically higher than the annual average, 
we expected a similar compliance with the limit value over Europe as for the limit value for the annual 
mean. However, because of the higher winter values, this could be subject of future activities.  

The rural NOBxB map shows a few regions where the NOBx B limit value for the protection of vegetation is 
exceeded. These areas are located in the Benelux, in the Rhone Valley and northern Italy. The highest 
concentrations are observed in the Po Valley. We were not able to estimate the relevant exceedance 
areas for the following reason. In the first Daughter Directive term “ecosystem” and “vegetation” are 
not further defined. Judging the considerations for macro-scale siting of monitoring points targeted for 
the protection of ecosystems or vegetation, it is assumed that the limit value defined for NOBx B is related 
to natural vegetation and the one for SOB2B is for natural ecosystems. Unfortunately, the CLC2000 land 
cover classification does not provide a clear-cut match to these receptors. We intended to make use of 
the NATURA2000 dataset for an analysis of designated areas (SACs, the Special Areas of 
Conservation and SCI, the Sites of Community Importance) in which the annual averages of NOBx B and 
SOB2B concentrations would exceed the limit values. However, this dataset was not yet available and we 
recommend doing this analysis as soon as it becomes available, probably in early 2008.  
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9 Conclusions and recommendations 
This report presents a continuation of the activities initiated in 2005, Denby et al. (2005) and Horálek et 
al. (2005), to develop and assess interpolation methodologies for producing air quality maps on the 
European scale and their implementation in population and ecosystem risk assessment. In these previous 
reports, monitoring and supplementary data from the years 2000 to 2003 were used to develop and assess 
methodologies for the production of spatial maps of selected PM10 and ozone indicators. In this paper 
these same methodologies are applied to the 2004 datasets for the same pollutants and reassessed. In 
addition a number of other supplementary data sources are included and the number of pollutants, and 
related indicators, assessed is increased to include NOBX B and SOB2B. Further to this extension of data sources 
and pollutants, attention is also given to the question of uncertainty in the assessment maps and a study 
concerning the temporal resolution of the assessment is performed. 

The current work focuses on ground-based measurements as primary information, using modelling and 
other data as secondary, supplementary sources. This is in contrast to the work supporting the recent 
development of the European Thematic Strategy on Air Pollution, which gives prominence to modelling 
as primary source of information, using monitoring data to calibrate the model. While some of the 
methods and data sources are similar, to some extent the two methods can be regarded as complementary. 

The maps of air quality are produced at a resolution of 10 x 10 km, covering all of Europe, and include 
both rural and (sub)urban monitoring data. The monitoring data, also referred to as primary data, is 
retrieved from the AirBase database. Spatially resolved supplementary data, i.e. other data sources than 
the primary monitoring data, are used in the interpolation methodologies to improve the spatial 
assessment. 

This chapter provides a summary of the results of this study, with reference to the previous results, as well 
as providing recommendations on a number of points including: 

• Recommended interpolation methods for producing spatial maps for the various pollutants, 
indicators and scales (rural and urban) 

• Considerations for the adoption of operational spatial interpolation methods 

• Applications to risk assessment 

• Recommendations on further work and focus 

9.1 Summary of the interpolation methodologies and applications 

9.1.1 Methodologies assessed 
As in Horálek et al. (2005) the focus of the spatial interpolation methods in this study is on the following 
three methods: 

1. Multiple linear regression models relating monitoring data to spatially resolved supplementary 
data 

2. Spatial interpolation methods using primarily monitoring data 

3. Multiple linear regression models plus the spatial interpolation of their residuals 

Within these 3 methodologies are subgroups of methods and various combinations of supplementary data. 
For the spatial interpolation, for instance, 4 different methodologies are employed. These are inverse 
distance weighting (IDW), Ordinary Kriging (OK), Ordinary Cokriging (OC) and lognormal 
kriging/cokriging (LK/LC). 

The methodologies are applied separately to rural and urban maps and these are combined using a 
population weighted algorithm to produce combined maps of Europe at a resolution of 10 x 10 km.  

One variation of the spatial interpolation methods (2) that is applied solely to the urban interpolations is 
interpolation of the urban DELTA, the DELTA being the difference between urban observations and 
interpolated rural fields. 
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9.1.2 Pollutants and indicators assessed 
These methods are assessed for the following pollutants and their relevant indicators 

• PMB10B  – annual average  
– 36P

th
P maximum daily average value 

• PMB2.5B  – annual average 

• Ozone  – SOMO35 
– 26P

th
P highest daily maximum 8-hour average value 

– AOT40 for crops 
– AOT40 for forests 

• SOB2B  – annual average  

• NOBx B  – annual average  

9.1.3 Monitoring and supplementary data used 
Monitoring data is provided for the above pollutants and their indicators directly from the AirBase and 
EMEP databases. Station types classified as rural background or (sub)urban background are used. 

