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Front page picture:  The combined rural and urban concentration map of ozone health indicators 26th highest 
daily maximum 8-hour value in µg.m-3 for the year 2005. (Figure 4.1 (top) of this paper.) 
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1 Introduction 
 

General objectives 

This is the first of two technical papers describing air quality mapping activities performed by the 
European Topic Centre on Air and Climate Change (ETC/ACC) for the European Environment 
Agency (EEA) in 2007. The objective of this report is (a) the updating and refinement of European air 
quality maps based on annual statistics of the 2005 observational data reported by EEA Member 
countries in 2006, and (b) the further improvement of the interpolation methodologies. The paper 
presents the results achieved and an uncertainty analysis of the interpolated maps and builds upon 
earlier reports from Horalék et al. (2005; 2007).  

In the second report (Denby et al., 2008) the focus is on the use of daily statistical data, i.e. creating 
interpolated fields on a daily basis and combining these fields to derive the air quality indicators. This 
report builds upon the methodology described in Horálek et al. (2007) Chapter 6. 

The products of this work are mainly intended to be used for the assessment of European air quality by 
the EEA and for public information purposes through the EEA website. 

 

Air pollutants selected 

This work builds upon the deliberation with EEA and recommendations summarized in Horálek et al. 
(2007), in which earlier spatial interpolation methodology developments and mapping activities have 
been documented. Again five pollutants have been taken into account, namely PM10, PM2.5, ozone, 
SO2 and NOx. However, PM2.5 maps are not created because the number of the relevant measuring 
stations continues to be too small to arrive at reliable results, as concluded in Annex 7 of this 
document. 

 

General methodology 

The mapping methods are, in principle, the same as described in Horálek et al. (2007): the rural and 
the urban areas are mapped separately; and the final maps are created by merging these together, using 
a weighting based on the population density. For rural mapping, the recommended methodology by 
Horálek et al (2007) is followed. I.e., “Methodologies based on linear regression models, using 
supplementary data, are generally preferred to pure interpolation methods as the pure interpolation 
methods give highly uncertain results far from monitoring sites.” Following this recommendation, not 
only data from measured air quality is used in the mapping procedure, but also supplementary data, 
such as output from chemical transport models (CTMs), altitude and the meteorological parameters. 
By making use of their correlation to air quality they contribute to improvements in the quality of 
Europe-wide air quality assessment through spatial interpolation, especially for areas further away 
from the measurement sites and where measurements are lacking, including urbanised areas without 
measurements. This paper examines whether the use of the same supplementary parameters for 2004 
data (Horálek et al., 2007) is also the best for 2005 data. In addition, a number of specific questions 
regarding uncertainty are addressed. 

 

Comparing four different interpolation methodologies 

To carry out a proper evaluation of the improvements in interpolation results, by pursuing different 
types of input data in three subsequent steps and including their involved uncertainties, we employed a 
type-wise analysis. The extension with the CTM model comparison is considered as the fourth type. 
The resulting four types of interpolation methodologies analysed and compared are:  
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1. Using monitoring data only (by geostatistical methods based on kriging) 

2. Combining monitoring data and EMEP model data (using a linear regression model followed 
by kriging of its residual) 

3. Combining monitoring data, EMEP model data and other supplementary data (using a 
multiple linear regression model followed by kriging of its residual) 

4. Combining monitoring data and LOTOS-EUROS model data (using a linear regression model 
followed by kriging of its residual) 

The reason for the comparison of these types of methods is to examine their respective level of 
performance and interpolation improvement by adding additional information to that of the monitoring 
data. From the results, the statistically best or operationally preferred method is selected for the final 
creation of interpolated European maps of air quality. When different methods arrive at comparable 
statistical results, the associated air quality maps can be considered as being more robust.  

 

Mapping uncertainty of the interpolations 

The interpolation uncertainty of the preferred method used for the mapping is assessed quantitatively. 
As compared to Horálek et al. (2007), the interpolation uncertainty analysis of the maps has been 
applied for all air quality indicators and improved. To conclude on the most robust and suitable 
method for the operational mapping, Horálek et al (2007) recommended carrying out inter-annual 
comparisons of different methods and already provided such comparisons for rural areas. The 
preferred method derived from this analysis has been applied in the 2005 mapping. In the current 
paper this comparison has been extended to the urban areas. Based on the current and previous 
comparison results we conclude for every indicator on the most robust and preferred method for both 
the rural and urban areas. Those methods we ultimately used for producing the rural, the urban and 
their combined 2005 maps.  

In this paper, an additional comparison as recommended by Horálek et al. (2007) is made, using 
output from the Unified EMEP model and from an alternative CTM as source of the supplementary 
information. The hypothesis is that (a) the performance of the models in the spatial interpolations 
should lead to comparable improved results, confirming the robustness and justification of using the 
EMEP model as source of supplementary data, and that (b) the use of CTMs in general improves 
interpolation results. As representative substitute for the output of the EMEP model we selected the 
LOTOS-EUROS dispersion model, a well established regional scale CTM applied in Europe from 
which data was readily available. To effectively examine the performance of the model contribution 
itself, we used dispersion model data as only data source additional to the air quality measurements 
and are reflected by above mentioned methodologies 2 and 4.  

 

Mapping probability of exceedance 

From a political point of view, a key question is to what extent air quality is either above or below a 
particular limit value in a certain area. But because of the significant scientific uncertainties, this 
question can not be answered very accurately for any particular location. Therefore, it is interesting to 
evaluate the probability that limit vales will be exceeded, taking into account the scientific 
uncertainties. In this paper, trials of maps with the probability of exceedances of limit values are 
constructed. From the uncertainties in the interpolation methods and from the actual concentrations in 
each grid cell the probability of an exceedance of the limit value has been estimated. The resulting 
maps may guide further action with respect to implementation of abatement measures and design of 
the monitoring network.  
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Paper outline 

Chapter 2 describes the methodological aspects in more detail. Chapters 3, 4, 5, and 6 present and 
discuss the mapping results for PM10, ozone, SO2 and NOx, respectively. Final maps for each pollutant 
and indicator will be presented at the end of each of these chapters. Chapter 7 discusses the selection 
of the preferred interpolation methodologies for the European mapping of air quality pollutant 
indicators. In Annex 1 the input data sources and their detailed parameters used in the interpolations 
and mapping are presented. Annexes 2-5 discuss for each pollutant the comparison of maps created by 
different methods, leading to the selection of best or preferred mapping method. In Annex 6 the 
equations of the used statistical indicators are given. In Annex 7 the assessment of the feasibility of 
creating European PM2.5 maps based on PM10-PM2.5 ratio of measurements is presented, discussed and 
concluded.  
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2 Interpolation methodologies, supplementary data 
selection, and uncertainty analysis 
 

2.1 Interpolation methodologies and supplementary data selection  
Air pollution measurements from ground stations are the most accurate source of air quality 
information. As the number of measuring sites is limited, the information obtained from these 
measurements has to be generalized to improve the spatial coverage. There are various ways to arrive 
at spatial maps on the basis of the data from the monitoring stations. The most straightforward type of 
interpolation methods is through spatial interpolation of monitoring data. If spatial interpolation does 
not use any further information (except the coordinates and altitude of the measurement stations) in 
addition to the measurements, we speak about spatial interpolation using primarily monitoring data, 
i.e. the type 1 of interpolation methods evaluated.  

The second type of methods considered focuses on ground-based measurements as primary 
information using output of chemistry transport models (CTMs) as secondary, supplementary sources. 
This is in contrast to the work supporting the development of the European Thematic Strategy on Air 
Pollution, which gives prominence to modelling as primary source of information, using monitoring 
data to calibrate the model. While some of the methods and data sources are similar, to some extent 
the two approaches can be regarded as complementary. The CTMs have the advantage of full coverage 
of the whole territory, but they are generally less reliable than the measured data. The combination of 
the monitoring data with the dispersion modelling data represents the second type of the interpolation 
methods, being linear regression models using monitoring and modelling data followed by 
interpolation of its residuals. As explained in Chapter 1 we further examine and compare the 
performance of the same method using two different CTMs: the Unified EMEP model and the 
LOTOS-EUROS model.  

Finally, the third type of method is an extension of the second type by the inclusion of supplementary 
parameters, spatially resolved, which show statistical correlation with the air quality data, providing 
more spatially resolved information on the whole territory than the pure air quality measurements. 
Examples of such supplementary data considered are meteorology, topography, population density and 
emissions. The linear regression analysis is primarily interested in identifying and selecting the most 
descriptive supplementary parameters to be used in this third type, the multiple linear regression 
models using monitoring, modelling and other supplementary data followed by interpolation of their 
residuals. The linear regression models and their use to select the most significantly correlating 
supplementary parameters for the interpolations is explained in Horálek et al. (2007), Sections 2.4 and 
2.5. The supplementary data sources we considered here are described in more detail in Annex 1.  

