
Reporting on ambient air quality assessment 2007, Member States reporting ('The Questionnaire')

Part one: the main report

ETC/ACC Technical Paper 2009/2 November 2009

Edward Vixseboxse, Frank de Leeuw

The European Topic Centre on Air and Climate Change (ETC/ACC) is a consortium of European institutes under contract of the European Environmental Agency PBL UBA-D UBA-V NILU AEAT AUTh CHMI MET.NO ÖKO TNO REC

Cover page: O₃ 8 hour mean target value for the protection of human health in 2007

Author affiliation

Edward Vixseboxse, Frank de Leeuw, Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands.

DISCLAIMER

This ETC/ACC Technical Paper has not been subjected to European Environment Agency (EEA) member country review. It does not represent the formal views of the EEA.

© ETC/ACC, 2009.
ETC/ACC Technical paper 2009/2.
European Topic Centre on Air and Climate Change PO Box 3031
3720 AH Bilthoven
The Netherlands
Phone +31 30 2743550
Fax +31 30 2744433
Email etcacc @pbl.nl
Website http://air-climate.eionet.europa.eu/

CONTENTS

CONTENTS	3
ACKNOWLEDGEMENTS	4
SUMMARY	5
1 INTRODUCTION	9
2 ZONING IN MEMBER STATES	17
3 AIR QUALITY EXCEEDANCES	21
4 STATISTICS ON STATIONS AND METHODS	28
5 OTHER STATISTICS	37
6 FOURTH DAUGHTER DIRECTIVE: HEAVY METALS	41
7 STATISTICS PER MEMBER STATE	4 4
8 LIST OF TABLES AND FIGURES	61
9 REFERENCES	64

Acknowledgements

This report was prepared by the European Environment Agency's European Topic Centre on Air and Climate Change (EEA/ETC-ACC).

The authors are Edward Vixseboxse and Frank de Leeuw. Jana Ostatnická and Markéta Coňková from the Czech Hydrometeorological Institute, CHMI processed the maps.

EEA project manager was Anke Lükewille and EEA/ETC-ACC task manager was Edward Vixseboxse

Finally the ETC-ACC thanks the contact person's of the EU Member States and Iceland and Norway for collecting and reporting data on the air quality in their countries.

Summary

In 2007 the number of zones in Member States where the limit (LV) or target value (TV) was exceeded was greatest for the daily limit value of PM_{10} (42%) and the health-related target value of O_3 (46%).

When compared to the 2006 **zone exceedances** in Europe, most striking is the increase (+7%) of the O₃ health target value. Moreover, this increase is not supported by ozone forming favourable wheather conditions in 2007.

Both PM_{10} daily limit value and PM_{10} yearly zone exceedances decreased by 3 %, to respectively 42% (PM_{10} day) and 17% (PM_{10} year).

EU 27 zones exceeding the NO_2 (23%) and NO_x (10%) year limit values increased by 5 and 7%.

General

European Air Quality legislation is built on the principle that the Member States divide their territory into a number of air quality management zones and agglomerations. In these zones and agglomerations, the Member States should assess the air quality using measurements, modelling or other empirical techniques. Delimitations of zones may differ between different pollutants in order to optimize management of air quality due to differences in sources and abatement strategies. Where limit levels are exceeded, the Member States should prepare an air quality plan or programme to ensure compliance with the limit value before the date when the limit value formally enters into force. In addition, information on air quality should be disseminated to the public.

EU Member States have submitted annual reports on air quality in 2007 to the European Commission under the Air Quality Framework Directive (96/62/EC). The reports were provided in the form of a predefined questionnaire

(http://ec.europa.eu/environment/air/quality/legislation/reporting.htm). The present report gives an overview and analysis of the submitted information for the year 2007. It is an update of the previous reporting cycles from 2001 to 2005; reports over these years are available from http://ec.europa.eu/environment/air/quality/legislation/reporting.htm. A preliminary analysis of the 2007-situation based on incomplete, not quality-controlled data has been published in December 2008 (see http://air-

climate.eionet.europa.eu/reports/ETCACC TP2008 4 AQQ2007 prelim analysis).

In the last few years the reporting requirements from the Member States have evolved, following the successive entering into force of the first three daughter directives 1999/30/EC, 2000/69/EC and 2002/3/EC and following the accession of new Member States to the EU. The year 2005 was the first year over which 25 EU Member States had to report on assessment under the first three daughter directives. Since 2007 (reporting on the situation in 2006) Bulgaria and Romania have been included

in a EU27 report. In total 29 countries report as Iceland and Norway submitted voluntarily reports.

It should be mentioned that the assessment of air quality concentration levels within the zones may be further elaborated within the air quality plans for zones where such plans were developed. Such assessment information is not analysed in this report but may be of interest to the reader; one is encouraged to check CDR for uploaded information on AQ plans.

Reporting under the Fourth Daughter Directive (2004/107/EC) is mandatory for Member States from reporting year 2008 on. This 2007 report year offered Member States to voluntarily submit data relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air.

Zone designation

The total number of reporting zones in 2007 was 909. This number was 1056 zones in 2006 and 1064 in 2005. Compared to the reporting on 2006 the number of air quality management zones has reduced significantly. This is especially due to Poland which reduced its number of zones from 362 to 186.

The Italian Questionnaire was, like in 2006, not complete in 2007 as parts of the Italian territory are not included.

Zones are classified as agglomerations or non-agglomerations. Compared to 2006 the ratio agglomeration and non-agglomeration increased in favour of the agglomeration type with 6% of the zones. Agglomerations account for 30% of the total number of zones, non agglomerations for 70%.

The Member States have the obligation to report over the total area of their country for the health protection target pollutants. The EU27 territory coverage for the health related pollutants is fairly good but never reaches 100% as is mandatory.

All Zones EU27	909	100%
NO ₂ Health	819	90%
PM ₁₀	809	89%
SO ₂ Health	807	89%
CO	749	82%
Венгене	721	79%
Lead	685	75%
o ₃	587	65%
so ₂ Eco-Systems	469	52%
NO _× ∀egetation	468	51%
As	169	19%
Cd	169	19%
Ni	169	19%
BaP	159	17%

^{*} form 0/1/2

Table 1: EU27 number of zones and territory area coverage

Station characteristics

The total number of stations measuring air quality in the EU27 in the analysis of this report is 4064.

This is down from 4386 in 2006 and is in essence accounted for the Polish decrease of stations.

The pollutants that are measured most widely are NO_2 (70%); PM_{10} (62%); SO_2 (49%) and O_3 (48%). In 2006 the percentages are grossly the same.

Stations can also be classified on the basis of their function. The three measuring functions of stations are: for the purpose of health targets, ecosystems (SO₂) or vegetation (NOx) targets. In 2006 88% of all stations measured for health targets and 6% for ecosystems and vegetation each. Compared to 2006, stations measuring for ecosystems and vegetation targets decreased 1%. The conclusion is that the dominant station function was and is measuring for health related pollution targets.

In parallel to the reporting under the Framework Directive, which mainly focuses on compliance checking with obligations under the air quality directives, such as limit values, Member States are sending detailed information from their monitoring networks each year under the Exchange of Information Decision (EoI)¹.

Reporting stations under the Questionnaire have to be included in the set of stations reporting under the EoI. In the 2007 Questionnaire 98% of the reporting stations could be traced down in the EoI AirBase database. Only 100 monitoring stations out of 4064 could not be matched. This on the basis of the EoI station code which is present in both databases. This is a substantial improvement compared to the 2006 reporting year when 83% of the stations had an Airbase match.

Exceedances

The pollutants that exceed the limit value and target values the most in 2007 are PM_{10} daily and O_3 health. PM_{10} exceeds the limit value in 42% of all EU27 zones, for O_3 health this percentage is 46%.

If the EU27 zone exceedances of air quality pollutants are 'translated' to the number of people affected the conclusions are:

- 74% of EU27 population lives in zones exceeding PM₁₀ limit value (2006: 60%)
- 50% of EU27 population lives in zones exceeding NO₂ annual limit value (2006: 79%)
- 46% of EU27 population lives in zones exceeding O₃ health target value (2006: 38%)

Is the air quality getting any better? If the 2006 zone exceedances are compared with the 2007 results we can draw the following tentative conclusions

- PM₁₀ zone exceedances are slightly higher in 2006
- O₃ zone exceedances are 7% (health) and 19% (vegetation) higher and this sharp increase is not supported by specific weather conditions in 2007
- Number of zones exceeding the annual limit values of NO₂ and NOx increased with 5 and 7% between 2006 and 2007.

However, caution is needed interpreting these air quality trend conclusions as the number and designation of zone can differ from year to year.

On the basis of a Czech Republic resubmission of the Questionnaire in July 2009 the exceedance of the daily limit value for PM_{10} in one zone (CZ031- Jihočeský kraj) needs to be adjusted to 'exceeding the limit value'.

Council Decision 97/101/EC establishing a reciprocal exchange of information and data from network and individual stations measuring ambient air pollution within the Member States (amended by Commission Decision 2001/752/EC).

EU27	2006	2007
03-V	27%	46.4%
03 H	39%	46.2%
PM10 day	45%	42%
NO2 Yr	18%	23%
PM10 Yr	20%	17%
NOx	3%	10%
NO2 Hr	2%	3%
SO2 Day	3%	2%
SO2 Hr	2%	2%
Lead Yr	0.1%	0.6%
CO Yr	1%	1%
SO2 Wntr	2%	0.3%
Benzene Yr	0.2%	0.3%
SO2 Yr	1%	0%

^{*} form 8/9

Table 2: EU27 zone exceedances of limit or target value in 2006 and 2007

The general reason for the exceedances of the air quality that Member States report are in line with the conclusions of previous years and are summarized as local traffic, industry and domestic heating. More detailed for the most important pollutants are the dominant reasons:

PM₁₀ both daily and annual LV : local traffic, 31% (2006: 41%)
 NO₂ annual LV : local traffic, 69% (2006: 67%)

• O₃ alert threshold : other & not indicated, 81% (2006: 80%)

• SO₂ daily LV : other & not ind., 65%, industry, 18% (2006: 20%)

1 Introduction

Concerning **DATA QUALITY** of reporting year 2007, progress has been made when compared to reporting year 2006. Questionnaires have been received from all Member States and Norway and Iceland. 13 countries voluntary reported on the 4th DD. All countries used CDR for uploading the information.

Zones designated in Member States for the protection of human health should cover the whole territory and the total population of a Member State. A nearly complete coverage is in general found for sulphur dioxide (97%), nitrogen dioxide (98%), PM₁₀ (97%) and ozone (91%). Lower coverages are found in the case of lead (81%), benzene (81%) and carbon monoxide (88%). The general conclusion is that the designation of zones stil seems to be incomplete in a number of Member States.

Reporting stations under the Questionnaire have to be included in the set of stations reporting under the EoI. In the 2007 Questionnaire 98% of the reporting stations could be traced down in the EoI AirBase database. This is a big improvement compared to the 2006 reporting year (83%).

This document gives an overview of the annual reports by Member States to the European Commission on the results of the assessment of their air quality in 2007. These reports have been submitted under the Air Quality Framework Directive², following Commission Decision 2004/461/EC³, which specifies the information to be sent in detail and provides a set of forms (27) to be filled in. In the 2007-reporting an extended version of the questionnaire including additional forms to cover the 4th DD has been used. In the remaining of this report this Decision will be called 'the AQ questionnaire' or, when the context is clear, simply 'the questionnaire'.

This report has been prepared by the European Topic Centre on Air and Climate Change (ETC/ACC) of the European Environment Agency upon a request of DG Environment.

Form 0	General information, update history
Form 1	Contact body and address
Form 2	Delimitation of zones and agglomerations
Form 3	Stations and measuring methods used for assessment under first, second and fourth DD
Form 4	Stations used for assessment of ozone, including nitrogen dioxide and nitrogen oxides in relation to ozone
Form 5	Stations and measuring methods used for the assessment of recommended volatile organic compounds (3 rd DD) and other relevant PAH and metals in ambient air and deposition (4 th DD)
Form 6	Stations and measurement methods used for the assessment of other ozone precursor substances
Form 7	Methods used to sample and measure PM ₁₀ and PM ₂ ,5, ozone precursor substances, arsenic, cadmium, nickel, mercury, PAH: optional additional codes to be defined by the Member State
Form 8	List of zones and agglomerations where levels exceed or do not exceed limit

² Council Directive 96/62/EC on ambient air quality assessment and management.

-

Commission Decision 2004/461/EC laying down a AQ questionnaire to be used for annual reporting on ambient air quality assessment under Council Directives 96/62/EC and 1999/30/EC and under Directives 2000/69/EC and 2002/3/EC of the European Parliament and of the Council.

	values or limit values plus margin of tolerance for pollutants listed in first and second DD
Form 9	List of zones and agglomerations where levels exceed or do not exceed target values or long term objectives for ozone and arsenic, cadmium, nickel, B(a)P
Form 10	List of zones and agglomerations where levels exceed or do not exceed upper assessment thresholds or lower assessment thresholds, including information on the application of supplementary assessment methods
Form 11	Individual exceedances of limit values and limit values plus the margin of tolerance of pollutants listed in first and second DD
Form 12	Reasons for individual exceedances: optional additional codes to be defined by the Member State
Form 13	Individual exceedances of ozone thresholds
Form 14	Exceedance of target values of ozone, arsenic, cadmium, nickel, benzo(a)pyrene
Form 15	Annual statistics of ozone, arsenic, cadmium, nickel, and benzo(a)pyrene
Form 16	Annual average concentrations of ozone precursor substances of mercury and other relevant PAH and deposition rates of mercury and other relevant PAH
Form 17	Monitoring data on 10 minutes mean SO ₂ levels
Form 18	Monitoring data on 24hr mean PM _{2.5} levels
Form 19	Tabular results of and methods used for supplementary assessment
Form 20	List of references to supplementary assessment methods referred to in Form 19
Form 21	Exceedance of limit values for SO ₂ due to natural sources
Form 22	Natural SO ₂ sources: optional additional codes to be defined by Member State
Form 23	Exceedance of limit values of PM ₁₀ due to natural events
Form 24	Exceedance of limit values of PM ₁₀ due to winter sanding
Form 25	Consultations with other MS on transboundary pollution
Form 26	Exceedances of limit values laid down in Directives 85/203/EEC
Form 27	Reasons for exceedances of limit values laid down in Directives 85/203/EEC: optional additional codes to be defined by the Member State

Table 3: Listing of the 27 forms in the AQ Questionnaire

Member State reports addressed in this document

This document deals with the reports by the 27 EU Member States on the year 2007 submitted under the First Daughter Directive⁴, the Second Daughter Directive⁵, the Third Daughter Directive⁶ and the Fourth Daughter Directive⁷.

The assessments in this report are based on the information received by ETC/ACC before 01 May 2009 (note that the official deadline was 30 September 2008).

Assessments of the air quality in zones in the EU Member States based on the questionnaire for the years 2001-2006 are available from the web site of DG Environment⁸.

Modification of the questionnaire and related guidance has been prepared to enable reporting of 4th

Council Directive 1999/30/EC relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air (amended by Commission Decision 2001/744/EC).

Directive 2000/69/EC relating to limit values of benzene and carbon monoxide in ambient air.

Directive 2002/3/EC relating to ozone in ambient air.

Directive 2004/107/EC relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air.

⁸ http://ec.europa.eu/environment/air/quality/legislation/reporting.htm

Daughter Directive⁹ on a voluntary basis already for the reporting year 2007. This reporting will become mandatory in 2009. The only changes introduced in the questionnaire are the inclusion of relevant forms covering the reporting under the 4th DD; no changes or updates have been made in the parts covering the reporting under the first three DD. The updated questionnaire and guidance document have been made available at the website of DGEnvironment. Norway and Iceland submitted voluntary questionnaires.

Reporting under the Exchange of Information Decision

In parallel to the reporting under the Framework Directive, which mainly focuses on compliance checking with obligations under the air quality directives, such as limit values, Member States are sending detailed information from their monitoring networks each year under the Exchange of Information Decision (EoI)¹⁰. These extensive reports contain to a large extent individual 'raw' data (e.g. all hourly concentrations) and include extensive complementary information about the monitoring stations (metadata). The European Topic Centre on Air and Climate Change publishes annually an assessment of these reports (see, for the assessment of the 2007-data: Mol et al., 2009). To avoid duplicate reporting by Member States, some of the data that are needed for evaluating the reports under the Framework Directive (particularly the metadata of stations) are only sent under EoI. Deadline for submitting the EoI information is 1 October. In the assessment of those parts of the questionnaire related to monitoring stations, the information extracted from the EoI has been included.

Quality of the data received and implications for this overview

To facilitate the submission of the data, the Commission prepared a Guidance for reporting under 2004/461/EC ¹¹ and has made the AQ questionnaire available to the Member States in Excel format. This format does not reject erroneous data, and during the processing numerous small errors, e.g. spurious spaces, had to be removed before all reports could be joined in a database. A second form of trivial errors is the use of other symbols than prescribed in the questionnaire, for example, ticking an "x" or "+" in stead of the prescribed "y"; using a comma as separator while the semi-colon is prescribed. Although in general the information is unambiguous, a time consuming correction of this type of errors is necessarily for an automatic processing of the data.

There were also errors that required more insight for correction, such as inconsistent use of zone and pollutant codes or use of codes that were not allowed. Another difficult type of error is that MS do not use the same codes for stations in the AQ questionnaire and EoI reports.

Abbreviations used

Member States have been abbreviated following the ISO3166-1 country alpha-2 code 1:

Austria: AT; Belgium: BE; Cyprus: CY; Czech Republic: CZ; Denmark: DK; Estonia: EE; Finland: FI; France: FR; Germany: DE; Greece: GR; Hungary: HU; Ireland: IE; Italy: IT; Latvia: LV; Lithuania: LT; Luxembourg: LU; Malta: MT; Netherlands: NL; Poland: PL; Portugal: PT; Slovakia: SK; Slovenia: SI; Spain: ES; Sweden: SE; United Kingdom: GB², and Norway: NO.

⁹ Council Directive 2004/107/EC relating to arsenic, cadmium, mercury nickel and polycyclic hydrocarbons in ambient air.

Council Decision 97/101/EC establishing a reciprocal exchange of information and data from network and individual stations measuring ambient air pollution within the Member States (amended by Commission Decision 2001/752/EC).