In addition to the primary monitoring datasets the following types of supplementary data are also used 

• Unified EMEP model calculations 

• Altitude 

• Annual mean meteorological fields 

• Climatological fields 

9.1.4 Assessment and selection of the interpolation methodologies 
There are two elements to the assessment and recommendation of suitable interpolation methodologies 
tested in this study. The first involves the objective assessment of the interpolation quality and the second 
refers to the selection of a robust methodology for operational purposes. 

Central to the objective assessment is the use of cross-validation to provide an independent comparison 
between the interpolated and measured data. The cross-validation method computes the spatial 
interpolation for each measurement point using all the available information except for that one point. The 
interpolated and measured values at that point are then compared and the procedure is repeated for all 
points. A number of statistical parameters, see Section 2.6, are used to objectively assess the quality of the 
interpolations. The root mean square error (RMSE) is used as the primary error indicator throughout the 
study. 

In addition to the objective assessment obtained through the cross validation method there are also a 
number of other considerations when determining the best methodology for operational use. These aspects 
are discussed further in Section 9.7. 

9.2 Summary of the rural interpolation results 
In this and the following section the selected methodologies for the various pollutants and indicators will 
be summarised. Details concerning the process are contained within the body of this document, 
particularly Chapter 5, and the results are summarized in the Table 9.1. A number of general conclusions 
can be drawn at this point, that cover all the pollutants and indicators. 

1. Kriging methods always show themselves to be better spatial interpolators than inverse distance 
weighting. This was found to be true in the previous study as well. IDW methods can be ignored 
in future work. 

2. Lognormal kriging regularly gives better results than ordinary kriging, particularly for PM10, and 
should be more closely evaluated in future work. This was also concluded in the previous study. 
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3. The use of concurrent meteorological data, rather than climatological data, tested in this study for 
2004 always provided improved results. It is recommended to use the concurrent meteorological 
data if it is available. 

4. There is a degree of interannual variation in the optimal methodology and supplementary data 
sources. Recommendations on the operational methodology cannot be based solely on a single 
year’s analysis. 

5. Methodologies based on linear regression models, using supplementary data, are generally 
preferred to pure interpolation methods as the pure interpolation methods give highly uncertain 
results far from monitoring sites. 

9.2.1 PMB10 B  
Based on the objective assessment, two methodologies are selected as providing the best interpolation of 
PMB10B, for both the annual mean and the 36P

th
P percentile. These are, in order of preference: 

1. Multiple linear regression and spatial interpolation of the residual using ordinary kriging. 
Supplementary data includes: EMEP model, altitude, solar radiation and wind speed 

2. Lognormal cokriging with altitude as the supplementary data source. 

Both of these methods are shown to give the best interpolations, based on the RMSE, consistently for the 
5 year period analysed to date. The second of these two methods is by far the simplest and relies only on 
altitude as a supplementary source. The first method requires more data, concurrent meteorological and 
CTM data, from the analysis year. Both methods give average uncertainties of around 25%, based on the 
normalised SD of the residuals. 

The advantage of the cokriging method is that there is no reliance on data sources other than the 
monitoring data. The disadvantage of the method is that the interpolation has high uncertainty in areas 
where no monitoring stations are available. This is unlike the residual method that can rely on the 
supplementary data to provide better estimates in regions far from observations. The residual method also 
provides the possibility for future improvement in the interpolation with improved resolution and process 
descriptions in Chemical Transport Models (CTMs). As a result the linear regression with residual kriging 
method is recommended, but the cokriging method must be considered a very good option if 
supplementary data is not available.  

9.2.2 Ozone 
For the case of ozone, with 4 different indicators, there are a variety of methods that provide a similar 
quality of interpolation. Based on the objective assessment, two methodologies are selected as being the 
most consistent for the ozone indicators SOMO35, AOT40(crops), AOT40(forests) and the 26P

th
P percentile 

of the running 8 hour mean. These are, in order of preference: 

1. Multiple linear regression and spatial interpolation of the residual using ordinary kriging. 
Supplementary data includes: EMEP model, altitude, solar radiation and humidity  

2. Cokriging with altitude as the supplementary data source. 

Though the optimal method, method with minimum RMSE, varied for the different indicators the first 
method above is seen as being robust for all indicators and giving consistent results for the 5 year period 
analysed to date. As an alternative to the above method, as in the case of PMB10B, the second interpolation 
method can be applied as a simplified method. The advantages and disadvantages of these two methods 
are discussed above. 

Average uncertainties for this method, based on the normalized SD of the cross-validation, vary for the 
indicator. For the SOMO35 and AOT indicators this is around 35%, for the 26P

th
P percentile this is 

estimated at around 10%. 