As concluded in Horálek et al. (2007), different geo-statistical interpolation techniques can be applied 
at each of the four types of methodologies, each with its specific level of performance per pollutant 
indicator field. The four techniques selected for type 1 were considered as promising with the 
recommendation to assess its inter-annual performance. Therefore, these are selected for examination 
on the 2005 data again. The simpler Inverse Distance Weighting (IDW) is not considered in this paper, 
since this method proved to be the weakest interpolator. It was recommended to drop it from any 
further interpolation improvement effort. For the three types where the interpolation is preceded by 
linear regression only ordinary kriging is used, since Horálek et al (2007) recommend dropping the 
IDW for its weak performance in general. Details on the interpolation kriging techniques used in this 
paper are described in Horálek et al. (2007), sections 2.2 to 2.4.  
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In summary, the four types of methodologies examined are the following: 

1. Interpolation methods using primarily monitoring data  

a. ordinary kriging (OK) 
b. lognormal kriging (LK) 
c. ordinary cokriging, using the altitude of the measuring stations (OC) 
d. lognormal cokriging, using the altitude of the measuring stations (LC) 

2. Linear regression model using monitoring and EMEP modelling data, followed by 
interpolation of its residuals by using ordinary kriging 

3. Linear regression models using monitoring, EMEP modelling data and other supplementary 
data, followed by interpolation of their residuals by using ordinary kriging  

4. Linear regression model using monitoring and LOTOS-EUROS modelling data, followed by 
interpolation of its residuals by using ordinary kriging 

 

For all interpolation methods, i.e. OK, LK, OC and LC, variogram parameters are estimated by the 
minimization of the cross-validation RMSE (Horálek et al. 2007, Section 2.3.5).  

For all four types of methods, the mutual comparison and uncertainty analysis is executed using cross-
validation, for all considered pollutants and their indicators. For the purpose of this comparison and 
uncertainty analyses the specific methods (using specific supplementary data) of the methodology type 
3 had to be selected. Thus we made an additional sub-selection: we first took the linear regression 
submodel performing best on 2005 data with the set of supplementary parameters contributing most, 
selected through a stepwise regression with a backward elimination. If the preferred method with 
particular supplementary data turned out to be different from the 2004 analysis, the method used by 
Horálek et al. (2007) for mapping of 2004 data was applied as well for the relevant pollutant indicator 
and the type of area as a basis for comparison.  

Based on the cross-validation analysis the preferred method is selected. In case the selected methods 
for 2004 and 2005 mapping result to be different, both are compared for the 2005 data. The best is 
selected as the preferred method for the mapping of 2005 data. In case the same method is selected as 
best for both years, it is considered to be the best or at least as the preferred method to be used for 
mapping. Especially for cases when the same method performs best in both years, it gives some 
confidence in the robustness of the method for further application on the specific pollutant indicator. 

The above described approach and methods are applied separately for the rural and urban areas. The 
merging of the selected rural and urban into one combined map is done based on the aggregated 10 x 
10 km population density grid, using the criterion as described in Horálek et al. (2007), Chapter 3 and 
Annex. 

 

2.2 Interpolation uncertainty analysis 
The interpolation uncertainty of each interpolation method used for the mapping and the maps 
themselves are assessed quantitatively. Compared to Horálek et al. (2007), Chapter 7, similar 
interpolation uncertainty analyses of the maps are done, however this is now extended to each of the 
air pollutant indicators. Also, the cross-validation scatter plots were extended also for the methods of 
types 2, 3 and 4. 
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Four approaches are applied: (i) comparison of the maps created by the selected and alternative 
methods, using the difference of these maps (ii) cross-validation analysis, using statistical indicators 
and their scatter plots, (iii) non cross-validation scatter plots for comparison measured with estimated 
values, and (iv) the creation of uncertainty maps additional to the interpolated maps produced with the 
preferred interpolation method. Cross-validation analysis is executed for all examined methods, whilst 
the other approaches for selected method only. 

Next to the aim of selecting an optimal set of supplementary data, cross-validation analysis also serve 
as a basis to estimate the level of uncertainty in the interpolation methods (or the interpolation-part of 
the methods of type 2 to 4). The statistical cross-validation consists of a spatial interpolation carried 
out for a measurement point using all the available measurement points (resp. information associated 
with them) except the data from that one point, i.e., it withholds one data point and then makes a 
prediction at the spatial location of that point. This procedure is repeated for all measurement points of 
the available set. The predicted and the measured values are then compared with help of statistical 
indicators. The statistical uncertainty indicators of the cross-validation are: the root mean squared error 
(RMSE), the mean prediction error (MPE), the mean absolute error (MAE), the standard deviation of 
error (SDE), the minimum error, the maximum error, the median of absolute error (MedAE), the mean 
prediction standard error (MPSE) and parameters of the cross-validation scatter plot, i.e. slope a, 
intercept c and the coefficient of determination R2. See Annex 6 or Horálek et al. (2007) Section 2.6 
for more details on their definitions and their role as indicator. The cross-validation scatter plots are 
created by plotting the actual measurement indicator values (x axis) against the cross-validation 
predicted indicator values (y axis). The scatter plot of the cross-validation predicted indicator values 
plotted against the measurement based indicator values serve as a mean uncertainty indicator for the 
interpolation method itself. It provides an estimate of the level of uncertainty for the predicted 
interpolation values at locations without measurements. 

In this paper an additional comparison between the interpolation uncertainty of the method using the 
EMEP dispersion model and the same method using the LOTOS-EUROS model is performed to 
explore uncertainties resulting from the choice of a particular model. This comparison is also carried 
out using cross-validation. 

Alternatively to the cross-validation approach, a simple comparison between the measured and 
interpolated values in the points of measurement is made, using scatter plots (resp. the parameters of 
the fitted regression line, i.e. R2, slope a and intercept c). This comparison differs from cross-
validation in two ways: First, the comparison is constructed from all stations, including the measured 
value in the examined point. Second, the interpolated values are the mean values of the 10x10 grid 
cells obtained by kriging (whereas in cross-validation the predicted value is computed in the exact 
location of the monitoring station). The principle of this type of kriging is described in detail in Annex 
6. This comparison shows the uncertainty at the monitoring location; while cross-validation simulates 
the behaviour of interpolation in the places with no measurement (the cross-validation approach does 
not use the measured value in the examined point). 

Two different sources of uncertainty are present in this approach: Firstly, uncertainty caused by the 
method. The values estimated by kriging are mostly smoothed in comparison with the measured 
values. Secondly, the spatial uncertainty related to the differences in representativity: the values of 
each grid are the estimated value of the mean of the 10x10 km area, whilst the measured values are 
station-related measurements.  

The uncertainty maps show the predicted standard error of estimation, following the principles of 
spatial statistics (see Cressie, 1993). The statistical term standard error of estimation of a particular 
method is defined as the estimated standard deviation of the value estimated by that method in a 
relevant point. Uncertainty maps are computed together with air quality interpolation maps. As in the 
case of concentration maps, the interpolation is executed first and then aggregated into the 10x10 km 
grid. The uncertainty analyses are done for urban and rural areas separately.  
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2.3 Exceedance probability mapping 
In addition to the uncertainty maps, one can construct maps with the probability of exceedance (PoE) 
of a specific threshold value (e.g. limit or target value).  

The maps of PoE of limit value exceedance are constructed using the concentration and uncertainty 
maps: 

)
)(

)(
(1)(

x
xCLV

xPoE
c

c

δ
−

Φ−=  (2.1)  

where PoE(x) is the probability of limit value (LV) exceedance in the grid cell x, 

 Φ( ) is the cumulative distribution function of the normal distribution, 

 LV is the limit value of the relevant indicator, 

 Cc(x) is the estimated combined concentration value in the grid cell x, 

 δc(x) is the combined standard error of the estimation in the grid cell x. 

 

For the probability map of the combined (rural and urban) map, the standard error is calculated from 
the standard errors of the composing rural and urban maps: 

 

( ) ruururc rAAAA ⋅⋅⋅−⋅+⋅−+⋅= δδδδδ )1(21 2222  (2.2) 

where cδ  is the combined uncertainty (standard deviation) in the grid cell 

 A  is the weight factor based on population density for the rural grid cells (see Annex 6)  

 rδ and uδ are the uncertainties in the corresponding rural resp. urban grid cell 

 rru  is the correlation coefficient of the rural and urban concentration fields. 

 

In the case of the perfect correlation the equation becomes 

( ) urc AA δδδ ⋅−+⋅= 1  (2.3) 

 

In the case of no correlation it is  

( ) 2222 1 urc AA δδδ ⋅−+⋅=  (2.4) 

 

At areas with a population density less then 100 inhabitants per km2 the weight factor A = 1, meaning 
the concentration and uncertainty of the rural map is assigned to the corresponding grid cell of the 
final map. At areas with more than 500 inhbs.km-2 the weight factor A = 0, meaning the concentration 
and uncertainty of the rural map is assigned to the corresponding grid cell of the final map. At areas 
with a population density within the range of 100 - 500 inhbs.km-2 the combined concentration Cc is 
derived according equation A6.13 and its related combined standard error uncertainty δc  according 
equation 2.2.  

To get an impression on the size of the area per population density ‘class’ the number of 10x10 km-2 
grid cells are counted. From the total number of 50918 cells the terrestrial mapping domain consists of 
there are 40942 cells classified as rural (< 100 inhbs.km-22), 1831 cells as urban (> 500 inhbs.km-2) and 
8145 cells as combined rural and urban (100 – 500 inhbs.km-2).  
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In the probability maps the relation between the predicted value in a cell and the limit value (or target 
value) is grouped in four cases which are illustrated below.   

 

The graph shows the predicted concentration 
value in the grid cell (blue line) and the 
normal distribution centered around the grid 
cell value. The limit value is given by the red 
line. In this situation the grid value is much 
lower than the limit value. However, when 
considering the uncertainties in the 
concentration value, an exceedance is 
unlikely but there is still a small change on 
exceedance. When the total probability of 
exceedance is less than 25% the cells are 
green coloured in the probability maps. 