¹¹ http://ec.europa.eu/environment/air/quality/legislation/pdf/guideline_questionnaire.pdf

AQ questionnaire	Questionnaire on air quality set out by Commission Decision 2004/461/EC
questionnaire	
CO	Carbon monoxide
Eol	Exchange of Information Decision: Council Decision 97/101/EC, amended by Commission Decision 2001/752/EC
EU27	The 27 EU Member States after accession of 12 new Member States in 2004 and 2007
LV	Limit value
MOT	Margin of Tolerance (see the legend to Tables 3 and 4)
MS	Member State(s)
NO_2	Nitrogen dioxide
NO_x	Nitrogen oxides
Pb	Lead
PM ₁₀	Particulate matter composed of particles smaller than 10 micrometer in aerodynamic diameter
PM _{2.5}	Particulate matter composed of particles smaller than 2.5 micrometer in aerodynamic diameter
03	Ozone
SO ₂	Sulphur dioxide
TV	Target value (O ₃)
LTO	Long Term Objective (O ₃)

Notes

1: see http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/index.html

2. including Gibraltar.

Data handling and procedures

In comparison with the 2006 reporting cycle the same procedures have been introduced for the 2007 cycle. This to increase the quality of the reported data.

The official deadline for submitting the official report to the Commission¹² is 30 September. Before starting analysing the data ETC-ACC introduced two data quality checks and the introduction of a preliminary assessment report on the data quality of the 2007 data. These data checks were performed by ETC-ACC and had a voluntary nature.

The first data quality check was a check of the readability of the data and a summary assessment on the number of zones, objectives, stations, methods per form as reported by a Member State. This assessment was sent to the national contact persons listed in the Questionnaire with the basic question: are the ETC-ACC summary conclusions right? If not, send us your feed-back and/or revisions.

On the basis of the CDR upload and the first data quality check the preliminary 2006 results report¹³ was written.

-

¹² Upon request by the Commission implemented through the uploading to the EEA CDR (Central Data Repository).

¹³ Reporting on ambient air quality assessment, Preliminary results for 2007, ETC/ACC Technical Paper 2008/4, December 2007, Frank de Leeuw and Edward Vixseboxse.

Procedure	Deadline	Purpose
CDR Upload Questionnaire	1 st October 2007	Comply with AQ Directive
1 st quality check	October / November 2007	Preliminary check on readability of data / forms
Preliminary report	December 2007	Preliminary assessment of dataquality
2 nd quality check	March / April 2008	Check on (in)consistency mistakes, missing data

Table 4: New data quality procedures in 2006

The second data quality check was a check on mistakes, errors and inconsistencies of the reported data in the Questionnaire. Every Member State received a tailor-made excel spreadsheet on the mistakes and errors on the designation of zones and the missing data the ETC-ACC detected. We included the forms in which revision data could be reported.

All in all, the data quality in 2007 has been improved through the two quality checks procedures. Communication and response with and from Member States was good especially as the data checks were of a voluntary nature.

Main findings

Data quality

		Overvie	w 2008/2	2009 FWI	DAQ Re	portir	ıg (Air Qu		a of 2007)	
Alpha-2	Country (#) Short name	Question naire arrived at ETC/ACC	GIS info	Date 1st feedback report to MS	Date MS reply to feedback 01	Info on 4DD	Date 2nd feedback report to MS	Date MS reply to feedback 02 (deadline 06-04)	xis Update?	Remarks?
AT AT	Austria *	19-09-08	2006(d)	08-10-08	08-10-08	VOC			-	
BE	Belgium *	29-09-08	update	08-10-08	10-10-08	yes no	06-03-09	12-03-09		
BG	Bulgaria *	24-09-08	2006(d)	08-10-08	15-10-08		00-03-09	12-03-09	yes -	
CY	Cyprus *	30-09-08	2006(d) 2006(d)	08-10-08	13-10-06	yes ves	-	-	-	
CZ	Czech Republic *	26-09-08	2006(d) 2006(f)	08-10-08	27-10-08	,	-	-	-	
DE		19-09-08		08-10-08	08-10-08	yes	06-03-09	03-04-09		
DK	Germany * Denmark *	29-09-08	update update	08-10-08	00-10-08	yes no	06-03-09	03-04-09	yes ves	
EE		30-09-08			13-10-08		- 06-03-09	03-04-09	yes -	
ES	Estonia *	26-09-08	2006(d)	08-10-08 08-10-08	13-10-08	yes	- 06-03-09	03-04-09		
FI	Spain * Finland *	03-10-08	update 2006(d)	08-10-08	10-10-08	no	06-03-09		yes	
						no	- 00.00	-	- Nie week	
FR	France *	26-09-08 25-09-08	update	08-10-08	09-10-08	yes	06-03-09		No reply	
GB	United Kingdom *(g)		2006(d)	08-10-08	00.40.00	yes	- 00.00		-	No conditions a board Familia a 1.00
GR	Greece *	18-09-08	2006(d)	08-10-08	09-10-08	yes	06-03-09	23-03-09		No update received Feedback0:
HU	Hungary *	26-09-08	2006(d)	08-10-08		no	06-03-09	09-04-09		
IE	Ireland *	11-09-08	2006 (d)	08-10-08		yes	06-03-09	13-03-09	yes	
IS	Iceland **	19-01-09			-	no	06-03-09	06-04-09	yes	
IT	Italy * (b)	01-10-08	0000 (-1)	08-10-08		no	06-03-09		No reply	
LT	Lithuania *	25-09-08	2006 (d)	08-10-08		yes	-	-	-	
LU	Luxembourg *	31-03-09	2006 (d)	-	-	no	-	- 40.00.00	-	
LV	Latvia *	24-09-08	2006 (d)	08-10-08	22-10-08	yes	06-03-09	19-03-09	yes	
MT	Malta *	17-09-08	2006(d)	08-10-08		no	06-03-09	17-04-09	yes	
NL	Netherlands * (a)	19-11-08		-	-	no	06-03-09	15-04-09	yes	
NO	Norway **	05-12-08		-	-	no	06-03-09	31-03-09	yes	
PL	Poland *	26-09-08	update	08-10-08		no	06-03-09	06-04-09	yes	
PT	Portugal *	30-09-08	2006 (e)	08-10-08		no	06-03-09	06-04-09	yes	
RO	Romania *	29-09-08	update	08-10-08	08-10-08	no	06-03-09	03-04-09	yes	
SE	Sweden *	26-09-08	2006 (d)	08-10-08		yes	06-03-09	20-03-09	yes	
SI	Slovenia *	25-09-08	2006 (d)	08-10-08	20-10-08	no	06-03-09	10-03-09	yes	
SK	Slovak Republic *	19-09-08	2006 (e)	08-10-08	30-10-08	no	06-03-09	02-04-09	yes	
* EU-27 country ** Non EU-27 country (a) unofficial draft (b) 13 regions only, 6-10-2008: in total 16 regions										
(c)	note that a reply is only no	eded when r	nistakes has	heen detected						
						b.	-M4			
(d)	designation of zones not		data 2006 us	sea			ation of existing			
(f)	only change in coding of :	zone			(g) questionr	naire for G	ibraltar delivere	ed 29-09-08		
(#) ISO3166-1 codes: Alpha-2 element and Short Name										

Table 5: 2007 Questionnaire quality checks result overview

CDR Upload (1st October 2008)

24 Member States of a total of 27 had respected the Questionnaire upload deadline of 30 September 2008. Finland uploaded the Questionnaire in October 2008. On 1 October 2008 an incomplete set of the Italian questionnaire was available; information from the missing regions was received in January and March of 2009. Of the two voluntary reporting countries, Iceland and Norway, both did not comply with the deadline. Norway uploaded the Questionnaire in December 2008, Iceland in January 2009

The Netherlands uploaded the Questionnaire in November 2008 and Luxembourg was last uploading at the end of March 2009.

1st Data quality check (19th October 2008)

The first data quality check was sent to the Member States on the 08^{th} of October. Goal was to check readability of the data and forms of the Member States. The ETC-ACC summary conclusions on number of zones, objectives, stations and methods was send back to the MS. Basic question was: is our assessment right? 13 of 25 Member States (a response of more than 50%) responded with a confirmation that the data is correct or with a revision.

Not sending any revision could mean one of both: there are no mistakes or there are mistakes but there was no reply.

Thirteen member States reported voluntary on the Fourth Daughter Directive.

The 2007 preliminary report (December 2008)

On the basis of the CDR upload and the first data quality check the preliminary results were reported. The main conclusions related to the quality of the information were:

- Data from Luxembourg, The Netherlands and several regions from Italy were missing at that time.
- The number of Air quality management zones has reduced significantly.
- Voluntary reported information on area and population numbers in zones is present for 99% (area) and 99% (population). This was 89% (area) and 98% (population) in 2006.
- \bullet Mandatory zone designation data is missing for the health protection target pollutants. Coverage is better for SO_2 , NO_2 , PM_{10} , and O_3 than for lead, benzene and CO
- Voluntary info on the 4th DD pollutants has been provided by 14
 Member States. For the heavy metals (arsenic, cadmium, nickel) a
 limited number of non-complying zones has been reported. The largest
 problems have been observed for benzo(a)pyrene: non-compliance areas
 are found in 7 Member States

2nd Data quality check (20th February 2009)

The second data quality check was a content check on mistakes, errors and/or (in) consistencies in the reported data on zones and the air quality status in these zones¹⁴. Eighteen Member States and Norway and Iceland were sent a tailor-made excel spreadsheet with the mistakes and the corresponding forms for revision. Basic question was to update the data and send this back to ETC-

Exchange of Information decision) will be targeted in later years.

¹⁴ The questionnaire in the form of an unprotected excel spreadsheet is sensitive for mistakes; by its complex structure with about 80 different sheets the risk of inconsistency in the information in the various sheets is high. As the designation of zones forms the basis of the assessments the ETC/ACC focussed this year on improve this information. Other potential inconsistencies (e.g in the reported monitoring stations and their link to the

ACC for renewed processing.

Response was good with 18 Countries responding except for France and Italy. Greece replied but did not send an update of the data. The all in all conclusion is that the data quality greatly improved as result of this feedback action.

The final dataset of data on which this report is based is the dataset that has been 'frozen' in the beginning April 2009. This is the data that was adjusted as a result of the Member States revisions on the basis of the two data quality check responses.

Air quality health standards

Humans can be affected by exposure to air pollutants in ambient air. In response, the European Union has developed an extensive body of legislation which establishes health based standards and objectives for a number of pollutants in air. These standards and objectives are summarised in the table below. These apply over differing periods of time because the observed health impacts associated with the various pollutants occur over different exposure times. $PM_{2.5}$ has been introduced in the new 2008 directive of the European Parliament and of the Council on ambient air quality and cleaner air for Europe directive. An indicative limit value of $20 \,\mu\text{g/m}^3$ by 2020 to be confirmed at review in 2013 is also set. In addition 2 new exposure related obligations are set 15 .

Under EU law a limit value is legally binding from the date it enters into force subject to any exceedances permitted by the legislation. A target value is to be attained as far as possible by the attainment date and so is less strict than a limit value. Table 6 shows the EU air quality health standards

Pollutant	Concentration	Averaging period	Legal nature	Permitted exceedances each year
Fine particles (PM2.5)	25 μg/m3*** 25 μg/m3 20 μg/m3	1 year	Target value enters into force 1.1.2010 Limit value enters into force 1.1.2015 Indicative limit value enters into	n/a
			force 1.1.2020 (to be confirmed)	
Sulphur dioxide	350 μg/m3	1 hour	In force	24
(SO2)	125 μg/m3	24 hours	In force	3
Nitrogen dioxide (NO2)	200 μg/m3	1 hour	Limit value enters into force 1.1.2010	18
	40 μg/m3	1 year	Limit value enters into force 1.1.2010*	n/a
PM10	50 μg/m3	24 hours	In force**	35
	40 μg/m3	1 year	In force**	n/a

_

¹⁵ For more details seehttp://ec.europa.eu/environment/air/quality/standards.htm

Lead (Pb)	0.5 μg/m3	1 year	In force (or 1.1.2010 in the immediate vicinity of specific, notified industrial sources; there 1.0 µg/m3 limit value applies from 1.1.2005 to 31.12.2009)	n/a
Carbon monoxide (CO)	10 mg/m3	Maximum daily 8 hour mean	In force	n/a
Benzene	5 μg/m3	1 year	Limit value enters into force 1.1.2010**	n/a
Ozone	120 μg/m3	Maximum daily 8 hour mean	Target value enters into force 1.1.2010	25 days averaged over 3 years
Arsenic (As)	6 ng/m3	1 year	Target value enters into force 31.12.2012	n/a
Cadmium (Cd)	5 ng/m3	1 year	Target value enters into force 31.12.2012	n/a
Nickel (Ni)	20 ng/m3	1 year	Target value enters into force 31.12.2012	n/a
Polycyclic Aromatic Hydrocarbons	1 ng/m3 (expressed as concentration of Benzo(a)pyrene)	1 year	Target value enters into force 31.12.2012	n/a

Table 6: EU air quality health standards

^{*}Under the new Directive the Member State can apply for an extension of up to five years (i.e. maximum up to 2015) in a specific zone. Request is subject to assessment by the Commission. In such cases within the time extension period the limit value applies at the level of the limit value + maximum margin of tolerance (48 µg/m3 for annual NO2 limit value).

^{**}Under the new Directive the Member State can apply for an extension until three years after the date of entry into force of the new Directive (i.e. May 20011) in a specific zone. Request is subject to assessment by the Commission. In such cases within the time extension period the limit value applies at the level of the limit value + maximum margin of tolerance (35 days at 75µg/m3 for daily PM10 limit value, 48 µg/m3 for annual Pm10 limit value).

^{***}Standard introduced by the new Directive.

2 Zoning in Member States

The number of zones in 2007 in the EU27 (909) was significantly lower than in 2006 (EU25: 1056).

The 2007 zoning adjustments compared to 2006 are:

- Poland reduced the number of zones from 362 to 186 zones
- Italy added 22 zones. Reason: in 2006 Italy did not report for the whole national territory.
- Romania added 17 zones. Reason: in 2006 Romania did not report for the whole national territory.

Voluntary information for 'Area size' (99%) and 'Population totals' (99%) per zone was submitted by the Member States and is almost complete. This is greatly improved compared to 2006.

The share of zones classified as agglomeration is 30% in the EU27. Population living in zones classified as agglomerations is on the other hand approx. 35%.

The total number of zones differs for each pollutant. The highest number of zones are designated for NO_2 (819) and PM_{10} (809).

How have the Member States designated their zones?

Designated zones in the Member States to assess and manage air quality vary widely dependant on the chosen variable: size, population, measured individual pollutant or types of protection targets.

The total number of zones that Member States design to assess and manage air quality is not strictly defined. Member States are free in defining their own zone structure and characteristics (population and area) to account for local specificity which makes mutual comparison of final results between countries more difficult.

The total number of zones in the Member States ranges from 186 in Poland to 1 zone in Cyprus.

Table 7 and Table 8 give an overview of the total number of zones defined in 2004 to 2006. The total number of 1056 zones in 2006 is, notwithstanding the enlargement with Bulgaria (6 zones) and Romania (4 zones), lower than in 2005 (1064 zones, Vixseboxse and de Leeuw, 2007). Luxembourg is designated in 3 zones and reported for the first time in four years. These 3 zones are included in the 2006 data and were absent in 2005.

Compared to 2005 three Member States (DE +2, GB +1, FR +1) had more zones designated and two Member States (ES -2, IT -23) had less zones designated. The difference between 2005 and 2006 zone designation is mainly caused by the missing information from Italy: only 16 from the 21 regions have submitted a questionnaire.

		S	02	NO ₂	NO,				
Member State	All Zones	Health	Eco- Systems	Health	Vegetation	PM ₁₀	Lead	Benzene	со
AT	19	11	8	11	8	11	11	11	11
BE	18	12	0	11	0	11	13	5	7
BG	6	6	1	6	1	6	6	5	6
CY	1	1	1	1	1	1	1	1	1
CZ	15	15	15	15	15	15	15	15	15
DE	120	79	15	85	15	82	72	84	84
DK	3	3	3	3	1	3	3	1	3
EE	4	4	4	4	4	4	4	3	4
ES	138	138	35	138	36	138	138	138	138
FI	18	14	1	14	1	14	14	3	14
FR	81	81	75	81	75	80	45	53	57
GB	44	44	44	44	44	44	44	44	44
GR	4	4	4	4	4	4	0	1	4
HU	11	11	0	11	0	11	11	11	11
Œ	4	4	1	4	1	4	4	4	4
П	143	123	100	134	104	129	77	115	120
LT	3	3	1	3	0	3	3	3	3
LU	3	2	0	2	0	0	3	1	0
LV	2	1	1	1	1	1	1	1	1
MT	2	2	1	2	1	2	1	2	1
NL	9	9	1	9	1	9	9	9	9
PL	186	170	125	170	125	170	170	170	170
PT	27	24	7	25	8	25	1	1	1
RO	21	21	1	20	1	21	21	19	20
SE	6	6	6	6	6	6	6	6	6
SI	10	9	9	5	5	5	5	5	5
SK EU27	11 909	10 807	10 469	10	10	10 809	7	10 721	10 749
IS	3	80 7	409	819	468 0	3	685	721	749
NO NO	7	3	3	7	0	7	0	7	5
ALL	919	812	472	828	468	819	687	730	756
* form		012	4/2	040	400	017	007	730	750

^{*} form 0/1/2

Table 7: Number of zones per Member State and pollutants, 2007

MS	Total zones 2004	Total zones 2005	Total zones 2006	Total zones 2007
AT	19	19	19	19
BE	17	17	17	18
BG			6	6
CY	1	1	1	1
CZ	15	15	15	15
DE	145	118	120	120
DK	10	10	10	3
EE	16	4	4	4
GB	43	43	44	44
GR	4	4	4	4
ES	140	140	138	138
FI	18	18	18	18
FR	85	87	88	81
HU	11	11	11	11
Œ	4	4	4	4
ΠŤ	137	144	121	143
LT	3 3		3	3
LU			3	3
LV	2	2	2	2
MT	3	2	2	2
NL	9	9	9	9
PL	362	362	362	186
PT	26	26	26	27
RO⁺			4	21
SE	6	6	6	6
SI	9	9	9	10
SK	10	10	10	11
EU25	1095	1064	1046	882
EU27			1056	909

^{*} No country coverage in 2006

Table 8: Trend total number of zones per Member State, 2004-2007

^{*} form 0/1/2

Zone area size and population in zones

How complete is the reported voluntary information on population and area size in the zones?

For the EU27 as a whole population data is missing in 1% of the zones and the same accounts for area information. National totals on area and population provided by Eurostat¹⁶ and FAO¹⁷ have been used here as a reference.