9.2.3 NOBx B 

For the case of NOBx B only the annual mean for the year 2004 is analysed using a limited number of 
methodologies, Section 5.4. Based on this analysis no robust conclusions concerning the methodologies 
can be made but the following 2 methodologies are found to produce the best interpolations. 
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1. Multiple linear regression and spatial interpolation of the residual using ordinary kriging. 
Supplementary data includes: EMEP model and altitude. 

2. Ordinary kriging or cokriging with altitude as the supplementary data source. 

This result reflects the previous results for both PMB10B and ozone in regard to the best methodologies. Once 
more the preference would be given to the linear regression and spatial interpolation of the residual 
method since it provides better spatial coverage than the pure interpolation methods. The average 
uncertainty for this method and pollutant, based on the normalised SD of the cross-validation, is around 
58%. 

9.2.4 SOB2 B 

As for the case of NOBx B limited testing of methodologies has been carried out for SOB2B, Section 5.5, and 
only the annual mean concentration for 2004 has been assessed. Based on this analysis no robust 
conclusions concerning the methodologies can be made but the following 2 methodologies are found to 
produce the best interpolations. 

1. Linear regression and spatial interpolation of the residual using ordinary kriging. Supplementary 
data includes: EMEP model. 

2. Lognormal kriging. 

Once more the preference would be given to the linear regression and spatial interpolation of the residual 
method since it provides better spatial coverage than the pure interpolation methods. The average 
uncertainty for this method and pollutant, based on the normalised SD of the cross-validation, is around 
60%. 

9.2.5 PMB2.5 B 

An analysis of the possibility for carrying out interpolations of PMB2.5B has been carried out. However, the 
current limited number of PMB2.5B rural monitoring sites, only 13 for 2004, inhibits an effective or testable 
interpolation methodology. This will need to be readdressed when improved coverage of PMB2.5B sites is 
available. 

9.3 Summary of the urban interpolation results 
The methodologies tested for urban interpolation are slightly different to those implemented for the rural 
interpolations, for instance cokriging is not carried out, but interpolation of the urban DELTA is an 
additional methodology. Only the pollutants PMB10B, ozone and PMB2B.B5 Bare treated here. The following 
conclusions can be drawn. 

9.3.1 PMB10 B  
Based on the objective assessment, one methodology is selected as providing the best interpolation of 
PMB10B, for both the annual mean and the 36P

th
P percentile, Section 5.8. This is: 

1. Ordinary kriging or lognormal kriging. 

Though a number of other methods are tested, ordinary kriging or lognormal kriging gave results of 
similar or better quality to the more complex methods such as the multiple linear regression and residual 
methods or the urban DELTA interpolation method. Average uncertainties for this method are around 20-
25%, based on the normalised SD of the cross-validation. The 2004 results here are also consistent with 
previous results though 2003 indicated that the urban DELTA method was superior. 

There is no doubt an interannual variation in the best method to be applied and this will need to be further 
assessed in future work.  

9.3.2 Ozone  
Based on the objective assessment, one methodology is selected as providing the best interpolation of 
ozone, for both the SOMO35 and the 26P

th
P percentile of the maximum daily 8 hour running mean, Section 

5.9. This is: 
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1. Cokriging with altitude as the supplementary data source. 

Though a number of other methods are tested, cokriging gave results of similar or better quality to the 
more complex methods such as the multiple linear regression and residual methods or the urban DELTA 
interpolation method.  

Only the year 2004 has been tested for urban ozone interpolation and so this result will need to be further 
assessed in future work.  

9.3.3 PMB2.5 B 

As in the rural interpolation of PMB2.5B analysis of the possibility for carrying out interpolations of PMB2.5B for 
urban areas has been carried out, Section 5.7. However, the current limited number of PMB2.5B urban 
background monitoring sites, 55 for 2004, inhibits an effective or testable interpolation methodology. This 
will need to be readdressed when improved coverage of PMB2.5B sites is available. 

9.4 Summary of the use of daily or annual statistics 
In Chapter 6 a study is carried out to assess the need and applicability of the interpolation methods for 
higher temporal resolutions in the interpolations. This was applied to PMB10B data for the year 2003, using 
the linear regression and interpolation of the residual method, where interpolations of daily mean values is 
compared with the annual statistics to determine annual mean concentrations, 36P

th
P percentile of the daily 

mean and the number of exceedance (NOE) days. The following conclusions are made: 

1. Maps of annual mean, 36P

th
P percentile and NOE are similar, but not the same, for both temporal 

resolutions. The differences are of the order of the estimated uncertainties in the methodologies. 