 

In this situation the concentration value is 
slightly lower than the limit value. There is 
no exceedance but when considering the 
uncertainty ranges, exceedance of the limit 
value is possible. The change of an 
exceedance is up to 50% when concentration 
and limit value are equal. In the map the 
areas where the probability of exceedance is 
between 25% and 50% are coloured yellow. 

 

Here the concentration is larger than the limit 
value: such a situation is defined as an 
exceedance but as the graph shows that 
compliance with the limit value is possible. 
This kind of situations where the probability 
of exceedance is between 50 and 75% are 
given by an orange colour.   

 

Here the concentration is much larger than 
the limit value. Exceedance of the limit value 
is most likely. In the probability maps areas 
where the change of exceedance is more than 
75% are coloured red.  

 

The four probability classes can be defined in terms of the standard error σ (x) and predicted 
concentration value C  in the grid: 

if the limit value is more than  C + 0.675 σ (x) then the PoE is less than 25% 

if  the limit value is between  C and C + 0.675 σ (x)  then the PoE is between 25 and 50% 
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if  the limit value is between C - 0.675 σ (x) and C then the PoE is between 50 and 75% 

if the limit value is less than C - 0.675 σ (x) then the PoE is more than 75%. 

 

The difference between the predicted value and the limit value and the level of interpolation 
uncertainty play a combined role in the level of probability of exceedance. This is illustrated in Figure 
2.1. Here the distribution around the predicted value is given for two cases with a low and high 
uncertainty.  

With increasing uncertainty, (that is with increasing standard error of the predicted value in the grid 
cell) the curve broadens. The predicted value is below the limit value; the probability of an exceedance 
is given by the area on the right hand side of the red line of the limit value. Although  the difference 
between predicted value and limit value is the same in the high and low uncertainty case, it is clear 
that in the high uncertainty case the probability of exceedance is must larger than in the low 
uncertainty case. For the situation sketched in Figure 2.1 the grid cell may even fall in different 
probability classes: in the low uncertainty case the cell would be green, in the high uncertainty case the 
cell would be yellow.  

 

-15 -10 -5 0 5 10 15

low uncertainty

high uncertainty

 
Figure 2.1 Distribution around the predicted value (blue) given for two cases with a low and high uncertainty. 
Red is the limit or target value. 

 

Next to the estimation of the probability of the limit value exceedance, the real measured values at the 
stations are presented in the probability maps: stations with the measured values above the limit value 
or target value are marked red, whereas the station measurements below the limit value are marked 
green. (Neither orange nor yellow is applied on the stations, since that classification is related to the 
interpolation uncertainty only and not to the measurement uncertainty at the stations).   

 

The probability map may guide further action with respect to implementing of abatement measures 
and to monitoring network design. In regions with a high uncertainty in the indicator value there might 
be no need to reduce this uncertainty (e.g. by establishing additional stations) when the probability 
map indicates that exceedance is most unlikely. On the other hand, there will be areas where the 
concentration is below the limit value but the probability map indicates that exceedance is likely. 
Although these areas are formally speaking in compliance, one may conclude that, in order to avoid 
non-compliance in another year, abatement measure should be considered.  
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Both the uncertainty and probability maps presented in this report accounts only for the interpolation 
error. Other sources of uncertainty (e.g. measuring errors, representativeness, and model uncertainty) 
have not been included. Therefore, it should be stressed that these maps are the estimates only. 
 
 
The exceedance probability maps show that relationship between the actual, the interpolated value and 
the associated uncertainty is much more complex than is often assumed. This calls for a careful 
consideration of the selection of the particular output indicator to be presented and the way of 
presenting it, especially in view of the message to be communicated. 
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3 PM10 maps for 2005 
 

For PM10 the two health-related indicators annual average and 36th highest maximum daily average are 
considered. The analyses and determination of the best and/or preferring interpolation method for 
mapping out of the set of methods of the different types of methodologies takes place for the rural and 
urban areas separately. Based on the selected method for each indicator for both the rural and urban 
maps are produced. Out of these maps a combined European covering interpolated PM10 indicator 
map is created using a population density relation as criteria.  

The preparation of the separate rural and urban maps is discussed in Annex 2. Details on the process 
of selecting the best interpolation method are also given in this Annex.  

3.1 PM10 annual average 
The combined interpolated map for the 2005 PM10 annual averages in Figure 3.1 is created by 
combining the rural and urban maps using a 10x10 km grid aggregated population density field, 
according the criterion as described in Horálek et al. (2007).  

The rural map has been created by combining the annual averages from the measured PM10 
concentrations from the rural background stations with supplementary data from the EMEP model 
output, altitude field, wind speed and surface solar radiation in a linear regression model, followed by 
the interpolation of its residuals by ordinary kriging. This method (abbreviated as 3-P.Eawr-a) is the 
same as used for the 2004 mapping (Horálek et al, 2007). Although the methods based on lognormal 
cokriging with altitude gives slightly better results, this method has been selected as it gives a better 

 
Figure 3.1 Combined rural and urban concentration map of PM10 – annual average, year 2005. Spatial 
interpolated concentration field and the measured values in the measuring points. Units: µg.m-3.  
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European coverage. 

The urban map is created by combining the measured PM10 annual averages from the urban and 
suburban background stations with the EMEP model output only in a linear regression, followed by 
the interpolation of its residuals by ordinary kriging (abbreviated as 2-UP.E-a), while on the 2004 data 
the method of ordinary kriging on monitoring data only (method 1-a) was applied in TP 2006/6 with 
the disadvantage of a limited European coverage. The performance of other mapping methods is 
similar but the method 2-UP.E-a is selected for its better European coverage.  

The areas and stations in the combined map where the limit value (LV) of 40 µg.m-3 is exceeded are 
coloured red and purple. Comparing this map with the 2004 concentration map (Horálek et al, 2007), a 
similar spatial pattern is observed but the concentration in 2005 tends to be slightly higher than in 
2004. A similar small increase is also noted in the monitoring data alone (Mol et al. 2007). 

3.1.1 Population exposure and health impacts 
The final concentration map of the annual PM10 mean concentration shows increased concentrations 
in the urbanized areas. In comparison to its neighbouring countries the concentration in France are 
relatively low. It can not be excluded that these low levels to the fact that these data are not corrected 
despite they were obtained by non-reference measuring configurations (mostly TEOM) (de Leeuw, 
2005).  

annual mean

0-10 ug/m3
10-20 ug/m3
20-30 ug/m3
30-40 ug/m3
>40 ug/m3

36th highest daily mean

0-20 ug/m3
20-23 ug/m3
30-50 ug/m3
50-65 ug/m3
>65 ug/m3

 
Figure 3.2 Exposure of the European population to PM10 concentrations, annual mean (left) and 36th highest 
daily mean (right), (reference year 2005). 

 

Table 3.1 and Figure 3.2 give the population frequency distribution for a limited number of exposure 
classes. Note that, in contrast to Table 3.1, Figure 3.2 includes all countries shown in Figure 3.1. 
Almost a quarter (23%) of the European population is exposed to concentrations below the stage-2 
indicative limit value of 20 μg.m-3. About two-third of the European population lived in 2005 in areas 
where the PM10 concentration is estimated to be between 20 and 40 μg.m-3. About 9% of the 
population lives in areas where the PM10 annual limit value is exceeded. However, as the current 
mapping methodology tends to underestimate high values, the number of 9% is probably higher. The 
frequency distribution shows a large variability over Europe; in six countries (Albania, Bulgaria, 
Cyprus, FYR of Macedonia, Greece, and Romania) it is estimated that more than a quarter of the 
population is exposed to concentrations above the limit value. In a number of countries in north and 
north-west Europe the LV seems not to be exceeded at the 10x10 km2 level applied in the mapping.  
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From Figure 3.2 it is clear that the daily limit value of PM10 has been exceeded in a much larger part 
of Europe, see also the map in Figure 3.5 and Table 3.2 given below. 

In a health impact assessment the number of premature deaths attributable to long-term exposure to 
PM10 has been estimated. A similar approach as described in Horálek et al. (2007) has been applied. 
An update of country-specific demographic data has been taken from the UN population Division 
(UN, 2006). The health impact assessment is performed according to standard population attributive 
principles (WHO, 2001). A relative risk of 4.3% per 10 µg.m-3 PM10 for total mortality (excluding 
violent deaths, adults 30 years and older) has been used (Künzli et al., 2000). A uniform non-
anthropogenic background concentration of 5 μg/m3 has been subtracted.   