	200	7	2006				
	#	%	#	%			
EU27 Zones total	909	100%	1 065	100%			
Population info	901	99%	1 041	98%			
Area info	903	99%	957	89%			

^{*} form 0/1/2

Table 9: Voluntary zone info on area and population, percentage refers to the total EU27 population and area in 2007

About 35% of the EU27 population lives in zones (PM_{10}) that are classified as agglomeration (Table 10). This percentage of population in agglomerations is roughly the same for all other health protection target pollutants (SO_2 , NO_2 , Pb, benzene, CO, O_3).

MS	total population	PM10
AT	8 265 925	25%
BE	10 511 382	23%
BG	7 718 750	100%
CY	766 414	0%
CZ	10 251 079	28%
DE	82 437 995	34%
DK	5 427 459	23%
EE	1 344 684	34%
ES	43 758 250	51%
FI	5 255 580	19%
FR	62 998 773	40%
GB	60 393 100	42%
GR	11 125 179	39%
HU	10 076 581	24%
IE	4 209 019	25%
П	58 751 711	43%
LT	3 403 284	27%
LU	469 086	0%
LV	2 294 590	31%
MT	405 006	68%
NL	16 334 210	31%
PL	38 157 055	24%
PT	10 569 592	41%
RO	21 610 213	27%
SE	9 047 752	31%
SI	2 003 358	19%
SK	5 389 180	12%
EU27	492 975 207	35%
IS	299 891	64%
NO	4 640 219	27%

^{*} form 0/1/2

Table 10: Population in agglomerations¹⁸, in 2007

¹⁶ http://epp.eurostat.ec.europa.eu/

¹⁷ http://faostat.fao.org/

¹⁸ 'agglomeration' shall mean a zone with a population concentration in excess of 250 000 inhabitants or, were

Mandatory MS zone area and population coverage

How do Member States comply (total population and area) with the health protection target?

The limit values for the protection of human health apply throughout the whole territories of the Member States, so areas that do not belong to any zone related to health protection should not exist. Similar, the population living is zones related to health protections should add up to the national total population numbers.

Table 28 and Table 29 in compare the totals of area and population calculated for each of the objectives with the corresponding national area and population. For most, but not all Member States the total surface area of the health-related zones indeed added up to the total surface area of the country within a range of 5%. Small deviations from the 100% are to be expected in view of the different information sources and by difference in base year of the census. It should be mentioned that reporting on the 4th DD pollutants was voluntary so the data presented here has an incomplete character as not all Member States reported. For the EU27 as a whole the total area covered by zones for the health related pollutants is above 90% for SO₂, NO₂, PM₁₀ and O₃. Above 80% coverage have lead, benzene and CO.

In three Member States (CZ, GB and SE) the population totals are the same for all 10 pollutants (including 4th DD heavy metals) and are close to the 100% indicating that the total territory has been assigned. Finland also has full population coverage but did not yet report on the 4th DD yet. For the other countries the coverage may add to about 100% but it varies slightly for the various pollutants. This indicates (minor) inconsistencies in the zone designation and/or minor errors in the population numbers per zone.

A nearly complete coverage is in general found for SO₂, NO₂, PM₁₀ (with exceptions for LU, LV and PT) and O₃ (except BE, IT, LU, LV, RO and SI). Lower coverage's are found in the case of lead, benzene and CO.

the population concentration is 250 000 or less, a population density per km2 which for the Member States justifies the need for ambient air quality to be assessed and managed (Council Directive 96/62/EC, 27 September 1996).

3 Air quality exceedances

The number of zones in Member States in 2007 where the limit or target value was exceeded was greatest for the O_3 (46%) target value to be attained in 2010. Concentration levels in 42% of the zones exceeded the PM_{10} daily limit value.

The EU27 population affected by these exceedances was even greater. The percentage of population living in zones where the AQ threshold was exceeded is 47% for daily PM_{10} and 48% for O_3 health.

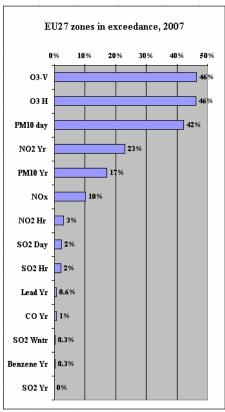
The main reported single reasons for the zone-exceedances are local traffic (PM_{10} day, NO_2 year), industry (O_3 health, SO_2) and domestic heating (SO_2 health day).

Introduction

If measurements or model calculations show that a limit value or limit value plus margin of tolerance is exceeded somewhere in the zone, the whole zone is designated as being in exceedance of this threshold.

▶ It should be noted that the number or percentage of zones in exceedance is only a crude indicator for the area in exceedance. In the first place, the exceedance area might be the entire zone area or just a few hundred square metres at a hotspot. In the second place, some Member States have made very large zones, so very few zones, for pollutants that are everywhere substantially below the air quality thresholds. Hence, the number or percentage of zones cannot be used to estimate the area in exceedance or to compare actual population exposure to air pollution between different Member States or even between regions within a Member State.

Number of zones in exceedance


Which pollutants exceed the limit or target value the most?

The number of zones in Member Sates in 2007 where the limit or target value was exceeded was greatest for PM_{10} daily (42%) and O_3 health (46%).

Has the air quality improved in 2007 compared with a year ago?

Compared to the 2006 zone exceedances the most striking was the increase by 7% of the zones where levels were exceeding O₃ health target value to be attained in 2010. This is a second year in a row increase as between 2005 and 2006 the O₃ zones in exceedance increased with 5%. This is however not explained¹⁹ by the specific 2007 weather conditions in Europe. During summer 2007 no elevated ozone levels have been observed throughout whole Europe.

¹⁹ Air pollution by ozone in Europe in summer 2006, EEA technical report No 5/2008

* form 8/9

Table 11: Zone exceedances in 2007²⁰

On the whole for the EU27 (see Table 2), PM₁₀ zone-exceedances slightly decreased between 2006-2007, O₃ exceedances increased considerable, NO₂ zone-exceedances increased by 5% and for the rest of the pollutants zone-exceedances are of minor importance and/or were equal to 2006 zone-exceedances.

Table 30 and Table 31 show the number of zones in exceedance, per Member State and pollutant in 2007. There are some discrepancies between the number of zones listed in Table 7 and the numbers presented in Table 30 and Table 31. This is due to the fact that in a number of cases the air quality status has been given for a zone while this zone was not designated for this pollutant/protection target. To a large extent these discrepancies might result from mistakes (e.g. misprinting zone codes) in the respective forms. It is expected that the noted discrepancies in zone definitions has not influenced the conclusions at the aggregated level presented here.

2007 exceedance maps for PM_{10} and O_3

Figure 1 and Figure 2 show the EU27 zone exceedance maps for PM_{10} day and O_3 health target to be attained in 2010. The white areas in the maps represent areas in Member States that were not designated into zones. The yellow territories are areas that were designated into zones but air quality status was not reported on. In both cases those Member States did not comply with the framework Directive as zoning and reporting is mandatory for all health related pollutants.

Figure 1 shows exceedances of the PM_{10} daily limit value in a number of isolated urban agglomerations and regions with well-documented high PM_{10} levels (Po valley, Central Europe, Ruhr area, Netherlands, Northern Belgium, London, see for example the monitoring based maps presented

-

²⁰ For NO₂ and ozone the limit value and target value attainment date is 2010

in Horálek et al., 2008). On the other hand, it also suggests widespread exceedances in the Nordic countries. Here exceedance has been observed at one or two hot-spot station resulting in a whole non-compliance zone.

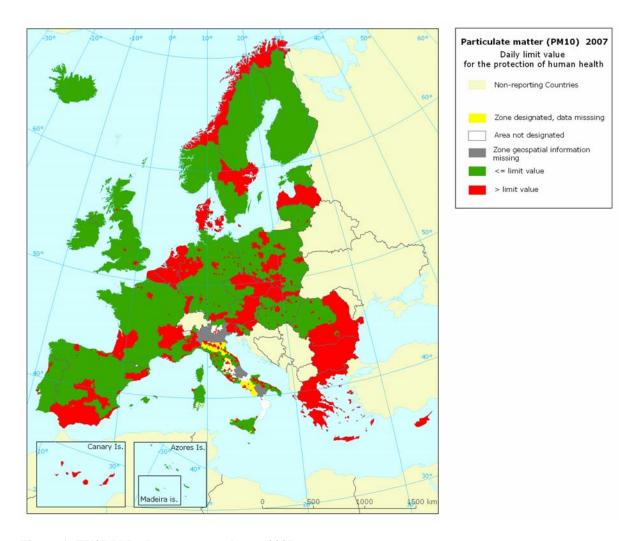


Figure 1: EU27 PM_{10} day zone exceedance, 2007

The EU27 maps in the Annex of this chapter show the zone-exceedances for all the other reported pollutants in the Questionnaire.

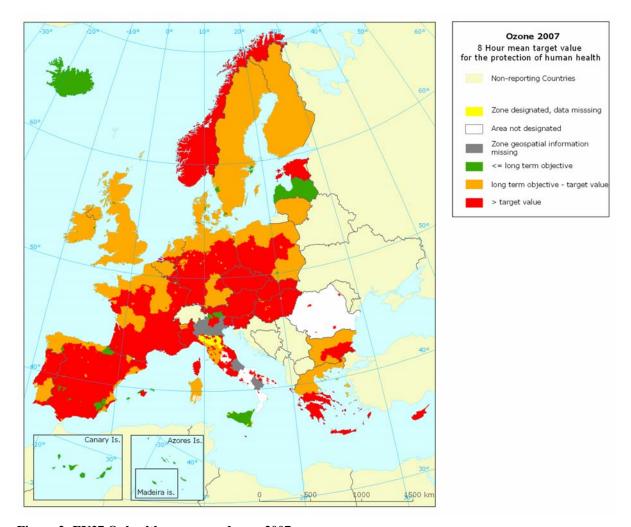
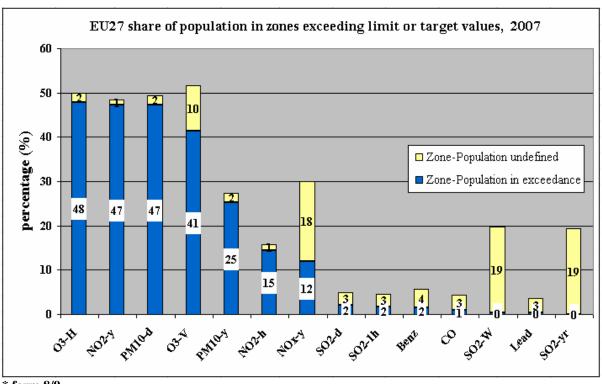



Figure 2: EU27 O₃ health zone exceedance, 2007

Population in zones with exceedances

How many people live in zones where the limit or target value is exceeded?

Figure 3 shows that 47% of the EU27 population lives in zones where the PM_{10} limit value is exceeded. For NO_2 and O_3 health the percentages population affected are the same. On the other hand, the number of zones that exceeded the AQ thresholds is 42% (PM_{10} day); 46% (O_3 health) and 23% (NO_2 year).

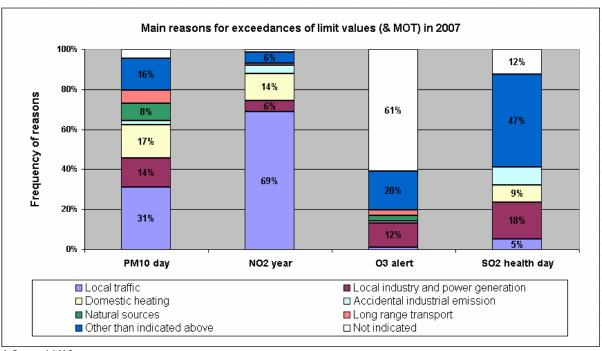

* form 8/9

Figure 3: Population in zones exceeding air quality thresholds, 2007

Reported reasons of exceedances

What are the reported reasons for the exceedances in the zones according to the Member States?

For the daily PM_{10} the most mentioned single reason mentioned exceedance causes are local traffic (31%) and industry (14%). NO_2 year exceedances are caused predominantly by local traffic (69%). For exceedances of the ozone alert threshold a reason has not been given in most of the cases. The main reported reasons for daily SO_2 health zone-exceedances are domestic heating (9%), local industry (18%) and local traffic (5%).

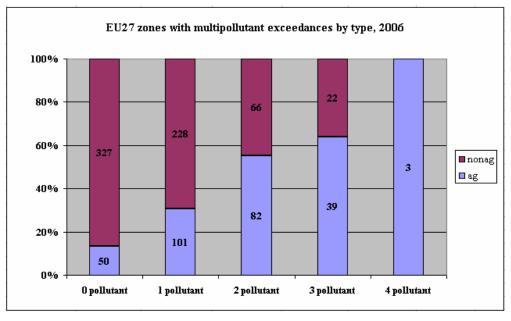

^{*} form 11/13

Figure 4: Reported reasons for zone exceedances, 2007

Figure 4 shows the main reasons mentioned for exceedances for daily PM_{10} , yearly NO_2 , O_3 health and daily SO_2 . The percentages mentioned are the shares from the total reported reasons by the Member States.

Multi exceedances in the same zone

How many zones are there in the EU where air quality thresholds are exceeded for several pollutants?

^{*} form 8/9

Figure 5: EU27 multi-pollutant exceedance zones by zone-type, 2007

Figure 5 shows that in about 16% (148) of all zones (909) the limit or target values of two or more pollutants have been exceeded simultaneously. These zones require most challenging integrated air pollution assessment strategies. In 2007 there are 148 zones in the EU27 that have air quality thresholds exceedances for 2 pollutants. There are 71 and 3 zones that have zone exceedances for 3 and 4 pollutants.

In which Member States are these multi exceedances zones located?

* Form 8/9

Table 34 in the annex of this chapter shows the numbers of multi exceedance zones per Member State. The Member States with zones where 4 pollutants exceed the air quality threshold are located in BG and RO.

There are 12 Member States with zones where 3 pollutants exceed thresholds. In this multi pollutant exceedance category Italy has 26 zones and France 9 zones.

How many people live in these zones with multi pollutant exceedances in the EU27?

Table 12 shows the population that is affected by pollutant exceedances. The number of people living in zones with 4 pollutants in exceedance amount to 3.6 million in the EU27. 72 Million and 121 million people live in zones with respectively 3 and 2 pollutant zone exceedances.

EU 27 populat							
		0 pollutant	l pollutant	2 pollutant	3 pollutant	4 pollutant	Grand Total
	ag	14 538 992	41 870 705	79 062 736	45 538 130	3 629 371	184 639 934
EU 27	nonag	190 279 897	182 534 210	42 674 345	26 712 138	0	442 200 590
	Grand Total	204 818 889	224 404 915	121 737 081	72 250 268	3 629 371	626 840 524

^{*} form 0/1/2/8/9

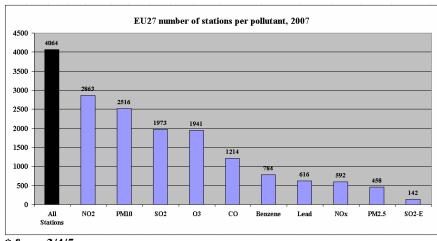
Table 12: EU27 Population in zones with multi-pollutant exceedances, 2007 (ag = agglomeration; nonag = other zones but agglomerations).

4 Statistics on stations and methods

The total number of AQ measuring stations in 2007 in the EU27 (4064) used for the assessment under the ambient air quality directives was 322 stations less than in 2006 (EU27: 4386). This decrease is mainly explaned by the Polish restructuring of zones and stations.

Most of the EU27 stations measure the pollutants NO_2 (70%), PM_{10} (61%), SO_2 (49%) and O_3 (48%).

The measuring stations can be qualified by type and location. The dominant station type is 'background' (56%) and the most occurred location is 'urban' (49%). It should be mentioned that this detailed station information does not originate from the Questionnaire reporting but from a link between Questionnaire stations and Airbase stations.


Almost all stations (88%) measure for health protection targets in 2006 which is about the same compared with the 2006 reporting cycle (86%).

Zone characteristics and pollutant type determine the minimum number of stations in a zone. The largest deficiency of monitoring stations is for O_3 (31%), PM_{10} (20%) and benzene (5%) in 2007.

The most used measuring method for PM_{10} is 'beta absorption' (41%). For $PM_{2.5}$ this is also 'beta absorption' (39%). The 'gravimetric' method (reference method) is both for PM_{10} (24%) and $PM_{2.5}$ (28%) the second most used method.

Number of stations and share of pollutants

What is the total number of monitoring stations in the EU27?

^{*} form 3/4/5

Figure 6: Total number of EU 27 AQ measuring stations per pollutant, 2007²¹

_

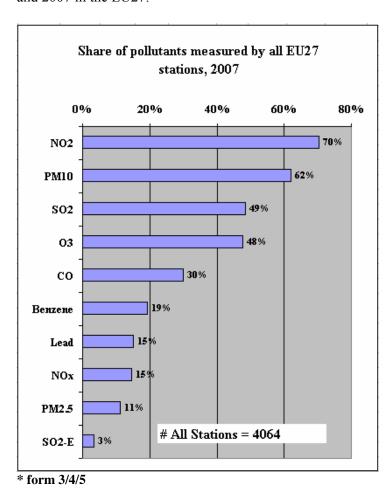
²¹ Source: Airbase

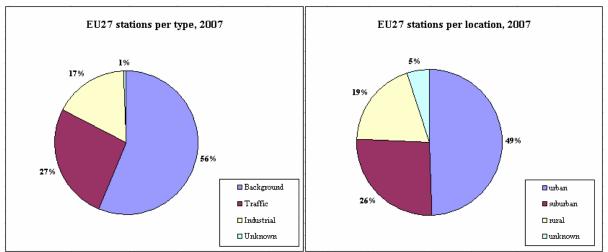
Compared to the 2006 reported number of stations the total number decreased with 322. This reduction is especially due to Poland which reduced its number of zones from 362 to 186. The most widely measured pollutants are NO_2 (70%), PM_{10} (61%) and SO_2 (49%) in 2007.

Depending on the level of air quality, Member States can use measurements, mathematical models and other methods for the assessment of their air quality. As required by the air quality legislation the monitoring networks are the backbone of the assessment system.

And which pollutants do the monitoring stations mainly measure?

Figure 6 and Figure 7 show that the pollutants that are measured mainly are NO_2 , PM_{10} and SO_2 . One and other is obviously related to the station density requirements and policy importance, which reflect the likelihood of exceedance of limit values and ozone thresholds. On top of this, there also seems to be a historic lag, causing 'old' pollutants (SO_2 , NO_2/NO_x) to be measured more extensively than the newer ones (PM_{10} and benzene). This is particularly true for $PM_{2.5}$. However, the absolute number of monitoring stations that measure $PM_{2.5}$ increased from 296 to 485 (= 61%) between 2006 and 2007 in the EU27.