2. The maps showing NOE are completely consistent with the 36P

th
P percentile maps when using daily 

interpolations. When using annual statistics these can be different, the extent of which will likely 
vary from year to year. 

3. There are a number of advantages in using daily mean data over annual statistical data including: 

a. The number of observation days used is larger when using daily statistics than annual 
statistics when a limit on the allowable coverage is applied, e.g. >75%. 

b. The quality of the maps is as good as, and generally better than, maps produced using 
annual statistics, based on the cross-validation RMSE. 

c. There is absolute consistency between the percentile and NOE fields. 

d. The maps are more robust in regard to the use of automatic routines for defining 
interpolation parameters used in the kriging interpolation. 

e. Future improvements in the interpolation based on multiple regressions with 
meteorological parameters will probably be better represented on a daily basis. This is 
supported by Koelemeijer et al. (2006b). 

4. There are a number of disadvantages in using daily mean data over annual statistical data 
including: 

a. The data and calculation requirements are significantly higher for the daily than for the 
annual statistics 

b. The reduction in uncertainty may be small in regard to other possible improvements in the 
interpolation methodology that would be less data intensive 

c. The interpretation of uncertainty mapping is more complex 

The advantages above relate mainly to the scientific content of the results, the disadvantages to the 
increased calculations for the implementation of the interpolations. These must be weighed against each 
other when selecting an operational system. 
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9.5 Summary of the uncertainty analysis 
In Chapters 5, 6.5 and Chapter 7 uncertainties in the interpolation methods are discussed and a selection 
of maps is displayed. Uncertainties in the interpolated maps can be due to a number of uncertainty factors 
in the input data and techniques itself, which are used in the interpolation, such as:   

• Uncertainties in the supplementary data used 

• Uncertainties in the linear regression models 

• Uncertainties in the kriging method and its parameters 

• Uncertainties in the representativeness of the monitoring stations 

• Uncertainties related to the air quality measurement instruments and procedures 

• Uncertainties in the spatial representativeness of the modelling data  

Uncertainty related to the interpolation methods were evaluated using cross-validation (by RMSE and 
several other indicators). In addition, three aspects of uncertainty on the output side, i.e. the resulting 
maps itself, have been addressed to a limited extent in the current study. These are: 

1. Spatial representativeness 

2. Kriging interpolation variance 

3. Exceedance uncertainty 

9.5.1 Spatial representativeness 
The spatial interpolation carried out in this study produces maps with a resolution of 10 x 10 km. The 
maps are thus intended to represent average concentrations or indicators for a 10 x 10 km grid square. 
Even if the interpolation was perfect measurements made within a grid square will vary in regard to this 
mean, dependent on the pollutant, e.g. the spatial representativeness of ozone is expected to be larger than 
that for NOB2B. 

The spatial representativeness is difficult to assess directly but can be indicated through the nugget 
variance, be it residual or pure kriging, as this represents the expected variance over small spatial scales. 
This variance, however, also includes other uncertainties when regression analysis is involved. The spatial 
representativeness can also be assessed (Section 7.2) by comparing the interpolated grid concentrations 
with the actual observed concentrations. The SD of these should be indicative of the spatial 
representativeness uncertainty. 

It should also be noted that the kriging interpolation methods tend to smooth out the interpolation. E.g. an 
interpolated grid concentration at the same spatial position as a single high measurement concentration 
surrounded by lower concentrations will have a lower interpolated concentration at the grid. This is a 
result of the choice of kriging parameters, such as nugget and range, and cannot be avoided in the 
interpolation procedure unless exact interpolation methods are used. 

In this study no quantitative estimate has been made in regard to the spatial representativeness and this 
needs to be addressed in future work. 

9.5.2 Kriging variance 
A number of maps have been produced that indicate the kriging variance field for both residual kriging 
and pure kriging methods. These provide the most obvious route to uncertainty mapping when kriging is 
used as an interpolator. They are, however, directly dependent on the choice of kriging parameters such as 
the nugget, the sill, the range, the variogram model (Section 2.3.5) and the number of stations included. 
Choices of these parameters will affect the variance field as well as the interpolated field.  

One of the major problems with using kriging variance as a spatial field, and kriging in general, is that it is 
assumed that the form of the variance is the same everywhere, independent of the concentration levels. 
This can lead to over or underestimates in areas of high or low concentrations. 
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9.5.3 Uncertainty in the number of exceedances 
When the interpolations are temporally resolved at a level equivalent to the exceedance time scale 
(Chapter 6) then it is possible to use alternative methods for estimating the number of exceedances, as 
well as the percentiles. This can be done by estimating uncertainty on a daily basis, for the case of PMB10B, 
and then estimating spatial uncertainty using for example the kriging variance. By taking the percentile 
67% bands, i.e. ± SD, for each day it is then possible to calculate the uncertainty in the total number of 
exceedances. This provides a much more adequate explanation of the exceedance uncertainty than does 
simply taking the annual kriging variance fields. 