The estimated number of premature deaths per million inhabitants attributable to PM10 exposure is 
given in Figure 3.3. The observed range is partly caused by the differences in PM10 concentration 
over Europe and partly by the differences in age distributions and baseline mortalities. The 

Table 3.1 Population exposure and population weighted concentration – PM10, annual average, year 2005. 
Population-

Population < 10 10 - 20 20 - 40 40 - 45 > 45 weighted conc.
x1000 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3

Austria 8286 5.8 16.9 77.4 0 0 23.5
Belgium 10542 0 2.8 97.2 0 0 28.9
Bulgaria 8055 0.3 4.5 65.3 3.2 26.7 37.2
Croatia 4366 0 4.4 87.5 8.1 0 30.6
Czech Rep. 10155 0 1.5 88.8 2.9 6.8 31.5
Denmark 5006 1.2 40.8 58.0 0 0 19.7
Estonia 1301 2.4 83.7 14.0 0 0 16.3
Finland 5179 7.9 92.1 0.0 0 0 13.3
France 58286 0.5 60.9 38.5 0 0 19.1
Germany 81889 0.1 22.7 77.2 0 0 22.1
Greece 10655 0.1 7.2 48.7 35.4 8.5 34.7
Hungary 10107 0 0 98.0 2 0 33.5
Ireland 3652 40.0 60.0 0.0 0 0 11.4
Italy 57119 0.6 5.1 71.8 10.1 12.4 32.7
Latvia 2243 1.3 58.6 40.1 0 0 18.7
Liechtenstein 32 0 0 100 0 0 21.4
Lithuania 3567 0 54.0 46.0 0 0 20.3
Luxembourg 451 0 100 0.0 0 0 18.4
Malta 394 0 0 100 0 0 36.5
Netherlands 15153 0 0.2 99.8 0 0 29.1
Poland 38182 0 8.1 75.6 4.1 12.2 30.5
Portugal 10024 0 1.8 85.3 12.9 0.0 30.6
Romania 22228 0 1.9 59.2 12.3 26.7 37.4
San Marino 19 0 0 100 0 0 24.9
Slovakia 5265 0 2.0 92.6 5.4 0 31.4
Slovenia 2034 0.1 11.5 88.4 0 0 27.5
Spain 39884 0.6 15.8 82.7 0.8 0 27.4
Sweden 8666 8.8 84.6 6.6 0 0 15.0
United Kingdom 58204 2.3 30.5 67.2 0 0 20.8
Albania 3767 1 13.5 39.5 32.9 12.9 33.8
Andorra 59 18 16.1 65.7 0.0 0.0 16.2
Bosnia-Herzegovina 4000 0.6 17.7 60.7 20.9 0.0 30.1
Island 101 47.4 52.6 0.0 0 0 9.5
Macedonia, FYR of 2214 1.2 9.9 25.5 5.2 58.2 42.7
Norway 2907 15.6 53.2 31.1 0.0 0.0 16.5
Serbia&Montenegro 10996 0 6 47 7 40 38.7
Switzerland 6801 3 42.0 54.8 0.0 0 19.8

Total 511787 1.3 22.7 66.8 3.9 5.4 26.3

Country
2005 Percent [%]

Note: Countries with the values based on ORNL population data with uncertain quality: AD, AL, BA, CH, CS, IS, MK, NO. 
Countries with the lack of air quality or population density data are excluded from calculations in this paper: CY, TR. 
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uncertainties in the numbers caused by the uncertainties in the relative risk factor are relatively large: 
for the EU27 as a whole the number ranges from 510 to 1150 deaths per million with a best estimate 
of 830. 

premature deaths (per million) attrubutable to PM10
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Figure 3.3 Number of premature deaths per million inhabitants attributable to PM10 exposure, 
reference year 2005. The “no_ex scenario” corresponds to the (hypothetical) situation that the daily 
limit value is not exceeded at European hot-spot locations. 
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The results in Figure 3.3 labelled as “no_ex scenario” correspond to a sensitivity calculation in which 
it is assumed that the daily limit value (a daily mean of 50 µg.m-3 may not be exceeded on more than 
35 days per year) is nowhere in Europe, not even at hot-spot location, exceeded. This situation has 
been simulated by truncating the annual mean concentration calculated for each 10x10 km grid cell to 
25 µg.m-3 and re-estimating the number of premature deaths using the truncated concentration field. 
The rationale of the truncation value of 25µg.m-3 is as follows: the monitoring data shows that the 
daily PM10 limit value is equivalent with an annual average concentration of 31 µg.m-3 (see e.g. 
Buijsman et al. (2005) and Stedman et al. (2007)). In our mapping exercise the concentration in the 
10x10 km grid cell is assumed to be representative for the rural or urban background situation. On the 
average the annual average concentration at a traffic hot-spot is 20-25% higher than at an urban 
background station (see e.g. Mol et al, 2007). Therefore, with a background concentration of 25 µg.m-3 
exceedance of the daily limit value at hot spots will largely be avoided.  

In this “no_ex scenario” the reduction in premature deaths is particularly large in the central eastern 
countries. For the EU27 as an average we estimate a reduction of about 17%. Even when the limit 
values are met in the whole EU27 territory a substantial number of premature deaths are to be 
expected.  

3.1.2 Uncertainties 
The absolute and relative mean interpolation uncertainty in the combined map, summarised from 
Sections A.2.1.3 and A2.2.3, are for the rural areas - taken from the rural map - 5.5 µg.m-3, and about 
26% respectively, of the mean of the measurement based PM10 annual averages at all rural 
background stations. For the urban areas  - taken from the urban map – they are 5.5 µg.m-3, and about 
20% respectively, at all urban and suburban background stations 

Based on the concentration maps (Figure A2.1 left, rural; Figure A2.11 left, urban) and uncertainty 
maps (Figures A2.9 left, rural; Figure A2.18 left, urban) and the limit values for the annual average 
PM10 the maps of the probability of the limit value (LV) exceedance have been constructed.  

The combined map of probability of exceedance is composed from the combined map of 
concentrations (Figure 3.1) and combination uncertainty map according a merging criterion as 
described in Section 2.3 leading to a combined map. The uncertainty in the probability maps accounts 
only from the uncertainties caused by the interpolation and innate spatial variability of concentrations 
within the grid cell. Uncertainties in the measurements, the supplementary data and those caused by 
the urban/rural combination are not included. This combined map of uncertainty is derived according 
the standard error propagation calculation on the level of grid cells according Section 2.3.  

After constructing the combined uncertainty map, the combined probability map can be constructed 
again: given the concentration value at each grid cell from the combined concentration map (Figure 
3.1) and its corresponding combined uncertainty value, and given the limit value we can estimate the 
exceedance for that grid cell assuming a Gaussian distribution. Figure 3.4 shows the combined map of 
estimated probability of exceedance of the PM10 annual average and the 36th maximum daily mean. 

Areas with the probability of limit value exceedance above 75% are marked in red; areas below 25% 
are marked in green. The red areas indicate areas for which exceedance may occur very likely due to 
high concentration close to or already above LV, including such enclosed uncertainty that exceedance 
is likely. Or lower concentrations with such high uncertainty levels reaching above the LV that 
exceedance is very likely. Vice versa, in the green areas it is not very likely to have predicted 
concentration values showing exceedance and/or such enclosed uncertainties that reaching above the 
LV not very likely.    

Next to the estimation of the probability of the limit value exceedance, the real measured values at the 
stations are presented in the maps: stations with the measured values above the limit value or target 
value are marked red, whereas the station measurements below the limit value are marked green. 
(Neither orange nor yellow is applied on the stations, since that classification is related to the 
interpolation uncertainty and not to the measurement uncertainty).   

 



European air quality maps 2005 including uncertainty analysis 22

 
Figure 3.4 Map with the probability of the limit value exceedance for PM10 indicators annual average, in µg.m-3 
on the European scale in 2005, on the 10 x 10 km grid resolution. (Stations with annual averaged measurement 
values above the limit value are marked red; station measurements below the limit value are marked green). 

 

The estimated probability of exceedance for the PM10 annual averages are moderate to considerable at 
urban areas in the Balkan region at urban locations (red grid cells, i.e. larger than 75 % probability). 
To less extend this occurs in south Poland, Czech Republic, Hungary and south Spain. Again in the 
Balkan and south Poland, but also in the Italian Po Valley one encounter larger continues areas with 
exceedance probability ranging from 25 to 50 % with increased levels from 50 to 75 % or even higher 
at their centre. At these areas PM10 annually based exceedances are very likely and considerable 
reductions may be needed to reach non-exceedance levels in the future. The north-western and 
northern countries of Europe do not show such increased (larger then 25%) probability exceedances, 
indicating policy targets are or may be reached for the larger background areas. The map does not 
indicate locally bound exceedance effects. The low probability percentages for France may have their 
caused by the low measurement correction factor applied in the French networks. 
 

3.2 PM10 36th highest daily average 
 

The combined map for the 2005 PM10 36th highest daily averages is created by the same interpolation 
methods as the annual mean map: the rural maps uses the 3-P.Eawr-a method and the urban map 
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method 2-UP.E-a .In mapping of the 2004 concentration fields the same method has been used for the 
rural maps but not for the urban maps. Because methods 3-P.Eawr-a for rural and  2-UP.E-a for urban 
areas are the close best (rural) and best (urban) performers on the 2005 data and their differences with 
the best methods on the 2004 data were small, as well as its good European coverage makes them the 
preferred and recommended method as “standard” in future applications for both indicators. 

The areas and stations in the combined map where the limit value (LV) of 50 µg.m-3 is exceeded are 
coloured red and purple. Compared to the situation in 2004, the 2005-concentrations in central-eastern 
Europe and Po valley seem to be higher than last year while along the coast of the Atlantic and the 
North Sea lower levels are observed. The population exposure is given in Figure 3.2. More than 25% 
of the European population has been exposed to ambient concentrations above 50  µg.m-3, that is, to 
concentrations above the LV of daily concentrations.    

 
Figure 3.5 Combined rural and urban concentration map of PM10 – 36th maximum daily average value, year 
2005. Units: µg.m-3.  
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Table 3.2 Population exposure and population weighted concentration – PM10, 36th maximum daily average 
value, year 2005. 