Figure 7: Share of pollutants measured by all EU27 stations, 2007

Type and location of monitoring stations

What are the dominant type and location of the monitoring stations?

Of all EU27 monitoring stations the dominant station types are 'background' (56%) and 'traffic'

(27%).

* form 3/4/5

Figure 8: EU AQ measuring stations per type and location, 2007²²

The dominant locations for all monitoring stations are 'urban' (49%) and 'suburban' (26%) in 2007 (Figure 8). The type and location of the monitoring stations is generally in line with the directive requirements, focused at measuring the potential exposure of the population and to a lesser extent identifying highest concentrations in the zone. There is however strong variance between the Member states.

Purposes of stations

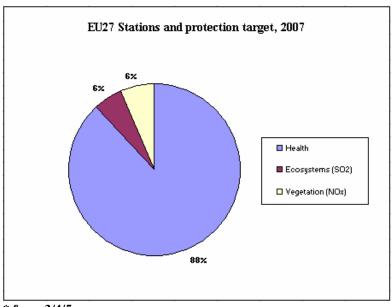

What is the final purpose of the monitoring stations?

Figure 9 and Table 36 in the Annex of this chapter show that stations mainly measure for the purpose of the health protection target (88%). Stations measuring for the purpose of the ecosystem and vegetation target both equal 7% in 2006. Compared to the 2005 reporting year the share of stations measuring for human health is down from 90%.

All stations should be used for the assessment of the air quality in relation to the limit values for health protection, but for the assessment in relation to the limit values for ecosystems (SO_2) and vegetation (NO_x), only stations should be used at sufficient distance from sources and representative of an area of at least 1000 km^2 . As this excludes urban, industrial and traffic stations, the number is substantially lower: 7 % is used for ecosystem protection (SO_2) and also 7 % for vegetation (NO_x). The function of the stations was only filled in for 56 % of the total EU27 number of stations. Germany, Denmark, Poland and Slovenia didn't supply station function data.

.

²² Source: Airbase

* form 3/4/5

Figure 9: EU27 AQ measuring stations and protection target, 2007

Stations monitoring ozone precursors

How many stations reported on measurements of ozone precursors (Table 13)? And what was mainly measured?

In 2007, 3 countries (CY, IS and NO) didn't report any results of VOC measurements, including benzene. Five Member States only reported on benzene (BG, EE, LU, LV and RO). The substances mainly monitored are benzene (491 stations), toluene (333 stations) and o-Xylene (257 stations).

The Third Daughter Directive requires Member States to measure ozone precursors, for trend analysis, for checking the efficiency of emission reduction strategies and the consistency of emission inventories and to help attribute emission sources of pollution concentrations. An additional aim is to support the understanding of ozone formation and precursor dispersion processes, as well as the application of photochemical models. Member States must take these considerations into account when choosing the number and siting of stations; there should be at least one station per Member State.

Mention should be made that reporting by the Member States of the reactive VOCs is very limited compared to the less reactive aromatic compounds.

	EU27#
voc	Stations
Ethane	27
Ethylene	27
Acetylene	27
Propane	27
Propene	27
n-Butane	35
i-Butane	34
1-Butene	37
trans-2-Butene	44
cis-2-Butene	44
1.3-Butadiene	34
n-Pentane	57
i-Pentane	46
1-Pentene	39
2-Pentene	25
Isoprene	40
n-Hexane	65
i-Hexane	26
n-Heptane	64
n-Octane	55
i-Octane	37
Benzene	491
Toluene	333
Ethyl benzene	209
m+p-Xylene	235
o-Xylene	257
1,2,4-Trimeth.benzene	43
1,2,3-Trimeth.benzene	36
1,3,5-Trimeth.benzene	43
Formaldehyde	4
Total non-methane	
hydrocarbons	67

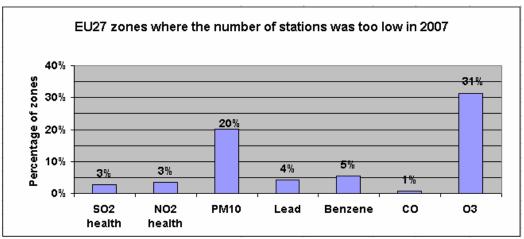
^{*} form 3/4/5

Table 13: EU27 number of stations monitoring ozone precursors, 2007

Zones where the number of stations was too low

For which pollutants was the number of stations in a zone too low?

The three main pollutants (Figure 10) for which the number of stations in a zone was too low in 2007 were O_3 (31%), PM_{10} (20%) and benzene (5%). Compared with 2006 the situation for O_3 has greatly worsened (was 12%), PM_{10} is the same (was 21%) and for benzene is improving (was 24%).


Information is based partly based on voluntary reported population and area data. The population and area coverage of the Member States has greatly improved in 2007 (99%) when compared to the 2006 (89%) reporting year. In 2007 only a few individual zones (in BE, DE and IT) did not report on the voluntary population and area data. The 'number of zones with too low a number of stations per assessment regime' and 'per Member State / pollutant' is shown in * form 10 Table 39 and Table 40 in chapter 7.

Stations related to health protection

The first two daughter directives list the minimum number of stations per zone for air quality

assessment in relation to diffuse sources and in relation to health protection limit values. This minimum number depends on exceedance of the upper or lower assessment threshold (the assessment regime) specified in the directives, the population of the zone and the agglomeration status, and on whether supplementary assessment had been carried out. Member States must also assess the air quality in the vicinity of point sources, but the directives do not specify the number of stations. Member States are responsible for having an adequate air quality assessment system in all of their zones; it is important to note that this may require more stations than the minimum that was checked here.

For the zones where no supplementary assessment had been carried out and on which Member States had, voluntarily, reported sufficient data on population in a zone, it could be checked whether the number of stations complied with the minimum number. Figure 10 shows the result, considering only the zones that could be checked and for which measurement was mandatory. The number of zones with too few stations was largest for O_3 , PM_{10} and benzene. The analysis also showed that in many zones the number of stations was considerably higher than the minimum used here.

* form 10

Figure 10: Compliance with the minimum number of stations in zones, 2007

Stations related to ecosystem and vegetation protection

For zones exceeding the assessment thresholds for ecosystems and vegetation it is difficult to do a precise check, because the assessment thresholds are defined per zone, while the minimum number of stations is defined as one station per 20000 or 40000 km2 when respectively the upper or lower assessment threshold is exceeded. Most zones are smaller than these sizes. All large zones were found to have enough stations. Several Member States with a large territory did not report having any stations for ecosystems or vegetation.

Matching station coding between 'Questionnaire' and 'Exchange of Information reporting'

How many monitoring stations that were reported in the Questionnaire could be matched with the Airbase database?

Additional information (e.g. type, location) on stations can be retrieved through the EoI 'Airbase' database. To retrieve this, the "EoI station code" was needed to link the station data in the two reports.

EU27 AQ Stations	SO ₂	NO ₂	NO,	Lead ²	PM ₁₀	PM _{2.5}	Benzene	со	O ₃	All
Questionaire Station	1973	2863	592	616	2516	458	784	1214	1941	4064
Eoi (Airbase) Station	1963	2829	584	588	2493	455	738	1200	1930	3964
% Eol Stations cover	99%	99%	99%	95%	99%	99%	94%	99%	99%	98%

^{*} form 3/4/5

Table 14: Number of reporting Stations in Questionnaire and corresponding EoI stations, 2007

Theoretically speaking all reported stations should correspond with the stations in the Exchange of Information decision (EoI) 'Airbase' database. Of all measuring stations 98% were able to be traced in 2007. This is a great improvement compared to the 2006 reporting cycle as 83% of all monitoring stations could be traced then. The effects of two data quality checks and the restructuring of the Polish zones/stations are the main explicatory reasons here.

Multi-pollutant stations

Which pairs of pollutants are monitored together at the same station?

In almost all stations were NO_2 is measured CO is also measured (97%). Where $PM_{2.5}$ is measured PM_{10} is also always measured (100%).

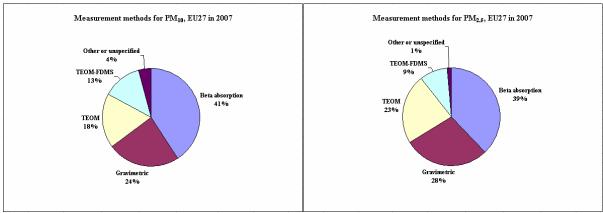
Most monitoring stations measure more than one pollutant. Table 15 gives the percentages of stations that measure pairs of pollutants as reported under Daughter Directives. The percentages are given as percentage of the total of each pollutant. For example, at 100% of the stations that measure $PM_{2.5}$ also PM_{10} is measured. The lowest correlations exist between the pairs of pollutants, NO_x , lead, benzene and CO. Monitoring of SO_2 , NO_2 , PM_{10} and O_3 is frequently collocated.

SO ₂	SO ₂		_						,
NO ₂	60%	NO ₂							
NO _x	63%	98%	NO _x						
Lead	49%	61%	14%	Lead					
Benzene	52%	82%	17%	28%	Benzene				
CO	67%	97%	16%	19%	35%	CO CO		_	
PM ₁₀	56%	85%	18%	19%	22%	39%	PM ₁₀		
PM _{2.5}	60%	91%	24%	22%	30%	53%	100%	PM _{2.5}	
O ₃	56%	92%	23%	13%	18%	36%	70%	11%	O ₃

^{*} form 3/4/5

Table 15: Multi-pollutant stations (percentage of pollutant pairs), 2007

Before the air quality daughter directives came into force, Member States had different approaches in siting their stations. Since then, some convergence has taken place, but differences have remained. Table 37 illustrates this for the ratio of (sub) urban background and traffic stations, which varies strongly. In Poland for example 205 stations (of 269 total) is classified as urban background stations whereas in Finland 17 stations (of 40 total) are classified as urban traffic stations. The proposal for the new air quality directive reduces this to a variation between 2:1 and 1:2.


In Spain there is a relative high number of industrial classified stations (224 out of a total of 562 stations).

Measuring methods particulate matter

What are the main measuring methods in use for PM_{10} and $PM_{2.5}$?

The main PM_{10} measuring method is 'beta absorption' (41%). For $PM_{2.5}$ this is also the case (39%). The 'gravimetric method' is the reference method for both PM_{10} and $PM_{2.5}$ and is described in standards EN12341:2000 and EN14907:2005 respectively. This measurement method is used for PM_{10} and $PM_{2.5}$ in 24% and 28% of all stations in 2007.

Several measurement methods are in use for PM_{10} and $PM_{2.5}$. The First Daughter Directive specifies the gravimetric method (collection on a filter and gravimetric mass determination) as the reference method but allows other methods to be used, provided that equivalence with the reference method can be demonstrated. To achieve this equivalence, Member States may apply a correction factor (or correction equation).

^{*} form 3/4/5

Figure 11: Measuring methods for PM₁₀ and PM_{2.5} in 2007

Within Member States there is often a clear preference for a particulate matter measuring method. In France for example the 'Oscillating microbalance method' (TEOM & TEOM FDMS) is the dominant measuring method for PM_{10} and $PM_{2.5}$. See Table 41 for a breakdown of the PM_{10} and $PM_{2.5}$ measuring methods per Member State in 2007.

Correction factor Particulate matter

What are the PM_{10} and $PM_{2.5}$ correction factor used and how many stations used it?

For PM_{10} 47% of all stations reported on the correction factor. Almost half (32%) the stations reported a CF of one and 43% reported a CF larger than one.

For PM_{2.5} 24% of all stations reported on a CF. 50%% reported a correction factor of one and 29% of the stations reported a CF larger than one. Table 16 summarizes the results on correction factors for the EU27. Table 42 in the annex of this chapter shows the correction factor breakdown of monitoring stations using a non-reference method for PM_{10} and $PM_{2.5}$ per Member State.

Added value from the knowledge of the actual correction is limited as the factor itself is crucially dependent on the implementation of the non-reference method (instrument version, internal calibration etc.) as well as on the local climatic conditions and PM composition. Report on the demonstration on equivalence (can be based on draft Guidance on the demonstration of equivalence published by the Commission in 2005²³) provides more comprehensive information on the actual

-

²³ http://ec.europa.eu/environment/air/pdf/equivalence report3.pdf

equivalence.

Member State	CF>1	CF=1	CF<1	CF Variable	CF Other	CF reporting PM10 stations
EU27	43%	32%	3%	22%	1%	47%

Member State	CF>1	CF=1	CF<1	CF Variable	CF Other	CF reporting PM2.5 stations
EU27	29%	50%	4%	6%	11%	100%

^{*} form 3/4/5

Table 16: Station correction factors for PM_{10} , $PM_{2.5}$ using a non-reference method, 2007

5 Other statistics

Thirteen of the 27 Member States use modeling results to determine the exceedance status in their zones.

Lead (30.3%), benzene (21.7%) and CO (17.9%) are the pollutants where the exceedance status is most frequent based on modelling in 2007. The use of modelling for these three pollutants shows a steady increase since 2004 and a strong increase since 2006.

Supplementary Assessment (SA) or assessment other than measurement is carried out in eight Member States in 2007 (five in 2006). In the UK exceedance status for all DD1,2 and 3 health related pollutants was based 100% on SA. France is another Member State with a high share of supplementary assessment.

277 Stations in 25 Members States reported on $PM_{2.5}$. The Netherlands and Luxembourg did not treport on $PM_{2.5}$. In the EU27 the average annual mean concentration is $18\mu g/m^3$ which is down from $20\mu g/m^3$ in 2006. Member States in excess of $25\mu g/m^3$ as average annual mean $PM_{2.5}$ concentration are BG, GR, IT.

Six Member States (CY, GR, ES, NL, SK and PT) claimed PM₁₀ derogation on the basis of natural events and four MS (EE, LT, LV and SK) due to winter sanding.

To what extent is modelling and supplementary assessment (Table 17) being used to assess the air quality?

The use of modelling in the 2006 air quality assessment of zones varies per pollutant. In the case of O_3 only 6 % of the EU27 zones are based on modelling. At the other end of the range is lead where 30% of the zone air quality is based on modelling.

Mention has to be made that the modelling and SA statistics are based on only thirteen Members States that reported making use of modelling whereas only 8 report use of supplementary assessment (see Table 43 and Table 44).

Exceedance base	ed on mod	elling	2004	2005	2006	2007
		Hr	13.0%	12.1%	10.6%	10,3%
	Health	Day	8.0%	8.8%	7.7%	9,7%
		Υr	21.0%	14.4%	7.2%	6,9%
S02	Eco	Winter	19.0%	19.4%	5.4%	7,1%
		Hr	10.0%	10.3%	8.5%	6,1%
NO2	Health	Υr	12.0%	10.6%	4.4%	10,8%
NOx	Veg	Yr	19.0%	2.8%	6.9%	7.0%
	D	ay	10.0%	9.3%	7.2%	8,1%
PM10	Y	'r	9.0%	8.0%	6.0%	7,1%
Lead	Y	r ·	15.0%	19.3%	17.9%	30,3%
Benzene	Y	r e	13.0%	12.5%	13.1%	21,7%
CO	Y	'n.	14.0%	9.6%	11.9%	17,9%
	Hea	alth	2.1%	3.3%	2.0%	7,1%
03	V	eg	2.2%	3.6%	2.9%	6,1%

Supplementary Assessment	2004	2005	2006	2007
SO ₂	1.2%	16.6%	5.8%	12,1%
NO ₂ /NO _x	1.4%	16.7%	6.2%	13,1%
PM ₁₀	2.5%	16.5%	7.7%	12,5%
Lead	4.8%	25.9%	11.9%	12,4%
Benzene	7.4%	25.6%	9.3%	15,5%
со	4.7%	19.0%	6.5%	11,4%
O ₃	27.0%	60.1%	75.0%	83,6%

Table 17: EU27 share of zones - exceedance based on modelling or SA, 2007

The Daughter Directives encourages Member States to assess their air quality not only with measurements, which gives the concentrations only at the locations of the monitoring stations, but also with other methods *e.g.* model calculations. This type of assessment is expected to become more important in future and a trend is already noticeable by the trend data (2004-2007) of the modelling shares of pollutants.

^{*} form 8/9

Member States could also report whether Supplementary Assessment, i.e. assessment based on information from sources other than measurement, such as emission inventories, indicative measurement methods and air quality modelling, was applied. The number of zones for which this was reported, is for some limit values lower than the number of zones for which the exceedance status was determined by modelling. This unexpected result – modelling implies Supplementary Assessment – may be point at lack of clarity in the concept of Supplementary Assessment.

Statistics of PM_{2.5} measurements

What are the Member States that have reported on $PM_{2.5}$? And what are the number of stations and reported concentrations?

Two Member States (NL, LU) did not report on $PM_{2.5}$ (Table 45). The total number of $PM_{2.5}$ monitoring stations in the 21 reporting Member States is 276. The average annual mean of all reporting stations is 18 μ g/m³(Table 18) which is an improvement compared to the 2006 reporting year (20 μ g/m³).

MS	Number of stations	Averaged annual mean (µg/m³)	Max of annual mean (µg/m²)	Min of annual mean (µg/m²)
EU27	276	18	41	1

^{*} form 18

Table 18: EU27 PM_{2.5} monitoring stations statistics, 2007

In order to gather data for evaluating a possible $PM_{2.5}$ threshold, the First Daughter Directive requires that "each Member State shall choose the number and the siting of the stations at which $PM_{2.5}$ is to be measured as representative of concentrations of $PM_{2.5}$ and to report the results of those measurements.

According to the newly adopted Air Quality Directive the proposed limit value to be met in 2015 is $25\mu g/m3$. Stations with a measured concentration above $25\mu g/m3$ are BG ($29\mu g/m3$), GR ($30\mu g/m3$), IT ($26\mu g/m3$) and RO ($32\mu g/m3$).

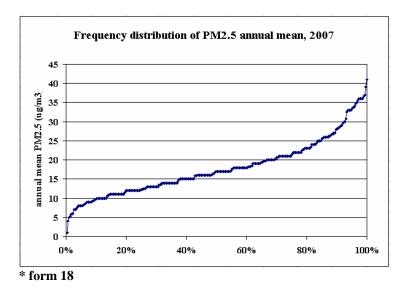


Figure 12: EU27 frequency distribution PM_{2.5} annual mean, 2007

The frequency distribution (Figure 12) shows that the level of $25\mu g/m^3$ is exceeded at about 13% of

the stations; at 30% of the stations the annual mean is in excess of 20µg/m³.