9.6 Summary of the risk assessment 
By overlaying the air quality maps with population density and land use data it is possible to compute 
population and vegetation at risk tables, for individual countries and for Europe as a whole, both in 
absolute numbers and in percentages.  

9.6.1 Population exposure 
By overlaying the air quality maps with population density estimates can be made of population exposure 
and estimates of premature deaths. To demonstrate this application a number of assessments are made for 
PMB10B and ozone with the following summary: 

• The number of Europeans exposed to annual mean concentrations of PMB10B above the European 
limit value of 40 μg.mP

-3
P is 6% of the total population 

• The estimated number of premature deaths calculated using 2004 as the reference year is between 
246 000 and 327 000 in the EU25 without Cyprus, depending on the choice of natural background 
concentration. 

9.6.2 Vegetation exposure 
For ecosystems, the following findings are important  

• More than 30 % of all agricultural land may be exposed to ozone exceeding the target value of 18 
mg.mP

-3
P.h and more than 80 % may be exposed to levels in excess of the long-term objective of 6 

mg.mP

-3
P.h. In southern countries about 90 % is estimated to exceed the target values, while in 

northern Europe the estimated ozone levels are below the target value for nearly 70% of the 
agricultural area.  

• For forests, in Northern Europe the critical, ozone reporting level of 20 mg.mP

-3
P.h is not exceeded 

in our calculations, but in Southern Europe this level is exceeded everywhere.  

• The rural NOBx B map shows a few regions where the NOx limit value for the protection of 
vegetation is exceeded (the Benelux, the Rhone Valley and Northern Italy).  

• No significant exceedances for SOB2B were expected as the interpolated map of annual average SOB2B 
confirms.  

Significant uncertainties exist in these calculations but these have yet to be assessed. These calculations 
also contain discrepancies that will need to be resolved in the future. For instance several countries show 
monitoring data above the exceedance levels but there are no exceedances in the interpolation. This is a 
result of the interpolation methodology that tends to smooth out observations and, as mentioned in Section 
9.5, represents the average concentrations in a 10 x 10 km grid.  

9.7 Considerations when recommending operational air quality 
mapping and risk assessment procedures 
In this section considerations when recommending methodologies for operational mapping are given. 
Though this is not discussed in detail in the report these aspects are regularly referred to when 
recommending ‘best’ methods. These preliminary recommendations will further help steer the required 
discussions for future development. 
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Operational methods need to produce the best spatial assessment possible given the available data and 
within a feasible budget and time frame. For this reason several levels can be considered, dependent on 
the data availability and the application. Applications will include: 

1. Air quality assessment on the European scale for policy and public information dissemination 

2. Air quality indicators for risk assessment of ecosystems and human health 

3. Real time air quality mapping for public information and dissemination 

4. Mapping of inter-annual trends 

Aspects to be considered in the selection of an operational methodology include: 

• Quality of the interpolation 

• Robustness and continuity from year to year 

• Homogeneity between pollutants and indicators 

• Physical basis for the supplementary data inclusion 

• Availability and reliability of the data 

• The application requirements of the assessment 

• Quality of the spatial coverage 

• Technological platform 

Based on general considerations it is recommended to: 

1. Adopt a set of methodologies that are applicable to most pollutants and their indicators. 

2. Adopt methodologies that are physically reasonable and consistent within our understanding of 
the processes. 

3. Adopt a prioritisation of methodologies starting from the ‘best’, most likely the most complex in 
input data requirements, to the least input demanding methodologies. 

4. Always provide a backup methodology when data is delayed or not available. E.g. climatological 
data may be used instead of concurrent meteorological data. 

A more rigorous discussion of these considerations is required before operational methods can be 
recommended. 

9.8 Recommendations for further work 

9.8.1 Further discussions concerning methodologies, additional indicators, 
uncertainty and applications 
Selection of ‘best’ methodology 
A discussion, e.g. through an expert meeting or group, should be held to determine which criteria are 
involved when selecting the ‘best’ method for preparing interpolated European indicator maps, keeping in 
mind the involved complexity, resources, time, data availability (temporal, spatial and update resolution, 
release date), errors and uncertainties in data sources, data assimilations, calculations, general 
pragmatism, history of indicator assessments. Also personal and organisation/institutional preferences 
may play a role.  

Selection of additional pollutants or indicators 
While we feel that we have addressed the substances and indicators with the highest policy relevance in 
the current study, the tools are available to expand the analysis to indicators which may have somewhat 
lower priority, but are still relevant for European air pollution assessments. 