Population-
Population < 20 20 - 30 30 - 50 50 - 65 > 65 weighted conc.

x1000 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3

Austria 8286 5.4 7.4 54.9 30.0 2.3 42.3
Belgium 10542 0 2.3 71.7 26.0 0 46.5
Bulgaria 8055 0.1 2.1 54.6 9.5 33.7 62.7
Croatia 4366 0.0 2.2 46.8 31.2 19.7 52.0
Czech Rep. 10155 0 0.0 31.3 49.5 19.3 57.5
Denmark 5006 2.9 15.2 81.9 0 0 32.7
Estonia 1301 5.3 52.9 41.8 0 0 28.8
Finland 5179 33.1 66.9 0 0 0 22.1
France 58286 1.9 51.9 46.2 0 0 29.6
Germany 81889 0.1 7.5 90.9 1.5 0 37.2
Greece 10655 0.3 5.7 37.9 42.0 14.2 54.1
Hungary 10107 0 0 9.1 66.0 24.8 59.1
Ireland 3652 63.6 36.4 0 0 0 14.8
Italy 57119 0.5 2.9 39.2 30.6 26.9 56.2
Latvia 2243 1.8 33.6 64.6 0 0 33.6
Liechtenstein 32 0 0 100 0 0 36.2
Lithuania 3567 1.2 9.3 89.4 0 0 36.8
Luxembourg 451 0 30.7 69.3 0 0 30.6
Malta 394 0 0 14.5 85.5 0 61.6
Netherlands 15153 0 0 76.6 23.4 0 47.4
Poland 38182 0.1 2.0 49.5 27.4 21.0 54.7
Portugal 10024 0 0.3 44.6 37.9 17.3 51.7
Romania 22228 0.0 0.3 29.6 29.3 40.8 63.9
San Marino 19 0 0 100 0 0 39.8
Slovakia 5265 0 0.1 27.6 59.7 12.6 55.3
Slovenia 2034 0.0 1.6 53.8 44.6 0 48.4
Spain 39884 1.2 10.2 50.2 38.2 0.2 43.7
Sweden 8666 25.8 50.7 23.5 0 0 24.0
United Kingdom 58204 6.3 22.9 70.9 0 0 31.4
Albania 3767 1.1 10.2 29.6 13.3 45.8 55.4
Andorra 59 18.3 16.1 65.7 0 0 28.7
Bosnia-Herzegovina 4000 0.9 11.2 42.8 14.6 30.5 50.1
Island 101 100 0 0 0 0 9.6
Macedonia, FYR of 2214 1.2 5.2 28.9 0 64.7 71.4
Norway 2907 31.6 32.5 35.9 0 0 26.1
Serbia&Montenegro 10996 0.6 4.2 27.0 20.7 47.6 63.9
Switzerland 6801 2.3 13.6 82.0 1.2 1.0 33.9

Total 511787 2.7 14.3 54.8 17.5 10.6 43.8

Country
2005 Percent [%]

 

Note: Countries with the values based on ORNL population data with uncertain quality: AD, AL, BA, CH, CS, IS, MK, NO. 
Countries with the lack of air quality or population density data are excluded from calculations in this paper: CY, TR. 

3.2.2. Uncertainties 
The absolute and relative mean interpolation uncertainty in the combined map, summarised from 
Section A2.1.3 and A2.2.3, are for the rural areas in the combined map 9.7 µg.m-3, and about 26% 
respectively, of the mean of the measured PM10 36th maximum daily average at all rural background 
stations. For the urban areas in the combined map they are 9.9 µg.m-3, and about 21% respectively, at 
all urban and suburban background stations. 

The combined probability map for PM10 36th maximum daily average is shown in Figure 3.6. It is 
derived the same way as described in Section 3.1.2. As input served the concentration maps (Figure 
A2.1 right, rural; Figure A2.11 right, urban), the uncertainty maps (Figures A2.9 right, rural; Figure 
A2.18 right, urban) and the limit values used to construct the maps of the probability of the limit value 
exceedance (Figure A2.10 right, rural; Figure A2.19 right, urban).  
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Figure 3.6 Map with the probability of the limit value exceedance for PM10 indicators 36th maximum daily mean, 
in µg.m-3 on the European scale in 2005, on the 10 x 10 km grid resolution. (Stations with annual averaged 
measurement values above the limit value are marked red; station measurements below the limit value are 
marked green). 

 

The estimated probability of exceedance in Figure 3.6 for the PM10 36th maximum daily average are 
considerable at large areas in the eastern European countries and the whole Po Valley (red areas 
indicating larger than 75 % probability of exceedances). At these areas PM10 daily based exceedances 
are very likely and considerable reductions may be needed to reach non-exceedance levels in the 
future. To less extend this occurs in Spain, Portugal, Italy, Greece, some Balkan countries and the 
Benelux, where the probability ranges from 25 to 50 % with increased levels of 50 – 75 % at the more 
urbanised centres of the regions. The remaining of north-western and northern countries of Europe do 
not show such increased (larger then 25%) probability exceedances, indicating policy targets are or 
may be reached for the larger background areas. The map does not indicate locally bound exceedance 
effects. France may show low probability percentages possibly caused by the low measurement 
correction factor applied in the French networks. 
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4 Ozone maps for 2005 
The ozone indicators examined are for human health the 26th highest daily maximum 8-hour average 
concentration and SOMO35, and for vegetation the AOT40 for crops and AOT40 for forests. For the 
health-related indicators the most suitable and preferred method for interpolated mapping of each 
indicator of the rural and urban areas have been analysed again separately. For the vegetation-related 
indicators only rural maps have been considered for the selection of preferred method for mapping, 
since no relevant vegetation is assumed to exist in urban areas).  

The preparation of the separate rural and urban maps is discussed in Annex 3. Details on the process 
of selecting the best interpolation method are also given in this Annex.  

 

4.1 Ozone health related indicators 
The combined interpolated map for both ozone health indicators 26th highest daily maximum 8-hour 
average ozone concentrations and SOMO35 are presented in Figure 4.1. Both have been created by 
combining the rural and urban maps (Horálek et al. 2007).  

For both indicators the rural maps (see Annex 3) have been created by combining the measurement 
data from rural background stations with the EMEP model output, altitude and surface solar radiation 
in a linear regression model (O.Ear), followed by the interpolation of its residuals by ordinary kriging 
(method 3-O.Ear-a). Although this method does not give the best statistical results it is close to the 
best method. This method is preferred here, and recommended for next year’s application because its 
better geographical coverage and consistency with the ozone indicators related to vegetation 
protections: all rural ozone maps are made with the same method.  

For both indicators the urban maps (Annex 3) have been created by combining the measurement data 
from the urban and suburban background stations with the EMEP model output, wind speed and 
surface solar radiation in a linear regression model (UO.Ewr), followed by interpolation of its 
residuals by ordinary kriging (method 3-UO.Ewr-a). In mapping the 2004 data a different method 
(ordinary kriging with the model results as only source of supplementary parameters) for the 26th 
highest daily maximum 8-hour average has been used. In the 2005 analysis (see Annex) the results are 
similar for both approaches. Method 3-UO.Ewr-a is to be preferred because of the better spatial 
coverage. This method is recommended for future applications. 
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Figure 4.1 Combined rural and urban concentration map of ozone health indicators 26th highest daily maximum 
8-hour value in µg.m-3 (top) and SOMO35 in  µg.m-3.days (bottom) for the year 2005. 

 



 

ETC/ACC Technical Paper 2007/7    29

4.1.1 Population exposure and health impacts 
The final SOMO35 map is given in Figure 4.1 (bottom). The concentrations in 2005 are both in 
magnitude and spatial distribution similar to the concentrations in 2004 although in 2005 there is an 
increase in SOMO35 values in south-east Europe and eastern Mediterranean. The map of the 26th 
highest maximum daily value (Figure 4.1 top) shows also somewhat higher values in the central and 
eastern part of Europe, but lower levels in the northern region. The population exposure of both 
parameters is shown in Figure 4.2. Note that, in contrast to Table 4.1 and 4.2, Figure 4.2 includes all 
countries shown in Figure 4.1. Of the European population 38% is exposed to ozone levels above the 
target value (120 µg.m-3, 26th highest daily maximum 8-hour average). As Table 4.1 shows, this 
fraction varies strongly from country to country. In the Mediterranean in general more than half of the 
population lives in non-compliance areas, while in the northern part there is no exceedance at all. No 
limit or target values are set for SOMO35. Table 4.2 shows strongly varying values from country to 
country as well. 
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Figure 4.2 Exposure of the European population to ozone concentrations, SOMO35 (left) and 26th highest daily 
mean (right),  (reference year 2005). 
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Table 4.1 Population exposure and population weighted concentration – ozone, 26th highest daily maximum 8-
hour value, year 2005. 