Statistics of ozone (vegetation and forest)

What is the number of stations that measure for the ozone vegetation and forest targets? And are the reported concentrations in the Member States in line with the set out targets?

The ozone AOT vegetation target value (to be met in 2010) is $18.000 \,\mu\text{g/m}^3$, the long term objective (to be met in 2020) is $6000 \,\mu\text{g/m}^3$. For the protection of forests the UNECE has defined an ozone critical level as an AOT of $10.000 \mu\text{g/m}^3$. Note that for forest the AOT is aggregated over the full summer period while for crops only the 3 months of the growing season are considered. The EU27 average exceeds the vegetation 2020 LTO target. The EU27 average is under the vegetation 2010 target whereas this was above the target in 2006 (19513 $\mu\text{g/m}^3$). The critical level for AOT forest concentration is exceeded more than 2 times in 2007 although it is down from the 2006 level (26707).

	AOTvegetation (ug/m ³ .h)			AOT forest (ug/m³.h)				
	Lowest ¹⁾	Average	Highest	Nr of stations	Lowest ¹⁾	Average	Highest	Nr of stations
EU27	0	11786	66591	1069	0	21460	91705	1027

^{*} form 15

Table 19: EU27 annual statistics of ozone, AOT threshold and annual average, 2007

Seven Member States (2006: 10 MS) report above the AOT vegetation target of 18.000 μ g/m³(Table 46) in 2007.

Eleven Member States report under the Long Term Objective 2020 in 2007 (2006: two MS). The critical level for AOT forest is not exceeded by eight Member States, namely BE, EE, FI, GB, IE, LT, NL, and Sweden. Compared to the 2006 reporting year this is a big improvement as only two MS reported under the AOT forest average level in 2006.

Statistics and derogation

How many Member States and incidents are reported on derogation situations for pollutants?

In 2007 derogation was only applied for PM₁₀. Six Member States (CY, ES, GR, NL, PT and SK) reported (Table 20) on derogation - 'natural events', four Member States (EE, LT, LV and SK) reported (Table 21) on derogation – 'winter sanding'.

The First Daughter Directive gives Member States the possibility of subtracting the contribution due to winter sanding of roads and the contribution of natural events before comparing PM₁₀ concentrations with the limit values.

	Number of stations with exceedance of PM ₁₀ :						
	Daily lim	it value	Annual limit value				
MS	before correction After correction be		before correction	After correction			
CY	1	1	1				
ES	136	94	75	44			
GR	13	11	12	12			
NL	9	5					
PT	4		1				
SK	14 14		4	4			
Total	177	125	93	60			

^{*} form 23

Table 20: Influence PM₁₀ natural events correction, 2007

NB: The numbers indicate the number of stations to which the correction was applied, not the total number of stations with exceedance in the Member States mentioned.

Table 20 shows the effect of the 'natural events' correction on the number of stations with PM_{10} exceedance. The corrections brought 52 stations below the daily limit value; for the annual limit value the compliance status was brought down under exceedance status with 33 stations.

	Number of exceedance reporting cases of PM ₁₀ daily and estimated						
	Daily lin	nit value	Annual li	mit value			
MS	before correction	After correction	before correction	After correction			
EE	1	0					
LT	2						
LV	2	2	2	1			
SK	14	12	4	3			

^{*} form 24

Table 21: PM₁₀ winter sanding correction, 2007

NB: between parentheses is the number of stations on which the number of exceedances is based.

Table 21 shows the effects of the winter sanding correction for the PM_{10} daily and annual limit value. Four Member States reported corrections on the daily limit value and 15% (3 out of 19) of the reported exceedance cases were adjusted. The adjustment for the PM_{10} annual limit value was 30% (2 out of 6) based on two reporting Member States.

None of the Member States indicated exceedances due to natural SO_2 sources in 2007. No exceedances were also reported for lead 'specific sources', i.e. sources in an area in the immediate vicinity of specific sources designated according to Annex IV of the First Daughter Directive. Belgium reported two stations in the immediate vicinity of 'specific sources'.

6 Fourth Daughter Directive: heavy metals

Reporting on the DD4 heavy metals was op a voluntary basis in the 2007 Questionnaire reporting cycle.

Thirteen Member States reported. For As, Cd, Ni and B(a)P roughly 18% of all the EU27 zones reported which represented roughly 1/3 of the EU27 total territory and almost 40% of the EU27 population.

The zone-type classification 'agglomeration' or 'non-agglomeration' is almost evenly divided (100 / 95) in the submitted Questionnaire zones.

Zone exceedances occurred most often for B(a)P in 28 zones or 14% of all zones. Zone exceedances for As, Cd and Ni is limited to 3.1, 2.1 and 2.1% of all reporting zones in 2007.

The monitoring station characteristics are such that roughly 50% of all DD4 pollutants measuring stations have an 'urban' location.

How many Member States and zones reported voluntarily on the DD4 heavy metals?

The total number of Member States that according to the results of the forms 1-2 of the Questionnaire report on the DD4 heavy metals is twelve (AT, BG, CY, CZ, DE, EE, FR, GB, GR, LT, LV and SE). These 12 MS represent 169 zones for As, Cd, Ni and 159 zones for B(a)P. In the forms 8/9 of the Questionnaire however, 195 zones are reporting on exceedances.

Member State	All Zones	As	Cd	Ni	BaP
EU27	909	169	169	169	159

^{*} Form 1-2

Table 22: Number of zones per Member States in 2007

The zones that report on the DD4 heavy metals represent roughly 1/3 of the EU27 territory and almost 40% of the EU27 population (table 23 and table 24).

Member State	Total area km2	As	Cd	Ni	BaP
EU27	4 422 187	34%	34%	34%	32%

^{*} Form 1-2

Table 23: Total MS area covered by zones, in % of total area

Member State	Total population	As	Cd	Ni	BaP
EU27	492 975 207	39%	39%	39%	37%

^{*} Form 1-2

Table 24: Total MS population covered by zones, in % of total population

How many of the DD4 reporting MS zones are in exceedance?

On the basis of the limited voluntary reported zone exceedances of the DD4 heavy metals it can be concluded that more tha 14% of the zone exceedances occur for B(a)P. The other DD4 heavy metals exceed the target value in 3.1% (As) and 2.1% (Cd, Ni) of all reporting zones (table 25).

	As	Cd	Ni	B(a)P
EU27	6	4	4	28
EU2/	3.1%	2.1%	2.1%	14.4%

^{*} Form 8/9

Table 25: Zones in exceedance, 4th DD pollutants 2007

For B(a)P 28 zones exceed the target value divided over 7 Member States. Of these 28 zones in exceedance the Czech Republic accounts for more than 50%. The exceedances for the other DD4 pollutants As, Cd, and Ni occur in respectively four, two and three Member States which is a statistical poor basis (table 26).

	As	Cd	Ni	B(a)P	Total
AT	1			2	3
BG		3		5	8
CY					0
CZ	3	1		15	19
DE			2	1	3
DK					0
EE	1		1		2
FR	1			1	2
GB			1	1	2
GR				3	3
Total	6	4	4	28	42

^{*} Form 8/9

Table 26: Zones in exceedance per MS, DD4 heavy metals in 2007

What are the monitoring station characteristics of DD4 heavy metals measuring stations?

The monitoring station-type of the DD4 pollutants is mainly urban (>50%) (table 27). Rural monitoring stations account for approximately 28-30% (As,Cd, Ni) and 25% for B(a)P. Table 50 thru table 53 in chapter 7 shows a detailed division in the monitoring station types (background, industrial, traffic) and locations.

Monitoring Stations	Rural	Suburban	Urban	Total # Stations
arsenic	31	21	58	110
cadmium	29	19	48	96
Nickel	29	19	48	96
benzo(a)ругепе	20	17	41	78

^{*} Form 15

Table 27: EU27 station statistics heavy metals DD4, 2007

7 Statistics per Member State

Chapter 2

Member		s	0,	NO ₂	NO,									
State	Total area		Eco-			PM ₁₀	Lead	Benzene	со	Og	As	Cd	Ni	BaP
	km2	Health	Systems	Health	Vegetation									
AT	83 870	100	99	100	99	100	100	100	100	100	100	100	100	100
BE	30 530	98	0	97	0	97	97	56	57	57	0	0	0	0
BG	110 910	100	23	100	23	100	100	77	100	100	100	100	100	100
CY	9 250	100	100	100	100	100	100	100	100	100	100	100	100	0
CZ	78 870	100	100	100	100	100	100	100	100	100	100	100	100	100
DE	357 050	100	22	100	22	100	100	100	100	100	100	100	100	100
DK	43 090	102	102	102	99	102	102	1	102	102	102	102	102	1
EE	45 230	96	96	96	96	96	96	25	96	96	96	96	96	96
ES	505 370	100	72	100	76	100	100	100	100	100	0	0	0	0
FI	338 150	100	100	100	100	100	100	100	100	100	0	0	0	0
FR	643 427	99	83	99	83	99	35	37	47	97	5	5	5	0
GB	243 610	100	100	100	100	100	100	100	100	100	100	100	100	100
GR	131 960	100	100	100	100	100	0	1	100	100	0	0	0	0
HU	93 030	100	0	100	0	100	100	100	100	100	0	0	0	0
IE .	70 270	100	99	100	99	100	100	100	100	100	0	0	0	0
П	301 340	82	67	90	75	83	36	61	66	81	0	0	0	0
LT	65 300	100	99	100	0	100	100	100	100	100	100	100	100	100
LU	2 590	0	0	0	0	0	81	0	0	0	0	0	0	0
LV	64 590	0	0	0	0	0	0	0	0	0	0	0	0	0
MT	320	99	86	99	86	99	12	99	12	99	0	0	0	0
NL	41 530	100	41	100	41	100	100	100	100	100	0	0	0	0
PL	312 690	100	98	100	98	100	100	100	100	100	0	0	0	0
PT	92 120	89	53	100	64	100	96	96	96	100	0	0	0	0
RO	237 500	101	0	101	0	101	101	100	101	1	0	0	0	0
SE	450 290	100	100	100	100	100	100	100	100	100	100	100	100	100
SI	20 270	100	100	77	77	77	77	77	77	77	0	0	0	0
sk	49 030	100	100	100	100	100	83	100	100	100	0	0	0	0
EU27	4 422 187	97%	72%	98%	72%	97%	81%	81%	88%	91%	34%	34%	34%	32%
IS	103 000	100	0	100	0	100	100	100	100	100	0	0	0	0
NO	323 802	105	105	119	0	119	0		48	119	0	0	0	0
110	223 602	105	105	117	٥	117	٥	117	40	117		٥	٩	

^{*} Form 0/1/2

Table 28: Total MS area covered by zones, in % of total area, 2007

			60,	NO ₂	NO,									
Member State	Total population	•	Eco-	1102	1101	PM ₁₀	Lead	Benzene	со	O ₂	As	Cd	Ni	BaP
State		Health	Systems	Health	Vegetation									
AT	8 265 925	98	72	98	72	98	98	98	98	98	98	98	98	98
BE	10 511 382	98	0	98	0	98	98	42	48	48	0	0	0	0
BG	7 718 750	100	15	100	15	100	100	85	100	100	100	100	100	100
CY	766 414	98	98	98	98	98	98	98	98	98	98	98	98	0
cz	10 251 079	101	101	101	101	101	101	101	101	101	101	101	101	101
DE	82 437 995	98	11	100	11	120	98	98	98	98	98	98	98	98
DK	5 427 459	101	101	101	78	101	101	18	101	101	101	101	101	18
EE	1 344 684	103	103	103	103	103	103	57	103	103	103	103	103	103
ES	43 758 250	102	25	102	26	102	102	102	102	102	0	0	0	0
FI	5 255 580	100	100	100	100	100	100	100	100	100	0	0	0	0
FR	62 998 773	99	97	99	97	98	61	64	73	97	6	6	6	0
GB	60 393 100	98	98	98	98	98	98	98	98	98	98	98	98	98
GR	11 125 179	99	99	99	99	99	0	32	99	99	0	0	0	0
HU	10 076 581	100	0	100	0	100	100	100	100	100	0	0	0	0
Œ	4 209 019	101	59	101	59	101	101	101	101	101	0	0	0	0
П	58 751 711	92	69	95	78	94	39	85	88	83	0	0	0	0
LT	3 403 284	99	73	99	0	99	99	99	99	99	99	99	99	99
LU	469 086	0	0	0	0	0	0	0	0	0	0	0	0	0
LV	2 294 590	31	31	31	31	31	31	31	31	31	31	31	31	0
MT	405 006	97	29	97	29	97	68	97	68	97	0	0	0	0
NL	16 334 210	100	20	100	20	100	100	100	100	100	0	0	0	0
PL	38 157 055	100	67	100	67	100	100	100	100	100	0	0	0	0
PT	10 569 592	87	25	96	34	96	93	93	93	97	0	0	0	0
RO	21 610 213	101	10	101	10	101	101	91	101	15	0	0	0	0
SE	9 047 752	101	101	101	101	101	101	101	101	101	101	101	101	101
SI	2 003 358	98	98	76	76	76	76	76	76	76	0	0	0	0
SK	5 389 180	100	100	100	100	100	79	100	100	100	0	0	0	0
EU27	492 975 207	98%	56%	99%	57%	102%	84%	88%	93%	92%	39%	39%	39%	37%
IS	299 891	104		104	0	110	104	104	104	104	0		0	0
NO	4 640 219	55	55	97	0	97	0	97	76	93	0	0	0	0

^{*} Form 0/1/2

Table 29: Total population area covered by zones, in % of total population, 2007

Chapter 3

мс	SO2 he	alth Hr	SO2 hea	alth Day	S02 e	со Үг	S02 ec	o Wntr		NO2 Hr			NO2 Yr		NO	x
MS	↑lv	Jlv	γlγ	Jlv	γlγ	Jlv	γlγ	Jlv	↑mot	lv-mot	Jlv	↑mot	lv-mot	Jlv	γlγ	Jlv
AT	0	11	0	11	0	8	0	8	0	0	11	7	2	2	1	7
BE	0	12	0	12	0	0	0	0	0	0	11	1	3	7	0	0
BG	2	4	2	4	0	1	0	1	0	1	5	1	0	5	0	1
CY	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	1
CZ	0	15	1	14	0	15	1	14	1	0	14	2	5	8	15	0
DE	0	79	0	79	0	15	0	15	1	3	81	39	9	37	0	15
DK	0	3	0	3	0	3	0	3	0	0	3	1	0	2	0	3
EE	0	4	0	4	0	4	0	4	0	0	4	0	0	4	1	3
ES	4	134	3	135	0	34	0	34	4	5	129	9	10	119	0	38
FI	0	14	0	14	0	1	0	1	0	0	14	0	1	13	0	1
FR	3	72	3	72	0	42	0	41	3	1	73	12	5	60	1	32
GB	0	44	0	44	0	15	0	15	1	1	42	39	3	2	0	15
GR	0	4	0	4	0	2	0	2	1	0	3	3	0	1	0	2
HU	0	11	0	11	0	0	0	0	0	0	11	2	0	9	0	0
IE	0	4	0	4	0	1	0	1	0	0	4	0	0	4	1	0
П	0	91	0	91	0	22	0	22	6	4	102	45	9	58	11	11
LT	0	3	0	3	0	1	0	1	0	0	3	0	0	3	0	0
LU	0	3	0	3	0	1	0	1	0	0	3	1	0	2	0	1
LV	0	2	0	2	0	2	0	2	0	0	2	1	0	1	0	2
MT	0	2	0	2	0	1	0	1	0	0	2	1	0	1	0	1
NL	0	9	0	9	0	1	0	1	0	0	9	7	2	0	0	1
PL	0	170	1	169	0	125	0	125	1	0	169	4	2	164	0	125
PT	1	23	1	23	0	7	0	7	0	1	24	3	0	22	0	6
RO	7	14	7	14	0	1	0	1	6	0	14	3	4	13	0	1
SE	0	6	0	6	0	6	0	6	0	0	6	2	1	3	0	6
SI	0	9	0	9	0	9	0	9	0	0	6	0	0	6	2	4
SK	0	10	0	10	0	2	0	2	0	0	10	0	1	9	0	10
EU27	17	754	18	753	0	320	1	318	24	16	756	183	57	556	32	286
IS	0	2	0	2	0	2	0	2	0	_	2	0	0	2	0	0
NO	1	1	1	1	0		0	0	0	2	5	4	2	1	0	0
ALL	18	757	19	756	0	322	1	320	24	18	763	187	59	559	32	286

^{*} Form 8/9

Table 30: Zone exceedance per Member State and pollutant (SO₂, NO₂ and NO_x) in 2007

MS	PM10	D Day	PM1	0 Yr	Lea	d Yr		Benzene Y	г	CO	Υr	0	zone Heal	th	0zo	ne Vegeta	tion
INIS	γlv	Jlv	įΙν	Jlv	γlγ	Jlv	↑mot	lv-mot	Jlv	γlγ	Jlv	rtv	lto-tv	Jlto	↑tv	lto-tv	∫lto
AT	7	4	0	11	0	11	0	0	11	0	11	11	0	0	8	0	0
BE	11	0	2	9	1	12	0	0	7	0	7	1	5	0	1	5	0
BG	6	0	6	0	1	5	0	0	5	1	5	1	5	0	0	1	0
CY	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	0	0
CZ	11	4	3	12	0	15	1	0	14	0	15	15	0	0	15	0	0
DE	17	65	1	81	0	72	0	0	84	0	84	26	37	0	30	19	1
DK	2	1	0	3	0	3	0	0	3	0	3	0	2	1	0	2	1
EE	2	2	0	4	0	4	0	0	3	0	4	3	1	0	1	3	0
ES	57	81	32	106	0	138	0	0	137	0	138	52	62	24	54	47	35
FI	0	14	0	14	0	14	0	0	3	0	14	0	2	0	0	0	2
FR	26	50	7	69	0	48	0	0	57	0	61	40	31	4	33	14	21
GB	7	37	2	42	0	44	0	0	44	0	44	0	42	2	0	4	40
GR	4	0	4	0	0	4	0	1	3	0	4	2	2	0	4	0	0
HU	5	6	3	8	0	11	0	0	11	0	11	7	4	0	0	0	0
IE	0	4	0	4	0	4	0	0	4	0	4	0	1	3	0	0	1
П	61	38	24	75	0	37	0	3	82	1	99	63	10	10	45	2	1
LT	2	1	0	3	0	3	0	0	3	0	3	0	3	0	0	1	0
LU	0	3	0	3	0	0	0	0	1	0	3	1	1	1	0	1	0
LV	2	0	1	1	0	2	0	0	2	0	2	0	0	2	0	0	1
MT	1	1	1	1	0	1	0	0	2	0	1	1	0	1	1	0	0
NL	9	0	2	7	0	9	0	0	9	0	9	2	7	0	0	6	1
PL	60	110	19	151	0	170	1	2	167	0	170	11	16	1	6	10	0
PT	8	17	3	22	0	1	0	0	1	0	1	10	12	2	4	14	4
RO	17	4	15	6	2	19	0	0	19	2	18	4	0	0	1	0	0
SE	2	4	1	5	0	6	0	0	6	0	6	0	3	3	0	1	5
SI	5	1	3	3	0	6	0	0	6	0	6	5	1	0	5	1	0
SK	6	4	3	7	0	10	0	0	10	0	10	2	0	0	2	0	0
EU27	329	451	133	647	4	650	2	6	695	4	734	258	247	54	211	131	113
IS	1	2	0	3	0	2	0		2	0		0	0	2	0	0	2
NO	3	4	1	6	0	0	0	,	_	0		5	0	0	0	0	0
ALL	333	457	134	656	4	652	2	6	702	4	737	263	247	56	211	131	115