Presentation of uncertainty 
Though the uncertainty can be mathematically calculated there still remains the question of 
communication of this parameter and its use in the applications addressed. Since this is fairly fresh ground 
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for air quality assessment a more informed and wider discussion is still required on this aspect of the 
assessment. 

Application for other ETC/ACC mapping activities 
Close co-operation with the other mapping tasks of ETC should be encouraged. Invitations to other task 
leaders involved in mapping should be made, where relevant, to meetings within this task. The reciprocal 
is also true. 

In the following sections, these four aspects of potential future work are elaborated. 

9.8.2 Further analysis needs for the spatial assessment methodologies 
Reduction of interpolation methods 
In the current studies a fairly broad selection of interpolation methods and supplementary data has been 
selected and tested. Based on these results the number of methods studied should be reduced and these 
should be studied in detail. 

Alternative chemical transport models 
Currently the Unified EMEP model is used as supplementary data for the interpolations. It has been 
shown to help improve the interpolations. The EMEP model currently has a spatial resolution of 50 x 50 
km. It should be considered to use alternative chemical transport models of higher resolution for the 
interpolations. 

Pressure instead of altitude 
Altitude is major supplementary data input for the interpolations but it is considered not to be the best. It 
is advised instead to use the pressure, since air pollutants have a correlated behaviour with surface level 
atmospheric pressure, including interaction between this layer and the above air layers. The aspects of 
lognormal correlation also play a role here. The use of lognormal transformed air pollutant measurements 
is one of the subjects examined in this project but it ignored the role air pressure plays in it. It is 
recommended to examine the best application of pressure, altitude and logarithmic transformation. 

Temporal resolution of the interpolations 
In this report a study of the use of higher temporal resolutions has been carried out for PMB10B, using daily 
means for 2003. It was concluded to be a more robust method. The same methodology can be applied to 
ozone percentiles and other year’s data. With an eye on real time applications these methods should 
continued to be assessed. 

Alternative techniques 
The current study limits its application to kriging and residual kriging. In other work carried out in the 
Air4EU project alternative methods for combining kriged and regression fields were explored (Denby, 
unpublished work). This involved combining the kriged and regression fields using Bayesian statistics to 
produce the most likely field. This allows a much clearer interpretation of uncertainty and how to combine 
the two different fields. This methodology was shown to have similar, but slightly larger, cross-validation 
RMSE than the residual method but should be explored further. In many ways it is simpler, and more 
reasonable, to apply than the residual method. 

Usage of satellite data as supplementary data 
In the current study, we have intentionally used only ground-based measurements and supplementary data 
to develop air quality maps. Increasingly, satellite data, e.g. for NOBx Band possibly also for ozone, SOB2B and 
aerosols/PM, are becoming available. They combine positive aspects such as high resolution over large 
spatial scales with negative aspects such as irregular coverage over time and the indirect relationship with 
actual air quality. The potential benefits of using the high spatial resolution of remote sensing information 
to improve interpolation methods could be explored. 

9.8.3 Further pollutants and indicators 
NOB2 B maps 

The 1P

st
P Daughter Directive defines human health limit values for NOB2:B the 19P

th
P highest hourly NOB2B 

concentration of 200 μg.mP

-3
P and a limit value of the annual average of  40 μg.mP

-3
P. A human health NOB2B 

exceedance map could be prepared as future activity. However, it is possible that NOB2B is highly correlated 
with other pollutants and could possibly act as a surrogate or indicator of the combustion-generated 
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particulate air pollution. Due to the small scale spatial characteristics of the NOB2B field, i.e. exceedances on 
hotspots, no separate health impact assessment for NOB2B has been made; its effects will probably be largely 
included in the PM assessment. 

SOB2 B maps 
No indicator map has been produced for the winter season average (1 Oct. – 31 March) for SOB2B with 
ecosystem exceedances as defined in the 1P

st
P Daughter Directive. The exceedance are expected to be 

systematically higher then the annual average. We overlooked this indicator and due to lack of time we 
were not able to investigate this any further. This could be a subject of future activities. 

Ozone percentiles 
Carry out mapping of the 26P

th
P highest daily maximum 8 hour running mean ozone, in accordance with 

directives, including EMEP model output (Must be ordered on time). 

9.8.4 Uncertainty assessment and mapping 
A preliminary study of uncertainty has been carried out in this report based on the statistical assessment, 
e.g. cross-validation RMSE, of the interpolations and on the kriging variance for spatial mapping. 
However, this aspect of the mapping is far from concluded. There are a number of points in regard to 
uncertainty mapping that still need to be addressed in 2007.  

Regression analysis 
The uncertainty mapping to date has been based solely on the residual kriging. The regression analysis 
also introduces uncertainties in the results that are not accounted for in this analysis. Statistical methods, 
such as the cross-validation used for kriging, or others such as boot-strapping and jack-knife methods, 
may also be applied to assess the importance of the regression analysis in the total uncertainty. 