Population-
< 100 100 - 110 110 - 120 120 - 140 > 140 weighted conc.

x1000 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3
µg.m-3

Austria 8286 0 2.4 18.4 78.6 0.6 122.6
Belgium 10542 16.6 74.1 9.1 0.1 0 104.1
Bulgaria 8055 14.3 24.5 18.2 42.3 0.6 115.0
Croatia 4366 0 0 18.4 81.1 0.4 120.7
Czech Rep. 10155 0 0 15.5 84.5 0 122.3
Denmark 5006 48.0 51.3 0.8 0 0 97.0
Estonia 1301 62.1 37.9 0 0 0 92.9
Finland 5179 84.4 15.6 0 0 0 93.9
France 58286 2.5 36.3 33.6 27.3 0.3 114.1
Germany 81889 3.2 27.2 36.6 33.0 0 114.9
Greece 10655 0 1.6 24.1 72.2 2.1 125.8
Hungary 10107 0 0 34.7 65.3 0 120.0
Ireland 3652 100 0 0 0 0 84.8
Italy 57119 0 0.6 7.0 72.1 20.3 132.2
Latvia 2243 48.1 51.9 0 0 0 92.3
Liechtenstein 32 0 100 0 0 0 106.6
Lithuania 3567 24.5 73.8 1.7 0 0 103.2
Luxembourg 451 0 0 54.3 45.7 0 120.2
Malta 394 0 85.5 9.5 5.0 0 107.0
Netherlands 15153 82.4 17.6 0 0 0 92.8
Poland 38182 2.6 11.8 72.0 13.5 0 114.9
Portugal 10024 1.1 14.6 33.6 48.4 2.3 119.0
Romania 22228 1.4 24.8 47.6 26.1 0.1 115.0
San Marino 19 0 0 0 100 0 134.8
Slovakia 5265 0 0 18.0 81.9 0.0 122.4
Slovenia 2034 0 0 13.3 86.7 0.0 123.6
Spain 39884 4.1 17.1 22.5 55.9 0.3 117.9
Sweden 8666 57.4 39.4 3.2 0 0 95.5
United Kingdom 58204 98.4 1.6 0 0 0 87.2
Andorra 59 20.4 18.1 24.6 34.3 2.6 130.6
Albania 3767 0 2.7 45.9 39.4 12.0 125.1
Bosnia-Herzegovina 4000 0 0 40.5 59.0 0.6 122.2
Serbia&Montenegro 10996 0 19.6 31.7 47.1 1.7 119.3
Switzerland 6801 0 4.2 16.1 74.2 5.5 123.4
Island 101 96.0 4.0 0 0 0 90.9
Macedonia, FYR of 2214 0 40.2 23.3 29.6 7.0 120.0
Norway 2907 74.1 25.3 0.7 0 0 98.2

Total 511787 19.6 17.9 24.8 35.1 2.7 112.9

Population 
Country

2005 Percent [%]

 
Note: Countries with the values based on ORNL population data with uncertain quality: AD, AL, BA, CH, CS, IS, MK, NO. 
Countries with the lack of air quality or population density data are excluded from calculations in this paper: CY, TR. 
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Table 4.2 Population exposure and population weighted concentration – ozone, SOMO35, year 2005. 

Population-

< 3000
3000 - 
6000

6000 - 
10000

10000 - 
15000 > 15000 weighted conc.

x1000 µg.m-3.d µg.m-3.d µg.m-3.d µg.m-3.d µg.m-3.d µg.m-3.d
Austria 8286 0 33.9 62.8 3.4 0 6576
Belgium 10542 71.1 28.9 0 0 0 2787
Bulgaria 8055 13.7 27.5 49.2 9.6 0.0 6669
Croatia 4366 0 41.1 56.1 2.8 0 6667
Czech Rep. 10155 0 47.5 52.5 0 0 6087
Denmark 5006 43.5 56.5 0 0 0 3019
Estonia 1301 53.5 46.5 0 0 0 2722
Finland 5179 63.5 36.5 0 0 0 2580
France 58286 16.0 61.9 21.5 0.5 0.0 4756
Germany 81889 24.6 70.0 5.4 0.0 0 4164
Greece 10655 0 13.6 58.4 27.8 0.1 9062
Hungary 10107 0 41.4 58.6 0 0 5965
Ireland 3652 97.8 2.2 0 0 0 1852
Italy 57119 0 4.0 83.8 12.2 0.0 8134
Latvia 2243 46.0 54.0 0 0 0 2739
Liechtenstein 32 0 100 0 0 0 5699
Lithuania 3567 6.8 93.2 0 0 0 3790
Luxembourg 451 0 100 0 0 0 4796
Malta 394 0 0 95.0 5.0 0 7140
Netherlands 15153 99.5 0.5 0 0 0 1920
Poland 38182 2.2 87.4 10.4 0 0 5037
Portugal 10024 1.1 54.5 43.6 0.8 0 5824
Romania 22228 0 48.6 50.2 1.1 0 6062
San Marino 19 0 0 100 0 0 8612
Slovakia 5265 0 17.5 82.2 0.3 0 6622
Slovenia 2034 0 24.3 75.5 0.3 0 6669
Spain 39884 4.6 29.2 63.9 2.2 0.0 6514
Sweden 8666 47.3 52.7 0.0 0 0 3083
United Kingdom 58204 97.8 2.2 0 0 0 1634
Albania 3767 0 21.8 42.7 33.7 1.7 8563
Andorra 59 0 0.0 65.7 34.3 0 9023
Bosnia-Herzegovina 4000 0 40.2 44.5 15.3 0 7490
Island 101 94.5 5.5 0 0 0 1887
Macedonia, FYR of 2214 0 51.6 14.7 32.3 1.4 7738
Norway 2907 72.5 27.0 0.5 0 0 2697
Serbia&Montenegro 10996 0 43.6 41.6 14.8 0.0 6978
Switzerland 6801 0 61.0 34.4 4.6 0.0 6150

Total 511787 25.4 40.7 30.5 3.4 0.0 5047

Country

2005 Percent [%]
Population 

Note: Countries with the values based on ORNL population data with uncertain quality: AD, AL, BA, CH, CS, IS, MK, NO. 
Countries with the lack of air quality or population density data are excluded from calculations in this paper: CY, TR. 

 

Following a similar procedure as described in Horálek et al (2007) the number of premature deaths 
attributable to ozone has been estimated, see Figure 4.3. Taking the difference in concentrations into 
account the estimates are in correspondence with the estimates made for 2004. The impact on health 
from ozone seems to be an order of magnitude lower than the PM10 impact. 
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Figure 4.3 Number of premature deaths per million inhabitants attributable to ozone exposure, reference year 
2005. 

 

4.1.2 Uncertainties 
The 26th highest daily maximum 8-hour average ozone concentrations for the rural areas in the 
combined map show an absolute and relative mean interpolation uncertainty of 12.3 µg.m-3, i.e. about 
10 %. For the urban map it is 10.0 µg.m-3, i.e. about 9 % of the average of the measured indicator at all 
urban and suburban stations. For SOMO35 in rural areas in the combined map it is 2200 µg.m-3.days, 
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i.e. 35.5 % of the average of SOMO35 values measured at all rural background stations. For the urban 
map is 1500 µg.m-3.days, i.e. about 32 % of the average of measured SOMO35 values at all urban and 
suburban stations. 

Based on the concentration maps (Figures A3.1 left, rural; Figure A3.16 left, urban), the uncertainty 
maps (Figures A3.13 left, rural; Figure A3.23 left, urban) and the target value (TV of 120 µg.m-3 for 
26th highest daily maximum 8-hour average)  the map of the probability of the target value exceedance 
has been constructed. The probability map is presented in Figure A3.15-left for the rural areas and 
Figure A3.24 for the urban areas. Areas with the probability of limit value exceedance above 75% are 
marked in red; areas below 25% are marked in green. The red areas indicate areas for which 
exceedance may occur very likely due to high concentration close to or already above the TV, 
including such enclosed uncertainty that exceedance is likely. Or lower concentrations with such high 
uncertainty levels reaching above the TV that exceedance is very likely. Vice versa, in the green areas 
it is not very likely to have predicted concentration values showing exceedance and/or such enclosed 
uncertainties that reaching above the TV not very likely.    

 

 
Figure 4.4 Map with the probability of the limit value exceedance for ozone indicator 26th highest daily 
maximum 8-hour average values (in µg.m-3) on European scale in 2005, 10 x 10 km grid resolution. (Stations 
with annual averaged measurement values above the limit value are marked red; station measurements below 
the limit value are marked green). 
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The estimated probability of target value exceedance (PoE) for the ozone 26th highest daily maximum 
8-hour average is moderate to considerable south of the line Biarritz – Basel – Luxemburg – Hannover 
- Polish/Belarusian border (orange grid cells > 50 % and red cells > 75 % probability). In this area the 
levels of exceedance probability follow the European altitudes highly correlated: fluctuations in the 
probability relief are well reflected by the fluctuation of in the altitude relief map. It is to be expected 
that for these regions the target value will not be met easily. 

North of the line the exceedance probability reduces to levels of about 25 – 50 % meaning that target 
values could be met here more easily. While levels lower then 25 % do widely occur north of the line 
La Rochelle - Rostock – Vilnius, except some local higher altitudes in southern Norway (25 - 50 % 
PoE), indicating policy targets are or may be reached for the larger background areas. The map does 
not indicate locally bound exceedance effects. 

The visual impression of the map pattern seems to be dominated by the rural map pattern of Figure 
A3.14, but remarkable is the relative frequent number of red marked rural background stations with 
measurements above the limit value in areas with a PoE of 25 – 50 %. This indicates that in the rural 
areas local contrast in even increased probability of exceedances may play an important role which is 
not covered by the resolution of the interpolation. In addition a frequent number of green marked 
urban and suburban background stations with measurements below the limit value seem to be located 
in areas with a PoE of 50 – 75 % as well, indicating local urban air quality is likely not always covered 
well in by the resolution of the interpolation. The interpolated concentration field is ultimately a 
spatially smoothed representation of the background stations in the mapping domain, not necessarily 
reflecting the higher resolution local air quality status. 

 

4.2 Ozone vegetation indicators 
 

The interpolated map for both vegetation indicators AOT40 for crops and AOT40 for forests are 
presented in Figure 4.5. Only rural maps are presented here as it is assumed that there is no relevant 
vegetation in urban areas.  