^{*} Form 8/9

Table 31: Zone exceedance per Member State and pollutant (PM_{10} , Pb, CO, benzene, O_3) in 2007

		ag.	non-ag.	Total
SO ₂ -yr	<1v	40	282	322
30 ₂ -yr	>lv	0	0	0
SO ₂ -w	<1v	39	281	320
302-W	>1v	0	1	1
NOx-y	<1v	31	255	286
NOX-y	>1v	8	24	32
	<1to	65	50	115
О3-и	>tv	56	155	211
	lto-tv	49	82	131

^{*} Form 8/9

Table 32: EU 27 AQ zone status, vegetation 2007

-		ag.	non-ag.	Total						
60.1	<1v	239	516	755						
SO ₂ -d	>lv	10	9	19						
SO ₂ -h	<1v	240	516	756						
30 <u>7</u> -11	>lv	9	9	18	Member State	_		-		
					Wember state	0 pollutants	l pollutants	2 pollutants	3 pollutants	4 poll
	<1v	227	535	762	AT	1	14	1	3	
NO2-h	>mot	23	1	24	BE	5	12	1		
	lv-mot	14	4	18	BG		3	1	1	
					CY			1		
	<1v	100	458	558	CZ		4	7	4	
NO ₂ -y	>mot	129	58	187	DE	64	32	22	2	
1102-у					DK	1	1	1		
	lv-mot	35	24	59	EE		3	1		
					ES	47	62	25	4	
PM ₁₀ -d	<1v	104	353	457	FI	18				
I miju-u	>lv	160	173	333	FR	30	31	12	9	
					GB	3	36	5		
	<1v	193	463	656	GR	2	5	3	2	
PM ₁₀ -y	>lv	71	63	134	HU IE	4	,	3	1	-
		- 1			п	54	34	29	26	
	<1v	203	449	652	LT	1	2	2.9	20	
Lead					LU	1	2			
	>1v	2	2	4	LV	1	1	1		
					MT	-	1	1		
	<1v	234	468	702	NL		1	7	1	
Benzene	>mot	2	0	2	PL	119	58	8	1	
	lv-mot	3	3	6	PT	12	8	7		
					RO	4	5	5	5	2
	<1v	243	493	736	SE	3	2	1		
co	>lv	4	0	4	SI	4	2	4		
					SK	4	6	1		
	<1to	27	29	56	EU27	378	326	145	59	3
O ₃ -h		82	181	263	IS	2	_			
О3-Л	>tv				NO		2	_		
	lto-tv	129	118	247	Grand Total	380	329	148	61	3

^{*} Form 8/9

Table 33: EU27 AQ zone status, health 2007

Table 34: Number of zones with multi-pollutant exceedances per MS, 2007

^{*} Form 8/9

Maps

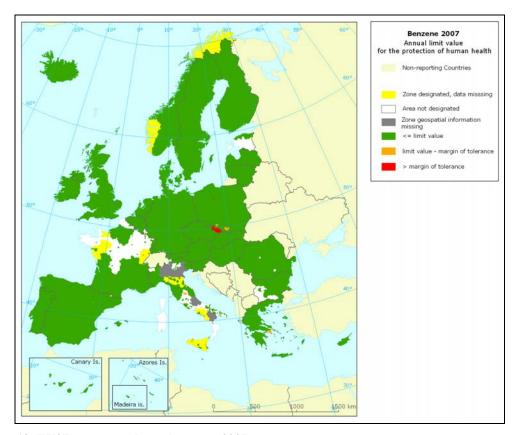


Figure 13: EU27 zone exceedance benzene, 2007

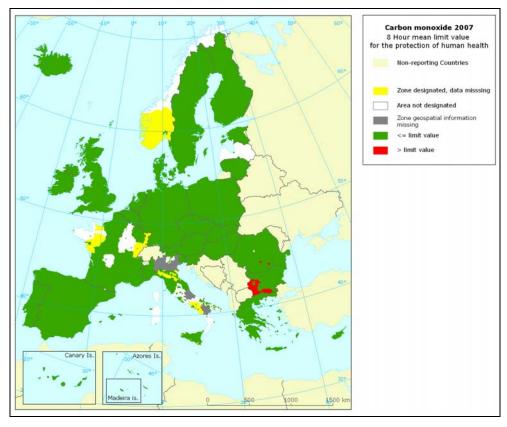


Figure 14: EU27 zone exceedance CO, 2007

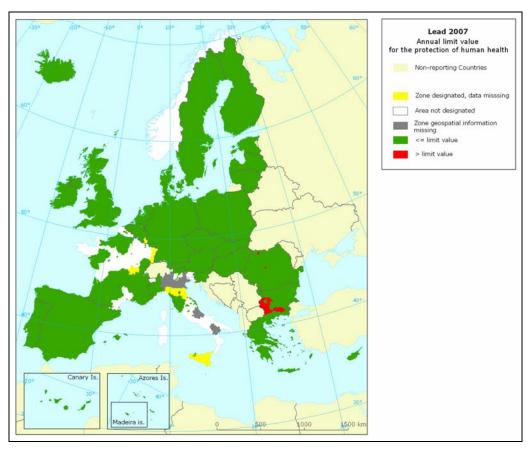


Figure 15: EU27 zone exceedance Pb, 2007

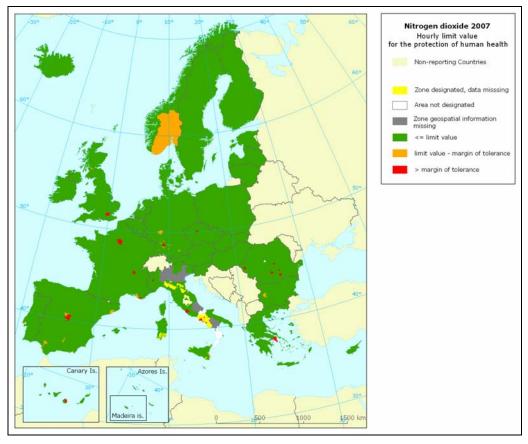


Figure 16: zone exceedance NO₂ hour, 2007

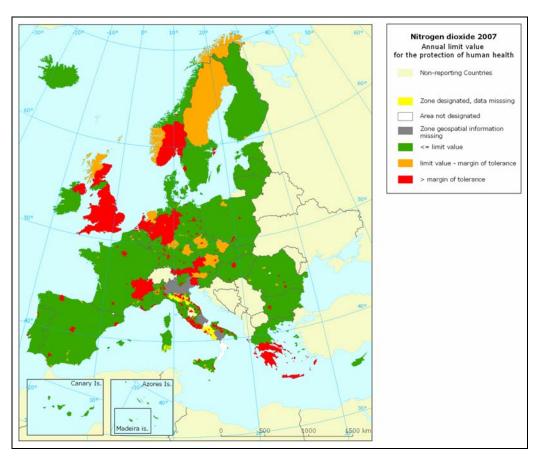


Figure 17: EU27 zone exceedance NO₂ year, 2007

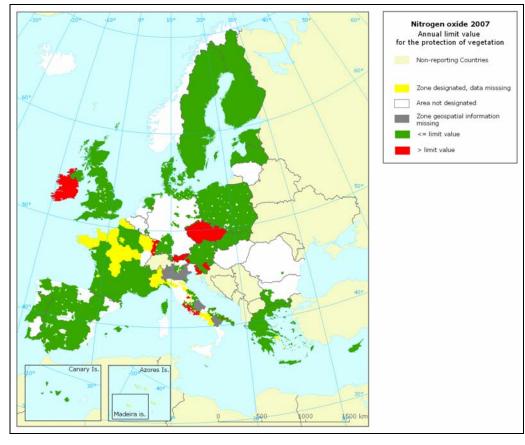


Figure 18: EU27 zone exceedance NO_x year, 2007

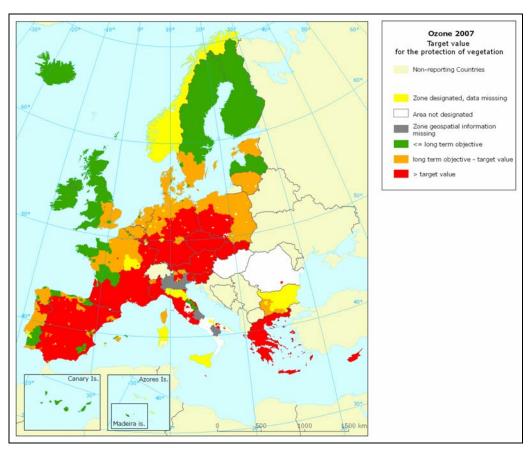


Figure 19: EU27 zone exceedance O₃ vegetation, 2007

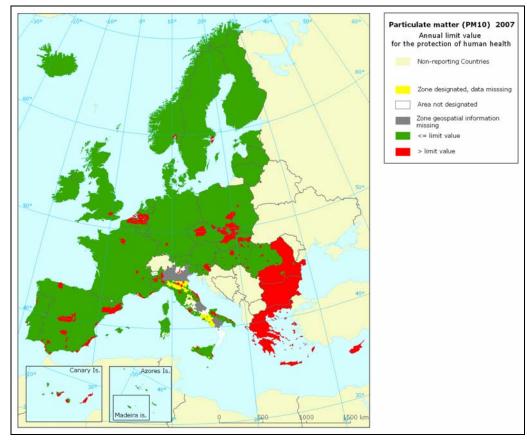


Figure 20: EU27 zone exceedance PM_{10} year, 2007

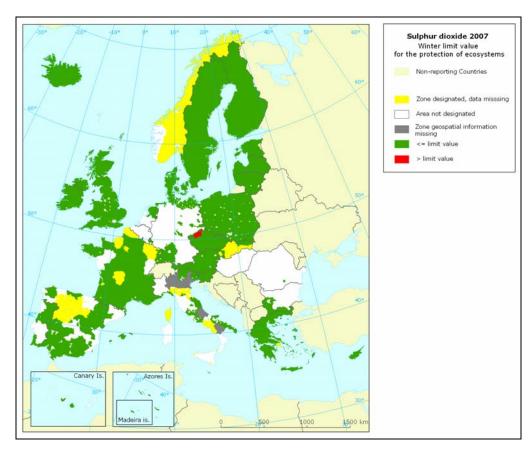


Figure 21: EU27 zone exceedance SO_2 winter, 2007

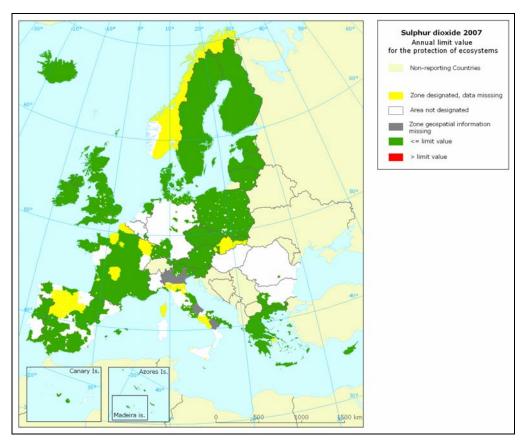


Figure 22: EU27 zone exceedance SO_2 year, 2007

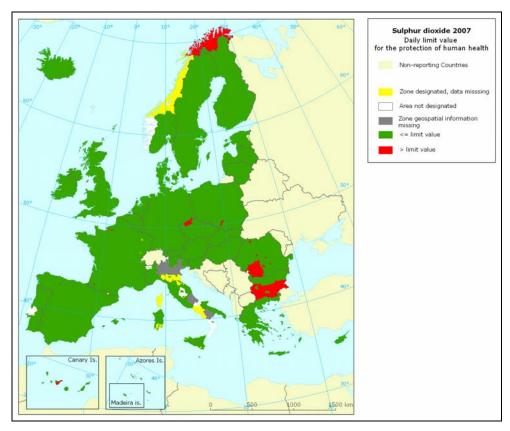


Figure 23: EU27 zone exceedance SO₂ day, 2007

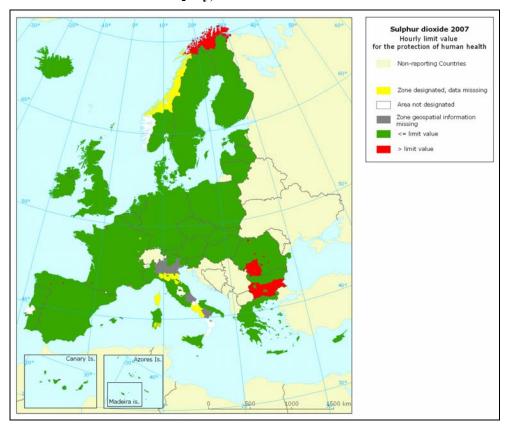


Figure 24: EU27 zone exceedance SO_2 hour, 2007

Chapter 4

370	Health	Ecosystems) formatation (NOv)
MS	неапп	(SO2)	Vegetation (NOx)
AT	157	15	18
BE	155	0	0
BG	38	1	1
CY	2	1	1
CZ	126	23	23
DE	0	0	0
DK	0	0	0
EE	11	8	8
ES	533	40	43
FI	28	0	0
FR	526	16	20
GB	208	8	8
GR	61	2	2
HU	27	1	0
IE .	22	3	3
П	559	28	41
LT	17	4	0
LU	6	3	3
LV	12	2	2
MT	4	1	1
NL	52	1	1
PL	0	0	0
PT	51	4	5
RO	22	1	1
SE	48	5	6
SI	0	0	0
SK	26	4	4
EU27	2691	171	191
IS	3	0	0
NO	26	1	0
Total	2720	172	191

		_				_				_	
MS	All Stations	502	SO2-E	NO2	NOx	Lead	Benzene	co	PM10	PM2.5	03
AT	183	110	15	148	18	16	24	41	126	9	115
BE	161	60		66		42	34	17	50	12	38
BG	38	16	1	15	15	19	12	13	38	3	9
CY	2	2	1	2	2	2	1	1	2	2	2
CZ	130	89	23	120	23	25	30	33	120	24	61
DE	586	191		468	25	111	149	169	436	44	285
DK	13	2		11	11	11	1	6	10	2	8
EE	14	7	4	7	7	7	3	5	8	5	7
ES	565	418	40	451	51	88	90	225	380	80	362
FI	40	1		13				2	24	7	16
FR	737	314	8	491	197	38	101	93	373	51	436
GB	217	79	2	116	14	29	41	79	128	128	92
GR	61	14	2	27	2	21	33	12	17	3	24
HU	27	25	1	25			12	22	26	3	17
IE	26	12	3	13	13	10	3	7	17	1	10
П	701	281	20	502	76	42	141	327	327	35	241
LT	17	12	3	15	12	4	5	8	13	3	13
LU	7	6	3	6	3		2	3	3	1	5
LV	12	7	2	9	1	6	6	1	7	4	8
MT	5	4	1	4	4	3	3	3	4	3	4
NL	52	35	1	44	1	5	8	22	40	0	37
PL	269	178		185	72	104	46	66	226	4	58
PT	58	40	3	48	6	1	6	27	43	14	33
RO	22	21	1	20	1	19	6	13	19	1	16
SE	53	12	4	32	10		14	4	35	11	16
SI	33	21		11	10	3	2	4	13	4	15
sk	35	16	4	14	18	10	11	11	31	4	13
EU27	4064	1973	142	2863	592	616	784	1214	2516	458	1941
IS	4	1		2			1	1	3	2	2
NO	34	1	1	21	21		9		24	13	9
Grand Total	4102	1975	143	2886	613	616	794	1215	2543	473	1952

Table 35: EU27 stations and protection targets, 2007

* Form 3/4/5

Table 36: Number of stations per pollutant per MS, 2007

		F	Background	1				Industrial					Traffic				.,,
MS		suburb					suburb					suburb				Unknown	All Station
	rural	an	unknown	urban	Total	rural	an	unknown	urban	Total	rural	an	unknown	urban	Total	total	»tallon
AT	52	29	0	26	107	15	4	0	4	23	-11	10	0	32	53	0	183
BE	35	44	0	7	86	7	45	0	2	54	0	9	0	12	21	0	161
BG	1	16	0	16	33	0	0	0	0	0	0	2	0	3	5	0	38
CY	1	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	2
CZ	46	27	0	33	106	0	0	0	2	2	0	1	0	21	22	0	130
DE	80	88	0	119	287	9	26	0	18	53	3	16	0	227	246	0	586
DK	3	0	0	5	8	0	0	0	0	0	0	0	0	5	5	0	13
EE	3	0	0	2	5	0	0	0	2	2	0	0	0	2	2	0	9
ES	64	61	1	57	183	83	95	0	46	224	0	32	0	123	155	0	562
FI	10	3	0	6	19	1	0	0	0	1	0	3	0	17	20	0	40
FR	71	156	133	136	496	26	59	29	6	120	5	20	18	33	76	9	701
GB	38	12	0	103	153	0	2	0	18	20	1	0	0	43	44	0	217
GR	1	7	0	3	11	0	1	0	3	4	0	1	0	13	14	0	29
HU	3	7	0	5	15	1	0	0	2	3	0	0	0	9	9	0	27
IE	8	9	0	0	17	2	0	0	0	2	0	4	0	3	7	0	26
п	71	82	0	125	278	10	83	0	13	106	1	30	1	237	269	4	657
LT	4	0	0	4	8	0	0	0	3	3	0	0	0	6	6	0	17
LU	3	0	0	0	3	0	0	0	2	2	0	0	0	2	2	0	7
LV	2	0	0	5	7	0	0	0	0	0	0	0	0	5	5	0	12
MT	1	0	0	1	2	0	0	0	1	1	0	0	0	2	2	0	5
NL	20	7	0	7	34	0	0	0	0	0	1	1	0	16	18	0	52
PL	24	4	0	205	233	10	2	0	8	20	0	0	0	16	16	0	269
PT	10	8	1	16	35	1	2	0	2	5	0	3	0	15	18	0	58
RO	2	3	0	6	11	0	1	0	5	6	0	0	0	5	5	0	22
SE	10	1	0	21	32	0	0	0	0	0	0	2	0	18	20	0	52
SI	5	6	0	7	18	9	1	0	0	10	0	0	0	4	4	0	32
sk	7	3	0	19	29	0	1	0	0	1	0	0	0	5	5	0	35
EU 27	575	573	135	934	2217	174	322	29	137	662	22	134	19	875	1050	13	3942
IS	1	0	0	1	2	0	0	0	0	0	0	0	0	2	2	0	
NO	9	2	0	9	20	0	0	0	0	0	0	1	0	13	14	0	
Grand Total	585	575	135	944	2239	174	322	29	137	662	22	135	19	890	1066	13	3980