Supplementary data 
No analysis has yet been made on the uncertainty of the supplementary data and its influence on the 
interpolations. This is particularly true for chemical transport and meteorological model input. 

Spatial representativeness 
Uncertainty in the spatial representativeness of the monitoring data has not been directly addressed to a 
significant extent in the studies to date. These are indirectly implied through the nugget variance used in 
the spatial interpolation and are indicated in the residual kriging standard deviation maps. However this 
aspect should be directly addressed in future work. 

Monitoring data 
There is still uncertainty attached to the monitoring data, particularly with compounds such as PMB10B and 
the application of non-homogeneous correction factors. This will need to be addressed. Currently all data, 
including metadata, from AirBase is taken as is. A more critical view of this data may be required. This is 
part of the current emerging process of improved quality assurance and quality control of the AirBase 
data. 

Kriging parameters 
The current methodology of using the kriging parameters that minimize the cross-validation RMSE needs 
to be assessed in terms of uncertainty. This optimization procedure, which is manually carried out and not 
entirely objective, should be assessed further to see its influence on the mapping uncertainty. This is 
important since these kriging parameters actually define the spatial uncertainty. 

Risk assessment 
Uncertainties in the interpolation methodologies will propagate through to uncertainty in the risk 
assessment. This needs also to be assessed. One suggested method includes using different interpolation 
methodologies in the final risk assessment to see its sensitivity to the selection of themethod. Another may 
involve using the 5% and 95% interpolation fields for assessing the uncertainty in the risk assessment. 

Sub-grid variability for exposure calculations 
For a more realistic assessment of population exposure the spatial variability within a grid is also required. 
To assess this, the spatial representativeness needs to be determined, independent of the total uncertainty 
of the interpolation method. 
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Probability maps 
These maps are directly dependent on the uncertainty fields and the first preliminary versions of these 
have been made in this study. Further assessment of their role and application within the mapping work is 
still required. 

9.8.5 Further applications of the assessments 
Application to real time mapping 
The current work focuses on indicators providing annual averaged information for European air quality. 
The applicability of (or parts of) the methods for near-real time or even forecast reports of air quality is 
not the primary scope of this project, but might be a focus of future work. We can image that at some 
point in the future interpolation techniques and methodologies of this project could become applicable in a 
way for EEA's near-real time projects. This can take place on a basis of pre-calculations that include 
knowledge on conditional and multi-annual air pollutant profiles. These pre-calculated results can be on 
stand-by for on the fly interpolations of European maps using freshly reported measurements. They might 
improve the current near-time web interpolated maps. 

NATURA2000 
It would be interesting to overlay the air quality exceedance maps for vegetation and ecosystem related 
indicators with the NATURA2000 maps as soon as these would become available. 

Validation of satellite data 
The current work has intentionally focused on ground-based measurements and ground-based 
supplementary data. Above, it was suggested that remote sensing data could be considered as 
supplementary sources of information for the improvement of interpolation methods because of their large 
and high resolution spatial coverage. Conversely, the interpolated ground-based air quality patterns 
described in the current report could be used in the calibration of remote sensing data. 
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Table 9.1: Comparison of different interpolation techniques for different air quality indicators. The linear regression models were examined specifically of their use in the spatial 
interpolation methods. 

Pollutant Area Indicator Type Best methods 
Used mapping method 

[Section: Method] 
Remarks 

Linear 
regression 
methods 

Actual meteorological plus GTOPO altitude data plus EMEP 
output (1-P.2) gives best results; EMEP data alone gives better 
results than supplementary data alone; logarithmic 
transformation gives improved results.  

 Advantage of using actual 
meteorological data is much larger 
than for ozone 

Annual 
average 
concentration 

Spatial 
interpolation 
methods 

Interpolation of primarily monitoring data including altitude with 
lognormal kriging gives best fit (2-d); 2nd best is ordinary kriging 
of residuals of linear regression EMEP model plus altitude and 
meteorology (3-P.2b-b) 

5.2.7: 3-P.2b-b2 

 

2nd best solution as to fit preferred 
because of better coverage of areas 
without measurements, continuity 
with earlier work and its 
performance close to best results 

Rural 

 

36th max. 
daily mean  

Same as 
annual 
average 

Same as annual average 5.2.7: 3-P.2b-b2 

 

The same method can be applied for 
PM10 regardless of the indicator 
without significant loss of accuracy 

Linear 
regression 
methods 

EMEP output plus s. solar radiation, relative humidity and 
temperature (1-UP.2) gives the best results 

 Poorer results than with spatial 
interpolation 

Annual 
average 
concentration 

Spatial 
interpolation 
methods 

For the subset of cities with only one station ordinary kriging of 
residuals of linear regression using EMEP plus meteorology (3-
UP.2d-b) is best, with close 2nd best interpolation of primarily 
monitoring data using ordinary kriging (2-b);  

For all stations interpolation of primarily monitoring data with 
ordinary kriging (2-b) is best. 