For both indicators the maps have been created by combining measurement data from the rural 
background stations with the EMEP model output, altitude field and surface solar radiation in a linear 
regression model (O.Ear), followed by the interpolation of its residuals by ordinary kriging (method 3-
O.Ear-a). As discussed above, it is recommended for future applications because of consistency 
reasons. 

Up to present both ozone vegetation indicators for rural areas were created in the trend analysis based 
an interpolation method of type 1, using an ordinary cokriging of the rural background station 
measurements stations combined with altitude as supplementary information. The Balkan region was 
excluded from the mapping calculations due to its poor measurement station coverage. These maps are 
in use at the EEA Core Set Indicator 005 (CSI 005, 2006) and in EEA air pollution assessment reports. 
For consistency in the indicator assessment over the years (1996 – 2004) the type 1 method was still 
prolonged. However, current comparison with 2005 data confirms method 3-O.Ear-a to be the best, 
leading to the decision to switch methods for the indicator CSI005 analyses. To assure that possible 
discontinuities in the trend of vegetation exposure, is recommended to re-calculated a few recent years 
using both ‘old’ and ‘new’ method in parallel.  

4.2.1 Vegetation and forest exposure  
In the ozone directive a target value (TV) and a long-term objective (LTO) for the protection of 
vegetation have been defined. TV and LTO are defined as AOT40, calculated from 1-hour values 
(daylight hours only, defined as the period between 8:00 and 20:00 CET) from May to July. The TV 
for 2010 is 18,000 μg.m-3.h; the LTO is 6,000 μg.m-3.h. The term vegetation is not further defined in 
the ozone directive. Comparing the definitions in the Mapping Manual (UNECE, 2004) and those in 
the ozone directive suggests that we have to interpret the term vegetation in the ozone directive as 
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agricultural crops. The exposure of agricultural crops has been evaluated here on basis of the AOT40 
for vegetation as defined in the ozone directive.  

In addition, exposure of forests has been estimated on the basis of the corresponding definition in the 
Mapping Manual: critical level of 10 mg.m-3.h (corresponding to 5 ppm.h), accumulation over the full 
vegetation period, April 1 – September 30. 

 

Agricultural crops 

The rural map for ozone, AOT40 for vegetation, is given in Figure 4.5. This map has been combined 
with the land cover CLC2000 map. Following a similar procedure as described in Horálek et al (2007) 
the exposure of agricultural areas, defined as the Corine Land Cover level-1 class 2 Agricultural areas  
(encompassing the level-2 classes 2.1 Arable land, 2.2 Permanent crops, 2.3 Pastures and 2.4 
Heterogeneous agricultural areas) has been calculated at the country-level. Table 4.3 gives the 
absolute and relative agricultural area for each country and for four European regions where the target 
value and long-term objective for ozone are exceeded. The table presents the frequency distribution of 
the agricultural area per country over the exposure classes as well.  
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Figure 4.5 Rural concentration map of ozone vegetation indicators AOT40 for crops (top) and AOT40 for forests 
(bottom) for the year 2005. Units: µg.m-3.hours. 
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Table 4.3 Agricultural area exposure and exceedance (Long Term Objective, LTO, and Target Value, TV) for 
ozone, AOT40 for crops, year 2005. 

total < 6000 6000 - 
12000

12000 - 
18000

18000 - 
27000 > 27000

km2 km2 % km2 % µg.m-3.h µg.m-3.d µg.m-3.d µg.m-3.d µg.m-3.d
Albania 7109 7109 100 7109 100 0 0 0 32.3 67.7
Austria 27450 27450 100 27069 99 0 0 1.4 93.6 5.0
Belgium 17623 17500 99 1129 6 0.7 45.7 47.2 6.4 0
Bosnia-Herzegovina 19251 19251 100 15026 78 0 0 21.9 64.5 13.5
Bulgaria 57208 57208 100 56635 99 0 0 1.0 95.4 3.6
Croatia 23745 23745 100 17602 74 0 0 25.9 64.1 10.1
Cyprus 4088 4088 100 4088 100 0 0 0 3.1 96.9
Czech Republic 45550 45550 100 37063 81 0 0 18.6 81.4 0
Denmark (ex.Faroes) 30798 22946 75 0 0 25.5 72.1 2.4 0 0
Estonia 14418 962 7 0 0 93.3 6.7 0 0 0
Finland 28582 837 3 0 0 97.1 2.9 0 0 0
France 327337 327337 100 110461 34 0 16.2 50.1 28.1 5.6
FYR of Macedonia 9515 9515 100 9515 100 0 0 0 66.6 33.4
Germany 212360 210699 99 72072 34 0.8 28.7 36.5 33.9 0
Greece 48918 48918 100 48918 100 0 0 0 33.3 66.7
Hungary 63054 63054 100 47441 75 0 0 24.8 75.2 0
Ireland 45312 1552 3 0 0 96.6 3.4 0 0 0
Italy 153591 153591 100 153193 100 0 0 0.3 14.7 85.0
Latvia 28053 19733 70 0 0 29.7 70.3 0 0 0
Liechtenstein 42 42 100 42 100 0 0 0.0 100 0
Lithuania 39656 37554 95 0 0 5.3 94.7 0.0 0 0
Luxembourg 1410 1410 100 1347 96 0 0 4.4 95.6 0
Malta 91 91 100 91 100 0 0 0 0 100
Netherlands 24347 22391 92 0 0 8.0 89.2 2.8 0 0
Poland 199623 199623 100 12031 6 0 32.1 61.8 6.0 0.0
Portugal 42351 42351 100 41799 99 0 0 1.3 95.3 3.4
Romania 134314 134314 100 66285 49 0 0.7 50.0 49.3 0.0
San Marino 44 44 100 44 100 0 0 0 0 100
Slovakia 24248 24248 100 18534 76 0 0 23.6 76.4 0.1
Slovenia 7133 7133 100 6176 87 0 0 13.4 84.1 2.5
Spain 251487 251487 100 248108 99 0 0 1.3 44.7 54.0
Sweden 37737 18174 48 0 0 14.8 85.2 0 0 0
United Kingdom 137813 33353 24 0 0 75.8 24.2 0.0 0 0

Total 2064257 1833258 89 1001777 49 10.4 16.0 24.1 32.7 16.8

France over 45N 259908 259908 100 51786 20 0 20.4 59.7 18.8 1.2
France below 45N 67429 67429 100 58675 87 0 0 13.0 64.1 22.9

Northern 179245 100206 56 0 0
North-western 486412 336113 69 54263 11
Central & eastern 763849 762189 100 337171 44
Southern 634751 634751 100 610342 96
Total 2064257 1833258 89 1001777 49

Country

Agricultural area 2005 Percent [%]
above LTO       

(6 mg.m-3.h)
above TV        

(18 mg.m-3.h)

Note: Countries not included due to lack of land cover data: Andorra, Iceland, Norway, Serbia and Montenegro, Switzerland 
and Turkey.  

 

The table indicates the country grouping with corresponding colours of the region. Northern Europe: 
Sweden, Finland, Estonia, Lithuania, Latvia and Denmark. North-western Europe: United Kingdom, 
Ireland, the Netherlands, Belgium, Luxembourg and France north of 45 degrees latitude. Central and 
Eastern Europe: Germany, Poland, Czech Republic, Slovakia, Hungary, Austria, Liechtenstein, 
Bulgaria and Romania. Southern Europe: Albania, Bosnia-Herzegovina, France south of 45 degrees 
latitude, Portugal, Spain, Italy, San Marino, Slovenia, Croatia, Greece, Cyprus, F.Y.R. of Macedonia 
and Malta. 

Table 4.3 illustrates that about 50 % of all agricultural land is exposed to ozone exceeding the target 
value of 18 mg.m-3.h and about 90 % is exposed to levels in excess of the long-term objective of 6 
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mg.m-3.h. In southern countries about 95 % is exceeding the target values. In northern Europe the 
ozone levels are below the target value for nearly 100 % of the agricultural area. 
 

Forests 

The ozone directive does not give a target value or a long-term objective for the protection of forest. 
However, Annex III - which defines the information to be submitted to the Commission - mentions a 
level of 20 mg.m-3.h. Following a similar procedure as in Horálek et al (2007), in this paper we will 
use again this level (indicated as: reporting value or RV) as reference in combination with the critical 
level (CL) of 10 mg.m-3.h as defined in the Mapping Manual. The forest areas are defined as the 
Corine Land Cover level-2 classes 3.1. Forests and 3.2 Scrub and/or herbaceous vegetation 
associations as the two out of the three of level-1 class 3. Forests and semi-natural areas, and is 
different from what has been used (level-2 class 3.1) in Horálek et al. (2007).  

The rural ozone map for ozone, AOT40 for forest, is given in Figure 4.5. The same country grouping 
is used as at AOT40 for crops. The gradients in this map are very similar to those in the map of 
AOT40 for vegetation: increasing concentrations from north to south. Table 4.4 gives the forest area 
where the critical level for ozone is exceeded. Similar to the finding in CAFE, we observe for the year 
2005 - and similar to 2004 - that in many countries, except for the UK and some of the northern 
countries, all forest area is exposed to levels above the critical level (CL). The reporting level (RV) is 
exceeded in 2005 with about 60 % - with 50 % in 2004 - of the European forest area. The frequency 
distribution of forest exposure is per country given in the table as well. 