^{*} Form 3/4/5

Table 37: Number of stations per type, location and MS, 2007

^{*} Form 3/4/5

MS	All Si	ations	S	02	N	02	NO	Ox	Le	ad	Ben	zene	C	0	PN	1 10	PN	12.5		03
MIS	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase	Quest	Airbase
AT	183	183	110	110	148	148	18	18	16	16	24	24	41	41	126	126	9	9	115	115
BE	161	161	60	60	66	66			42	42	34	34	17	17	50	50	12	12	38	38
BG	38	38	16	16	15	15	15	15	19	19	12	12	13	13	38	38	3	3	9	9
CY	2	2	2	2	2	2	2	2	2	2	1	1	1	1	2	2	2	2	2	2
CZ	130	130	89	89	120	120	23	23	25	25	30	30	33	33	120	120	24	24	61	61
DE	586	586	191	191	468	468	25	25	111	111	149	149	169	169	436	436	44	44	285	285
DK	13	13	2	2	11	11	11	11	11	11	1	1	6	6	10	10	2	2	8	8
EE	14	9	7	7	7	7	7	7	7	4	3	1	5	4	8	5	5	2	7	7
ES	565	565	418	418	451	451	51	51	88	88	90	90	225	225	380	380	80	80	362	362
FI	40	40	1	1	13	13							2	2	24	24	7	7	16	16
FR	737	704	314	311	491	486	197	197	38	34	101	95	93	91	373	368	51	51	436	436
GB	217	217	79	79	116	116	14	14	29	29	41	41	79	79	128	128	128	128	92	92
GR	61	29	14	13	27	26	2	1	21		33	1	12	12	17	17	3	3	24	24
HU	27	27	25	25	25	25					12	12	22	22	26	26	3	3	17	17
IE	26	26	12	12	13	6	13	13	10	10	3	1	7	7	17	17	1	1	10	10
IT	701	672	281	275	502	481	76	69	42	42	141	137	327	316	327	312	35	35	241	230
LT	17	17	12	12	15	15	12	12	4	4	5	5	8	8	13	13	3	3	13	13
LU	7	7	6	6	6	6	3	3			2	2	3	3	3	3	1	1	5	5
LV	12	12	7	7	9	9	1	1	6	6	6	6	1	1	7	7	4	4	8	8
MT	5	5	4	4	4	4	4	4	3	3	3	3	3	3	4	4	3	3	4	4
NL	52	52	35	35	44	44	1	1	5	5	8	8	22	22	40	40	0	0	37	37
PL	269	269	178	178	185	185	72	72	104	104	46	46	66	66	226	226	4	4	58	58
PT	58	58	40	40	48	48	6	6	1	1	6	6	27	27	43	43	14	14	33	33
RO	22	22	21	21	20	20	1	1	19	19	6	6	13	13	19	19	1	1	16	16
SE	53	52	12	12	32	32	10	10			14	14	4	4	35	35	11	11	16	16
SI	33	33	21	21	11	11	10	10	3	3	2	2	4	4	13	13	4	4	15	15
SK	35	35	16	16	14	14	18	18	10	10	11	11	11	11	31	31	4	4	13	13
EU27	4064	3964	1973	1963	2863	2829	592	584	616	588	784	738	1214	1200	2516	2493	458	455	1941	1930
IS	4	4	1	1	2	1					1	1	1	1	3	3	2	2	2	2
NO	34	34	1	1	21	2	21	21			9	1			24	24	13	13	9	9
Grand Total	4102	4002	1975	1965	2886	2832	613	605	616	588	794	740	1215	1201	2543	2520	473	470	1952	1941

^{*} Form 3/4/5

Table 38: Reporting stations in the Questionnaire and corresponding Airbase match, 2007

Assesment regime	Nr. of zones ¹	SO ₂ health	NO ₂ health	PM ₁₀	Lead	Benzene	СО
	Total	45	145	440	1	30	9
> UAT	Too few						
ZUAT	stations	2	14	92	0	14	3
	Modelled	1	6	5	0	4	1
	Total	40	135	8	0	88	17
>LAT <uat< th=""><th>Too few</th><th></th><th></th><th></th><th></th><th></th><th></th></uat<>	Too few						
ZLAI VUAI	stations	6	2	0	0	0	0
	Modelled	10	1	0	0	18	0
	Total	164	42	1	163	58	156
Aggls & < LAT	Too few						
Ayyıs & CAT	stations	0	0	0	7	0	0
	Modelled	12	0	0	17	0	0

^{*} form 10

Table 39: Zones with too few stations reported, per assessment regime, 2007

MS	SO2 health	NO2 health	PM10	Lead	Benzene	со	03
AT							
BE							
BG	2	3				3	
CY			1				
CZ							
DE							
DK		1	2				
EE			1				
ES			14		1		
FI			1				
FR			9	2	2		
GB	7	5	35	3	4		21
GR	1	1	1		1		
HU			1				
Œ							1
П	1	3	17		3		
LT		1	1				
LU		1					
LV							
MT							
NL			3	2			
PL							
PT			3				
RO							
SE		1	1		1		
SI			2				
SK			1		2		
EU27	11	16	93	7	14	3	22

^{*} form 10

Table 40: Zones per MS and pollutant with 'missing' stations, 2007

 $PM_{10} \\$

MS	Beta absorption	Gravimetric	теом	TEOM FDMS	Other or unspecified	Total
AT	33	41	30	22	0	126
BE	31	0	10	9	0	50
BG	12	26	0	0	0	38
CY	0	0	2	0	0	2
CZ	81	39	0	0	0	120
DE	234	168	87	0	4	493
DK	10	0	1	0	0	11
EE	8	0	0	0	0	8
ES	191	112	74	0	3	380
FI	10	0	15	0	0	25
FR	55	0	49	269	0	373
GB	2	7	63	25	0	97
GR	17	0	0	0	0	17
HU	25	1	1	0	0	27
IE	0	10	7	0	0	17
п	220	43	50	0	16	329
LT	13	0	0	0	0	13
LU	0	0	3	0	0	3
LV	7	0	0	0	0	7
MT	3	0	0	1	0	4
NL	40	0	0	0	0	40
PL	52	148	47	1	89	337
PT	43	0	0	0	0	43
RO	0	19	0	0	0	19
SE	2	16	17	1	0	36
SI	0	1	11	0	0	12
SK	4	3	0	24	0	31
EU27	1093	634	467	352	112	2658
IS	2	1	0	0	0	3
NO	5	0	19	0	0	24
Total	1100	635	486	352	112	2685

PM_{2.5}

MS	Beta absorption	Gravimetric	теом	TEOM FDMS	Other or unspecified	Total
AT	0	9	0	0	0	9
BE	5	0	2	5	0	12
BG	0	3	0	0	0	3
CY	0	2	0	0	0	2
CZ	24	0	0	0	0	24
DE	13	26	6	0	4	49
DK	0	0	2	0	0	2
EE	5	0	0	0	0	5
ES	29	43	8	0	0	80
FI	4	0	2	0	0	6
FR	0	0	31	20	0	51
GB	0	1	4	2	0	7
GR	3	0	0	0	0	3
HU	3	0	0	0	0	3
IE	0	1	0	0	0	1
П	20	7	7	0	1	35
LT	3	0	0	0	0	3
LU	0	0	1	0	0	1
LV	4	0	0	0	0	4
MT	2	0	0	1	0	3
NL	0	0	0	0	0	0
PL	1	3	0	0	0	4
PT	14	0	0	0	0	14
RO	0	1	0	0	0	1
SE	0	2	8	1	0	11
SI	0	3	0	0	0	3
SK	1	0	0	3	0	4
EU 27	131	101	71	32	5	340
IS	2	0	0	0	0	2
NO	1	0	12	0	0	13
Total	134	101	83	32	5	355

^{*} form 3/4/5

Table 41: Measurement methods $PM_{\rm 10}$ and $PM_{\rm 2.5}$ per MS, 2007

$PM_{10} \\$

Member State	CF>1	CF=1	CF<1	CF Variable	CF Other	CF reporting stations	Total PM10 stations
AT	56	1	0	8	0	65	126
BE	39	0	0	10	9	49	50
BG	12	0	0	0	0	12	38
CY	0	0	0	0	0	0	2
CZ	0	0	0	0	0	0	120
DE	187	145	7	94	0	433	436
DK	0	9	0	1	0	10	10
EE	8	0	0	0	0	8	8
ES	114	134	26	0	0	274	380
FI	6	18	0	0	0	24	24
FR	0	0	0	0	0	0	373
GB	0	12	0	65	0	77	128
GR	0	0	0	0	0	0	17
HU	11	14	0	1	0	26	26
IE	3	14	0	0	0	17	17
п	0	10	0	30	0	40	327
LT	13	0	0	0	0	13	13
LU	0	0	0	0	0	0	3
LV	0	7	0	0	0	7	7
MT	0	4	0	0	0	4	4
NL	0	0	0	40	0	40	40
PL	0	0	0	0	0	0	226
PT	44	0	0	0	0	44	43
RO	0	0	0	0	0	0	19
SE	16	18	0	1	0	35	35
SI	0	0	0	10	0	10	13
SK	4	0	0	0	0	4	31
EU27	513	386	33	260	9	1192	2516
IS	0	0	0	0	0	0	3
NO	0	0	0	0	0	0	24
Grand Total	513	386	33	260	9	1192	2543

PM_{2.5}

Member State	CF>1	CF=1	CF<1	CF Variable	CF Other	CF reporting stations	Total PM2.5 stations
AT	0	0	0	0	0	0	9
BE	0	0	0	0	12	12	12
BG	0	0	0	0	0	0	3
CY	0	0	0	0	0	0	2
CZ	0	0	0	0	0	0	24
DE	8	21	1	7	0	37	44
DK	0	2	0	0	0	2	2
EE	8	0	0	0	0	8	5
ES	3	6	3	0	0	12	80
FI	2	4	0	0	0	6	7
FR	0	0	0	0	0	0	51
GB	0	7	0	0	0	7	128
GR	0	0	0	0	0	0	3
HU	2	1	0	0	0	3	3
IE	0	1	0	0	0	1	1
П	0	0	0	0	0	0	35
LT	0	0	0	0	0	0	3
LU	0	3	0	0	0	3	1
LV	0	0	0	0	0	0	4
MT	0	4	0	0	0	4	3
NL	0	3	0	0	0	3	0
PL	0	0	0	0	0	0	4
PT	0	0	0	0	0	0	14
RO	0	0	0	0	0	0	1
SE	0	0	0	0	0	0	11
SI	0	0	0	0	0	0	4
SK	8	2	0	0	0	10	4
EU27	31	54	4	7	12	108	458
IS	0	0	0	0	0	0	2
NO	0	0	0	0	0	0	13
Grand Total	31	54	4	7	12	108	473

^{*} form 3/4/5

Table 42: Stations using non reference-method CF for $PM_{10},\,PM_{2.5}\,\text{in}~2007$

Chapter 5

		S	O ₂		N	O ₂	NOx	Pf	VI 10	PM ₁₀ s	tage 2	Lead	Benzene	CO	Ozo	one
MS	Hlth	Hlth	Eco	Eco	Hlth	Hlth	Veg	D	37	D	¥	Year	Year	Year	Hlth	37
	hour	day	year	winter	hour	year	year	Day	Year	Day	Year	rear	rear	rear	пи	Veg
CZ				1		4	2	4	1							
DE	2	2										15	7	15		3
DK													2			
ES	17	17	7	7	14	14	8	15	13			78	83	61	18	19
FR												2				
GB	18	19	11	11		35	6	5	2	3	29	28	13	27	17	3
HU												11	3			
IT	11	11	3	3	4	4		5	5			15	16	9	5	5
NL						9		2	2			5	4			
PL	15	9	13	13	15	5	11	16	16			21	6	4		
RO	17	17			16	16		17	17			17	16	16		
SI												3	4	1		
sk							8					3				
	80	75	34	35	49	87	35	64	56		29	198	154	133	40	30
EU27	(10,3%)	(9,7%)	(6,9%)	7,1%)	(6,1%)	(10,8%)	(7,0%)	(8,1%)	(1,4%)	3 (1,4%)	(13,3%)	(30,3%)	(21,7%)	(17,9%)	(7,1%)	(6,1%)
IS	1	1	1	1	1	1		1	1	1	1	2	1	1		
Grand Total	81	76	35	36	50	88	35	65	57	4	30	200	155	134	40	30

^{*} form 8/9

Table 43: Zones with exceedance status determined by modelling in 2007

MS	S02	NO2	PM10	Lead	Benzene	СО	03
DK		1			2		
FR	12	10	9	6	18	2	18
GB	43	43	43	43	43	43	43
GR	1	1		4	3		
IT		6	5		3	1	
NL	9	9	9			9	
LV		1	2				
sk		1		1	2	1	
EU27	65	72	68	54	71	56	61

^{*} form 8/9

Table 44: Zones with Supplementary Assessment in 2007.

MS Number of stations Averaged annual mean (µg/m²) Max of annual mean (µg/m²) Min of an mean (µg/m²)	
AT 9 20 26 16	
BE 11 18 26 13	
BG 4 29 41 8	
CY 2 20 26 14	
CZ 24 21 36 14	
DE 32 16 27 8	
DK 1 23 23 23	
EE 1 11 11 11	
ES 54 17 29 6	
FI 6 8 10 5	
FR 42 18 36 10	
CB 7 14 22 4	
GR 3 30 37 20	
HU 3 19 24 14	
IE 1 8 8 8	
IT 27 26 37 13	
LT 3 12 17 9	
LU n.a. n.a. n.a. n.a.	
LV 4 21 24 18	
MT 3 18 23 12	
NL n.a. n.a. n.a. n.a.	
PL 2 23 26 19	
PT 14 12 24 1	
RO 3 32 36 23	
SE 13 10 13 5	
SI 3 21 27 10	
SK 4 21 27 13	
EU27 276 18 41 1	

^{*} form 18

Table 45: $PM_{2.5}$ monitoring stations statistics per Member State, 2007

	Д	OTvegetat	ion (ug/m³.	h)		AOT fore	st (ug/m³.h)		1	Annual ave	rage (ug/m3	3)
MS	Lowest ¹⁾	Average	Highest	Nr of stations	Lowest ¹⁾	Average	Highest	Nr of stations	Lowest ¹⁾	Average	Highest	Nr of stations
AT	2754	20552	33935	109	12698	34154	63926	109	27	55	101	109
BE	1805	5034	8296	38	4592	9986	18536	38	28	40	57	38
CZ	12092	19588	26865	24	20713	33395	49458	24	49	64	74	24
DK	2671	5796	9260	7	4170	10289	16900	7	45	55	63	7
EE	124	4452	8051	7	191	7348	11632	7	35	52	65	7
ES	0	9109	32556	345	0	18003	60149	345	18	50	94	345
FI	363	2922	5753	16	465	4741	9288	16	38	53	66	16
FR	0	9569	29175	219	0	21330	66988	219	18	52	94	227
GB	13	2228	10128	75	24	4550	16468	75	17	45	68	75
GR	18529	25659	36225	9	31476	31476	31476	1	45	59	79	9
IE	519	2413	5180	6	1617	1617	1617	1	47	58	75	6
IT	643	27379	66591	98	3826	48692	91705	69	6	52	99	231
LT	3556	4982	6408	2	5463	7479	9220	4	45	51	59	4
LU	0	5318	9991	6	0	11340	21707	5	16	35	52	5
NL	791	4387	9531	27	1528	8115	15996	26	28	40	54	28
PL	9760	17369	31686	19	16577	28941	56273	19	27	51	92	58
PT	590	5365	11383	14	3295	19140	34775	14	45	58	85	14
SE	181	3462	7373	14	408	6708	15803	14	44	54	65	16
SI	8615	24034	41424	12	12878	39301	72083	12	36	53	96	12
SK	17466	22268	29146	13	28931	38202	50364	13	44	61	91	13
EU27	0	11786	66591	1069	0	21460	91705	1027	6.06	51	101	1253

^{*} form 15

Table 46: Annual ozone statistics, vegetation and forest, 2007

Chapter 6

		•					
Member State	All Zones	As	Cd	Ni	BaP		
AT	19	11	11	11	11		
BE	18	0	0	0	0		
BG	6	6	6	6	6		
CY	1	1	1	1	0		
CZ	15	15	15	15	15		
DE	120	66	66	66	68		
DK	3	3	3	3	1		
EE	4	4	4	4	4		
ES	138	0	0	0	0		
FI	18	0	0	0	0		
FR	81	9	9	9	1		
GB	44	44	44	44	44		
GR	4	0	0	0	0		
HU	11	0	0	0	0		
Œ	4	0	0	0	0		
П	143	0	0	0	0		
LT	3	3	3	3	3		
LU	3	0	0	0	0		
LV	2	1	1	1	0		
MT	2	0	0	0	0		
NL	9	0	0	0	0		
PL	186	0	0	0	0		
PT	27	0	0	0	0		
RO	21	0	0	0	0		
SE	6	6	6	6	6		
SI	10	0	0	0	0		
SK	11	0	0	0	0		
EU27	909	169	169	169	159		
IS	3	0	0	0	0		
NO	7	0	0	0	0		
ALL	919	169	169	169	159		

^{*} form 0/1/2

Table 47: Number of 4th DD reporting zones

							••				
Member State	Total area km2	As	Cd	Ni	BaP	Member State	Total population	As	Cd	Ni	BaP
AT	83 870	100	100	100	100	AT	8 265 925	98	98	98	98
BE	30 530	0	0	0	0	BE	10 511 382	0	0	0	0
BG	110 910	100	100	100	100	BG	7 718 750	100	100	100	100
CY	9 250	100	100	100	0	CY	766 414	98	98	98	0
CZ	78 870	100	100	100	100	CZ	10 251 079	101	101	101	101
DE	357 050	100	100	100	100	DE	82 437 995	98	98	98	98
DK	43 090	102	102	102	1	DK	5 427 459	101	101	101	18
EE	45 230	96	96	96	96	EE	1 344 684	103	103	103	103
ES	505 370	0	0	0	0	ES	43 758 250	0	0	0	0
FI	338 150	0	0	0	0	FI	5 255 580	0	0	0	0
FR	643 427	5	5	5	0	FR	62 998 773	6	6	6	0
GB	243 610	100	100	100	100	GB	60 393 100	98	98	98	98
GR	131 960	0	0	0	0	GR	11 125 179	0	0	0	0
HU	93 030	0	0	0	0	HU	10 076 581	0	0	0	0
IE	70 270	0	0	0	0	Œ	4 209 019	0	0	0	0
П	301 340	0	0	0	0	П	58 751 711	0	0	0	0
LT	65 300	100	100	100	100	LT	3 403 284	99	99	99	99
LU	2 590	0	0	0	0	LU	469 086	0	0	0	0
LV	64 590	0	0	0	0	LV	2 294 590	31	31	31	0
MT	320	0	0	0	0	MT	405 006	0	0	0	0
NL	41 530	0	0	0	0	NL	16 334 210	0	0	0	0
PL	312 690	0	0	0	0	PL	38 157 055	0	0	0	0
PT	92 120	0	0	0	0	PT	10 569 592	0	0	0	0
RO	237 500	0	0	0	0	RO	21 610 213	0	0	0	0
SE	450 290	100	100	100	100	SE	9 047 752	101	101	101	101
SI	20 270	0	0	0	0	SI	2 003 358	0	0	0	0
SK	49 030	0	0	0	0	SK	5 389 180	0	0	0	0
EU27	4 422 187	34%	34%	34%	32%	EU27	492 975 207	39%	39%	39%	37%
IS	103 000	0	0	0	0	IS	299 891	0	0	0	0
NO	323 802	0	0	0	0	NO	4 640 219	0	0	0	0

^{*} form 0/1/2

Table 48: Total MS area and population covered by zones, in % of total.