 

5.8.4: 2-b2 2nd best is preferred here: It is very 
close to best; it is used (as best) at  
urban indicator PM10 36th max daily 
mean as well, and it is simpler and 
easier to generate. 

EMEP-method most suitable for 
cities with no measurements 

Linear 
regression 
methods 

Same as for annual average  Poorer results than with spatial 
interpolation 

PM10 

Urban 

36th max. 
daily mean  

Spatial 
interpolation 
methods 

Interpolation of primarily monitoring data with ordinary kriging 
(2-b) gives best results for all stations as well as for the subset of 
cities with only one station 

5.8.4: 2-b2  
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Linear 
regression 
methods 

Actual meteorology plus altitude data plus EMEP output (1-O.2) 
gives best results  

 Advantage over method with only 
supp. data is only small 

SOMO35 

Spatial 
interpolation 
methods 

Linear regression with altitude, s. solar radiation and relative 
humidity plus ordinary kriging of residuals (3-O.3b-b), as well as 
same results with altitude, s. solar radiation and EMEP (3-O.2c-
b) give similar, best results. 

Interpolation of primarily monitoring data, including altitude 
with ordinary cokriging (2-c) gives also similar best result 

5.3.5: 3-O.2c-b2 EMEP plus suppl. data is applied 
because of continuity with earlier 
work 

 

Linear 
regression 
methods 

Actual meteorology plus altitude data (1-O.3) gives best results  For 26th highest daily max. 8-hour 
averages no EMEP-results 
available, results inferior to 
SOMO35 

26th highest 
maximum 8-
hour  

Spatial 
interpolation 
methods 

Interpolation of primarily monitoring data, including altitude 
with ordinary cokriging (2-c) gives best result 

5.3.5: 2-c2 Spatial methods better than linear 
regression 

Linear 
regression 
methods 

Actual meteorology plus altitude data plus EMEP output (1-O.2) 
gives best results, similar to SOMO35 

 Same method can be applied as 
SOMO35 

Rural 

AOT40 for 
crops/ forests 

Spatial 
interpolation 
methods 

Crops: Linear regression with altitude, s. solar radiation and 
relative humidity plus EMEP using ordinary kriging of residuals 
(3-O.2a-b) gives best result; Method 2-c (as best for forests) 
shows a fit of about 6% worse than 3-O.2a-b. 

Forests: Interpolation of primarily monitoring data, including 
altitude with ordinary cokriging (2-c) gives best results,  

 

Crops and Forests: 
5.3.5: 2-c2 

Spatial methods better than linear 
regression;  

Method 2-c2 used because of (i) 
methodological consistency and 
compatibility between the two 
AOT40 indicators, and (ii) it is in 
continuity with the crops indicator 
assessments made in previous years 
on past years (1996-2003) 

O3 

Urban SOMO35 Linear 
regression 
methods 

EMEP plus relative humidity (1-UO.2d) gives best result   
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 Spatial 
interpolation 
methods 

Best results with ordinary cokriging with altitude (2-c), very 
close 2nd best ordinary kriging (2-b) 

5.9.4: 2-b2 2nd best used because of lack of 
time and marginal difference with 
best method 

Linear 
regression 
methods 

Wind speed plus relative humidity (1-UO.3b)  No EMEP results available for this 
indicator 

 

  

26th highest 
maximum 8-
hour  

Spatial 
interpolation 
methods 

Same as SOMO35 5.9.4: 2-c2  

Linear 
regression 
methods 

Use of EMEP output and/or altitude give poor results  NO2->NOx correction applied to 
increase data source size 

NOx Rural Annual 
average 
concentration 

Spatial 
interpolation 
methods 

Interpolation of primarily monitoring data with lognormal 
cokriging plus altitude gives best results (2-d); 2nd best is 
ordinary kriging of residuals plus EMEP and altitude (3-N.2-b) 

5.3.4: 3-N.2-b2 2nd best preferred because of 
coverage of areas without 
measurements 

Linear 
regression 
methods 

Using EMEP output gives poor results   SO2 Rural Annual 
average 
concentration 

Spatial 
interpolation 
methods 

Ordinary kriging of residuals of linear regression plus EMEP (3-
S.1-b) 

5.4.2: 3-S.1-b2  

PM2.5 Not pursued because of data scarcity; linking to PM10 or EMEP model PM2.5 output gives poor fit  

 
 

 