		-	
	agglo	нонад	Total
AT	3	8	11
BG	6		6
CY		1	1
CZ	3	12	15
DE	33	36	69
DK	2	1	3
EE	2	2	4
FR	15	12	27
GB	28	16	44
GR	2	2	4
LT	2	1	3
LV	1	1	2
SE	3	3	6
Total	100	95	195

^{*} form 0/1/2

Table 49: Reporting zones on heavy metals by zone-type, 2007

		Rura	ıl			Suburt	oan			Urban		
arsenic	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations
AT	0.63	0.33	0.36	6	0.31			2	0.59			4
BG	0.00			1							0.00	1
CY												
CZ	0.76			7	1.45			4	2.70		1.80	7
DE	0.59	1.00		15	0.47	0.45	0.60	11	0.81	1.75	0.82	32
EE				1					6.80			1
FR					0.38			4	2.54			7
GB												
GR												
LT									0.20		0.25	3
LV	0.26			1					0.71		1.00	2
SE												1
EU27	0.61	0.67	0.36	31	0.70	0.45	0.60	21	1.38	1.75	0.83	58

^{*} form 15

Table 50: Station and concentration statistics arsenic, 2007

	Rural					Suburt	oan		Urban			
cadmium	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations
AT	0.19	0.15	0.18	5	0.16			1	0.24			3
BG	0.11			1							10.37	1
CY												
CZ	0.19			7	0.28			4	1.60		0.30	4
DE	0.20	0.30		14	0.18	0.19	0.20	11	0.25	0.55	0.19	29
EE	0.17			1					0.50			1
FR					0.20			3	0.30			5
GB												
GR												
LT									1.20		0.95	3
LV	0.12			1					0.60		1.09	2
SE												
EU27	0.19	0.23	0.18	29	0.21	0.19	0.20	19	0.40	0.55	0.99	48

^{*} form 15

Table 51: Station and concentration statistics cadmium, 2007

		Rura	I			Suburt	oan		Urban			
Nickel	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations
AT	1.27	1.99	1.55	5	1.28			1	2.02			3
BG	0.00			1							0.00	1
CY												
CZ	0.51			7	0.83			4	1.45		1.60	4
DE	1.21	2.10		14	1.78	1.90	1.60	11	2.40	3.30	1.59	29
EE	2.10			1					13.40			1
FR					2.33			3	3.27			5
GB												
GR												
LT									0.90		1.55	3
LV	0.61			1					3.30		4.41	2
SE												
EU27	0.99	2.05	1.55	29	1.60	1.90	1.60	19	2.79	3.30	1.66	48

^{*} form 15

Table 52: Station and concentration statistics nickel, 2007

	Rural				Suburban				Urban			
benzo(a)pyrene	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations	Background	Industrial	Traffic	No Stations
AT	0.51	1.29	0.67	4	1.02			2	1.28			4
BG	0.00			1							2.64	1
CY												
CZ	0.30			2	1.13			4	1.38		1.53	7
DE	0.19	0.21		11	0.34	0.40	0.60	10	0.35	0.93	0.47	20
EE	0.09			1					0.70			1
FR					0.30			1	0.34			5
GB												
GR												
LT									0.40		0.95	3
LV	0.21			1								
SE									0.10			1
EU27	0.21	0.93	0.67	20	0.66	0.40	03.0	17	0.62	0.93	1.04	42

^{*} form 15

Table 53: Station and concentration statistics benzo(a)pyrene, 2007

8 List of tables and figures

7.1: list of tables

TABLE 1: EU27 NUMBER OF ZONES AND TERRITORY AREA COVERAGE	
TABLE 2: EU27 ZONE EXCEEDANCES OF LIMIT OR TARGET VALUE IN 2006 AND 2007	
TABLE 3: LISTING OF THE 27 FORMS IN THE AQ QUESTIONNAIRE	10
Table 4: New data quality procedures in 2006	13
TABLE 5: 2007 QUESTIONNAIRE QUALITY CHECKS RESULT OVERVIEW.	14
TABLE 6: EU AIR QUALITY HEALTH STANDARDS	16
TABLE 7: NUMBER OF ZONES PER MEMBER STATE AND POLLUTANTS, 2007.	
TABLE 8: TREND TOTAL NUMBER OF ZONES PER MEMBER STATE, 2004-2007	18
TABLE 9: VOLUNTARY ZONE INFO ON AREA AND POPULATION, PERCENTAGE REFERS TO THE TOTAL EU27	
POPULATION AND AREA IN 2007	
TABLE 10: POPULATION IN AGGLOMERATIONS, IN 2007.	
TABLE 11: ZONE EXCEEDANCES IN 2007	
TABLE 12: EU27 POPULATION IN ZONES WITH MULTI-POLLUTANT EXCEEDANCES, 2007 (AG = AGGLOMERATIC	
NONAG = OTHER ZONES BUT AGGLOMERATIONS)	27
TABLE 13: EU27 NUMBER OF STATIONS MONITORING OZONE PRECURSORS, 2007	32
$TABLE\ 14: Number\ of\ reporting\ Stations\ in\ Questionnaire\ and\ corresponding\ EoI\ stations, 2007$	
TABLE 15: MULTI-POLLUTANT STATIONS (PERCENTAGE OF POLLUTANT PAIRS), 2007	
Table 16: Station correction factors for PM_{10} , $PM_{2.5}$ using a non-reference method, 2007	
TABLE 17: EU27 SHARE OF ZONES - EXCEEDANCE BASED ON MODELLING OR SA, 2007	
Table 18: EU27 PM _{2.5} monitoring stations statistics, 2007	38
TABLE 19: EU27 ANNUAL STATISTICS OF OZONE, AOT THRESHOLD AND ANNUAL AVERAGE, 2007	
Table 20: Influence PM_{10} natural events correction, 2007	
Table 21: PM_{10} winter sanding correction, 2007	
TABLE 22: NUMBER OF ZONES PER MEMBER STATES IN 2007	
TABLE 23: TOTAL MS AREA COVERED BY ZONES, IN % OF TOTAL AREA	
TABLE 24: TOTAL MS POPULATION COVERED BY ZONES, IN % OF TOTAL POPULATION	
TABLE 25: ZONES IN EXCEEDANCE, HEAVY METALS 2007.	
TABLE 26: ZONES IN EXCEEDANCE PER MS, DD4 HEAVY METALS IN 2007.	
TABLE 27: EU27 STATION STATISTICS HEAVY METALS DD4, 2007	
TABLE 28: TOTAL MS AREA COVERED BY ZONES, IN % OF TOTAL AREA, 2007	
TABLE 29: TOTAL POPULATION AREA COVERED BY ZONES, IN % OF TOTAL POPULATION, 2007	
Table 30: Zone exceedance per Member State and Pollutant (SO_2 , NO_2 and NO_x) in 2007	
$TABLE\ 31:\ ZONE\ EXCEEDANCE\ PER\ MEMBER\ STATE\ AND\ POLLUTANT\ (PM_{10},PB,CO,BENZENE,O_3)\ in\ 2007\ .$	45
TABLE 32: EU 27 AQ ZONE STATUS, VEGETATION 2007	
TABLE 33: EU27 AQ ZONE STATUS, HEALTH 2007	
TABLE 34: NUMBER OF ZONES WITH MULTI-POLLUTANT EXCEEDANCES PER MS, 2007	
TABLE 35: EU27 STATIONS AND PROTECTION TARGETS, 2007	
TABLE 36: NUMBER OF STATIONS PER POLLUTANT PER MS, 2007	
TABLE 37: NUMBER OF STATIONS PER TYPE, LOCATION AND MS, 2007	
TABLE 38: REPORTING STATIONS IN THE QUESTIONNAIRE AND CORRESPONDING AIRBASE MATCH, 2007	
TABLE 39: ZONES WITH TOO FEW STATIONS REPORTED, PER ASSESSMENT REGIME, 2007	
TABLE 40: ZONES PER MS AND POLLUTANT WITH 'MISSING' STATIONS, 2007	
TABLE 41: MEASUREMENT METHODS PM ₁₀ AND PM _{2.5} PER MS, 2007	
TABLE 42: STATIONS USING NON REFERENCE-METHOD CF FOR PM ₁₀ , PM _{2.5} in 2007	
TABLE 43: ZONES WITH EXCEEDANCE STATUS DETERMINED BY MODELLING IN 2007	
TABLE 44: ZONES WITH SUPPLEMENTARY ASSESSMENT IN 2007.	
TABLE 45: PM _{2.5} MONITORING STATIONS STATISTICS PER MEMBER STATE, 2007	
TABLE 46: ANNUAL OZONE STATISTICS, VEGETATION AND FOREST, 2007	
TABLE 47: NUMBER OF 4TH DD REPORTING ZONES	
TABLE 48: TOTAL MS AREA AND POPULATION COVERED BY ZONES, IN % OF TOTAL.	
TABLE 49: REPORTING ZONES ON HEAVY METALS BY ZONE-TYPE, 2007	
Table 50: Station and concentration statistics arsenic 2007	60

TABLE 51: STATION AND CONCENTRATION STATISTICS CADMIUM, 2007	. 60
TABLE 52: STATION AND CONCENTRATION STATISTICS NICKEL, 2007	. 60
Table 53: Station and concentration statistics benzo(a)pyrene, 2007	. 60

7.2: List of figures

FIGURE 1: EU27 PM ₁₀ DAY ZONE EXCEEDANCE, 2007	23
FIGURE 2: EU27 O ₃ HEALTH ZONE EXCEEDANCE, 2007	24
FIGURE 3: POPULATION IN ZONES EXCEEDING AIR QUALITY THRESHOLDS, 2007	
FIGURE 4: REPORTED REASONS FOR ZONE EXCEEDANCES, 2007	26
FIGURE 5: EU27 MULTI-POLLUTANT EXCEEDANCE ZONES BY ZONE-TYPE, 2007	
FIGURE 6: TOTAL NUMBER OF EU 27 AQ MEASURING STATIONS PER POLLUTANT, 2007	28
FIGURE 7: SHARE OF POLLUTANTS MEASURED BY ALL EU27 STATIONS, 2007	29
FIGURE 8: EU AQ MEASURING STATIONS PER TYPE AND LOCATION, 2007	
FIGURE 9: EU27 AQ MEASURING STATIONS AND PROTECTION TARGET, 2007	31
FIGURE 10: COMPLIANCE WITH THE MINIMUM NUMBER OF STATIONS IN ZONES, 2007	33
FIGURE 11: MEASURING METHODS FOR PM ₁₀ AND PM _{2.5} IN 2007	35
FIGURE 12: EU27 FREQUENCY DISTRIBUTION PM _{2.5} ANNUAL MEAN, 2007	38
FIGURE 13: EU27 ZONE EXCEEDANCE BENZENE, 2007	47
FIGURE 14: EU27 ZONE EXCEEDANCE CO, 2007	47
FIGURE 15: EU27 ZONE EXCEEDANCE PB, 2007	48
FIGURE 16: ZONE EXCEEDANCE NO ₂ HOUR, 2007	48
FIGURE 17: EU27 ZONE EXCEEDANCE NO ₂ YEAR, 2007	49
FIGURE 18: EU27 ZONE EXCEEDANCE NO _x YEAR, 2007	49
FIGURE 19: EU27 ZONE EXCEEDANCE O ₃ VEGETATION, 2007	
FIGURE 20: EU27 ZONE EXCEEDANCE PM ₁₀ YEAR, 2007	50
FIGURE 21: EU27 ZONE EXCEEDANCE SO ₂ WINTER, 2007	51
FIGURE 22: EU27 ZONE EXCEEDANCE SO ₂ YEAR, 2007	51
FIGURE 23: EU27 ZONE EXCEEDANCE SO ₂ DAY, 2007	52
FIGURE 24: EU27 ZONE EXCEEDANCE SO ₂ HOUR, 2007	52

9 References

EU (1996): Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management. OJ L 296, 21.11.1996, p. 55-63. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (1997): Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States. OJ L 35, 5.2.1997, p. 14–22. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (1999): Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. OJ L 163, 29.6.1999, p. 41–60. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (2000): Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air. OJ L 313, 13.12.2000, p. 12–21. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (2002): Directive 2002/3/EC of the European Parliament and of the Council of 12 February 2002 relating to ozone in ambient air. OJ L 67, 9.3.2002, p. 14–30. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (2004): Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. OJ L 23, 26.1.2005, p. 3–16. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (2004): Commission Decision 2004/461/EC of 29 April 2004 laying down a questionnaire to be used for annual reporting on ambient air quality assessment under Council Directives 96/62/EC and 1999/30/EC and under Directives 2000/69/EC and 2002/3/EC of the European Parliament and of the Council [notified under document number C(2004) 1714] (Text with EEA relevance). OJ L 156, 30.4.2004, p. 78–125. See: http://ec.europa.eu/environment/air/existing_leg.htm

EU (2004): Commission Decision 2004/279/EC of 19 March 2004 concerning guidance for implementation of Directive 2002/3/EC of the European Parliament and of the Council relating to ozone in ambient air. Official Journal L 87 of 25.03.2004. See: http://europa.eu/scadplus/leg/en/lvb/128031a.htm

EU (2004): Commission Decision 2004/224/EC of 20 February 2004 laying down arrangements for the submission of information on plans or programmes required under Council Directive 96/62/EC in relation to limit values for certain pollutants in ambient air. Official Journal L 68 of 06.03.2004. See: http://europa.eu/scadplus/leg/en/lvb/l28031a.htm

Mol, W.J.A., Hooydonk P.R. van, Leeuw, F.A.A.M. de (2007): European Exchange of monitoring Information and State of the Air Quality in 2005. ETC/ACC Technical paper 2007/1, September 2007. Available at: http://air-climate.eionet.europa.eu/reports/ETCACC TechnPaper 2007 1 EoI AQ meta info2005

Horálek, J., de Smet, P., de Leeuw, F., Denby, B., Swart R., Kurfürst, P. (2008): European air quality mapping 2005 including uncertainty analysis. ETC/ACC Technical Paper 2007/7, March 2008, Available at: http://air-

climate.eionet.europa.eu/reports/ETCACC TP 2007 7 spatAQmaps ann interpol

EEA 2007 Air pollution by ozone in Europe in summer 2006. EEA Technical report No.5/2007. European Environment Agency, Copenhagen, Denmark.

See: http://reports.eea.europa.eu/technical_report_2007_5/en

- EEA / ETC/ACC 2007 Mol W.J.A., van Hooydonk P.R., de Leeuw F.A.A.M. (2007) European exchange of monitoring information and state of the air quality in 2005.EEA-ETC/ACC . To be published as Technical Paper at: http://air-climate.eionet.europa.eu/reports
- EEA / ETC/ACC 2007 Vixseboxse E. and de Leeuw F.A.A.M. (2007) 2005 Annual Member States reporting on ambient air quality assessment. ETC/ACC Technical paper 2007/4. European Topic Centre on Air and Climate change, Bilthoven, the Netherlands. See: http://air-climate.eionet.europa.eu/reports/ETCACC TP2007 4 AQQ2005
- EEA / ETC/ACC 2008 Vixseboxse E. and de Leeuw F.A.A.M. (2008) Report on ambient air quality assessment 2006, Member States reporting ('The Questionnaire'). ETC/ACC Technical Paper 2008/2

See: http://air-climate.eionet.europa.eu/reports/ETCACC TP2008 2 AQQ2006

EEA / ETC/ACC 2008 - de Leeuw F.A.A.M. and Vixseboxse E. (2008) Reporting on ambient air quality assessment - Preliminary results for 2007. ETC/ACC Technical Paper 2008/4 See: http://air-climate.eionet.europa.eu/reports/ETCACC TP2008 4 AQQ2007 prelim analysis

EEA / ETC/ACC 2008 - coordinated by Libor Cernikovský (2008) Air pollution by ozone across Europe during summer 2007. EEA Technical report No 5/2008

See: http://air-climate.eionet.europa.eu/reports/eea_tech_rep_5_2008_SummerO3_2007

EEA / ETC/ACC 2009 - WJA Mol, PR van Hooydonk and FAAM de Leeuw European exchange of monitoring information and state of the air quality in 2007. ETC/ACC Technical Paper 2009/3

See: http://air-climate.eionet.europa.eu/reports/ETCACC TP 2009 3 EoI AQ meta info2007