It is clear that in northern Europe the reporting level of 20 mg.m-3.h is not exceeded, in central and 
eastern almost everywhere and southern Europe everywhere. 
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Table 4.4 Forest area exposure and exceedance (CL and RV) – ozone, AOT40 forests, year 2005. 

Total < 10000
10000 - 
20000

20000 - 
30000

30000 - 
50000 > 50000

km2 km2 % km2 % µg.m-3.h µg.m-3.d µg.m-3.d µg.m-3.d µg.m-3.d
Albania 7738 7738 100 7738 100 0 0 0 0.5 99.5
Austria 37608 37608 100 37608 100 0 0 12.7 85.5 1.8
Belgium 6100 6094 100 4535 74 0.1 25.6 74.3 0 0
Bosnia-Herzegovina 22815 22815 100 22815 100 0 0 7.2 74.9 17.9
Bulgaria 34660 34660 100 34660 100 0 0 0 79.6 20.4
Croatia 19762 19762 100 19762 100 0 0 38.3 53.2 8.5
Cyprus 1498 1498 100 1498 100 0 0 0 1.7 98.3
Czech Republic 25501 25501 100 25501 100 0 0 11.2 88.8 0
Denmark (ex.Faroes) 3408 3349 98 202 6 1.8 92.3 5.9 0 0
Estonia 20317 16010 79 0 0 21.2 78.8 0 0 0
Finland 191690 28748 15 0 0 85.0 15.0 0 0 0
France 144521 144514 100 133827 93 0.0 7.4 44.8 37.4 10.4
FYR of Macedonia 8619 8619 100 8619 100 0 0 0 2.8 97.2
Germany 103589 103542 100 91770 89 0.0 11.4 56.4 32.2 0
Greece 22978 22978 100 22978 100 0 0 0 21.1 78.9
Hungary 17331 17331 100 17331 100 0 0 35.2 64.8 0
Ireland 2892 142 5 0 0 95.1 4.9 0 0 0
Italy 78497 78497 100 78497 100 0 0 0.2 32.9 66.9
Latvia 26512 25052 94 0 0 5.5 94.5 0 0 0
Liechtenstein 63 63 100 63 100 0 0 41.1 58.9 0
Lithuania 18468 18468 100 55 0 0 99.7 0.3 0 0
Luxembourg 904 904 100 904 100 0 0 100 0 0
Malta 2 2 100 2 100 0 0 0 0 100
Netherlands 3074 2475 81 0 0 19.5 80.5 0 0 0
Poland 91182 91182 100 87305 96 0 4.3 84.1 11.7 0.0
Portugal 24190 24190 100 24190 100 0 0 0 98.3 1.7
Romania 69660 69660 100 69660 100 0 0 25.4 73.9 0.7
San Marino 6 6 100 6 100 0 0 0 86.5 13.5
Slovakia 19248 19248 100 19248 100 0 0 12.7 87.2 0.1
Slovenia 11469 11469 100 11469 100 0 0 20.5 79.4 0.2
Spain 91489 91489 100 91463 100 0 0.0 6.9 59.2 33.9
Sweden 248597 111768 45 567 0 55.0 44.7 0.2 0 0
United Kingdom 19158 3598 19 0 0 81.2 18.8 0 0 0

Total 1373545 1048978 76 812271 59 23.6 17.2 18.8 29.5 10.8

France north of 45N 89453 89446 100 78871 88 0.0 11.8 57.5 29.1 1.5
France south of 45N 55068 55068 100 54957 100 0 0.2 24.1 50.8 24.9

Northern 508993 203395 40 824 0
North-western 121580 102658 84 84309 69
Central & eastern 398842 398795 100 383146 96
South 344130 344130 100 343992 100
Total 1373545 1048978 76 812271 59

Country

Area of forests 2005 Percent [%]
above CL        

(10 mg.m-3.h)
above RV        

(20 mg.m-3.h)

Note: Countries not included due to lack of land cover data: Andorra, Iceland, Norway, Serbia and Montenegro, Switzerland 
and Turkey. 
 

4.2.2 Uncertainties 
The absolute and relative mean interpolation uncertainty of the map of AOT40 for crops, expressed by 
the RMSE from the cross-validation, is 7700 µg.m-3.hours, i.e. about 41 % of the average of AOT40 
crops values measured at all stations. For the map of AOT40 for forests it is 12500 µg.m-3.hours, i.e. 
about 42 % of the average of AOT40 forest values measured at all stations.   

Based on the concentration map (Figures A3.2), the uncertainty maps (Figures A3.13) and the target 
value (TV, i.e. 18,000 µg.m-3.h) the map of the probability of the target value exceedance has been 
constructed. The probability map is presented in Figure 4.6. (Areas with the probability of limit value 
exceedance above 75% are marked in red; areas below 25% are marked in green. The red areas 
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indicate areas for which exceedance may occur very likely due to high concentration close to or 
already above the TV, including such enclosed uncertainty that exceedance is likely. Or lower 
concentrations with such high uncertainty levels reaching above the TV that exceedance is very likely. 
Vice versa, in the green areas it is not very likely to have predicted concentration values showing 
exceedance and/or such enclosed uncertainties that reaching above the TV not very likely).    

While no ozone limit or target values for forests are defined in the ozone directive, no probability map 
has been prepared for the AOT40 for forests.   

 

 
Figure 4.6 Map with the probability of the target value exceedance for ozone vegetation indicator AOT40 for 
crops, in µg.m-3 on the European scale in 2005, on the 10 x 10 km grid resolution. 

 

The estimated probability of target value exceedance (PoE) for the ozone vegetation indicator AOT40 
for crops is moderate to considerable south of the line Biarritz – Basel – Luxemburg – Krakow 
(orange grid cells > 50 % and red cells > 75 % probability). In this area the levels of exceedance 
probability follow the European altitudes highly correlated: fluctuations in the probability relief are 
well reflected by the fluctuation of in the altitude relief map. It is to be expected that for these regions 
the target value will not be met easily. 

North of the line the exceedance probability reduces to levels of about 25 – 50 % meaning that target 
values could be met here more easily. While levels lower then 25 % do widely occur north of the line 
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La Rochelle – Hannover - Polish/Belarusian border, indicating policy targets are or may be reached for 
the larger background areas. The map does not indicate locally bound exceedance effects. 

The visual impression of map pattern seems to be dominated by the map pattern of Figure 4.5 (top), 
but remarkable is the relative frequent number of green marked stations below limit in areas with a 
PoE above 50 % and also some red marked stations above limit in areas with a PoE of 25-50 %. This 
indicates that in the rural areas local contrast in even increased probability of exceedances may play an 
important role which is not covered by the resolution of the interpolation. The interpolated 
concentration field is ultimately a spatially smoothed representation of the background stations in the 
mapping domain, not necessarily reflecting the higher resolution local air quality status. 
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5 SO2 maps for 2005 
5.1 SO2 vegetation indicators  
The interpolated map for the annual average SO2 and the winter average SO2 concentrations are 
presented in Figure 5.1. As the limit value of the SO2 annual and winter mean are set for the 
protection of vegetation, only rural maps have been made  

For both indicators the maps have been created by combining the 2005 measurement data at rural 
background stations with the EMEP model output in a linear regression model (S.E), followed by the 
interpolation of its residuals by ordinary kriging (method 2-S.E-a). As the same method has been 
selected for the preparation of the 2004-map, it is also recommended to be used in future mapping 
activities. 

5.1.1 Natural vegetation exposure 
For both the annual mean as well as the winter mean the limit value (LV) is set at 20 µg.m-3. 
Inspecting Figure 5.1 learns that the annual limit value has not been exceeded in 2005. The probability 
map given below in Figure 5.2 (left) indicates that exceedance is unlikely except for a small area in 
Bulgaria where exceedance might be possible. In winter the SO2 emission are higher and dispersion is 
less than in summertime. The winter average will therefore be higher than the annual mean. Especially 
in eastern Europe increase levels are seen in Figure 5.2 (right). Although the winter LV is more 
stringent than the annual LV, exceedances of the winter LV are not observed with exception of one 
small area near Katowice in Poland.  

The exposure of natural vegetation (Corine Land Cover level-2 classes "3.1. Forests" and "3.2 Scrub 
and/or herbaceous vegetation associations") is given in Table 5.1. From this table it is clear that non-
compliance with the LVs is only at a few locations. Due to the meteorological variability it might well 
be that in another year exceedance might be observed over larger areas but it unlikely that it is in more 
than 1-2% of the total area. It is therefore recommended not to map these indicators on a routine basis.  
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Figure 5.1 Rural concentration map of the SO2 vegetation indicators annual average (top) and winter average 
(bottom) for the year 2005. Units: µg.m-3. 
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Table 5.1 Vegetation area exposure to SO2 – annual average 2005 and winter season 2004/2005, (LV 20µg.m-3). 

< 5 5 - 10 10 - 20 20 - 30 > 30 < 5 5 - 10 10 - 20 20 - 30 > 30
km2 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3

Albania 20321 36.4 63.4 0.1 0 0 0 99.9 0.1 0 0
Austria 52015 98.9 1.1 0 0 0 96.2 3.8 0 0 0
Belgium 6462 97.8 2.2 0 0 0 83.9 16.1 0 0 0
Bosnia-Herzegovina 30936 3.0 86.2 10.8 0 0 16.3 73.5 10.2 0 0
Bulgaria 47028 1.8 86.6 11.6 0 0 0 70.3 29.7 0 0
Croatia 28679 34.3 65.7 0.0 0 0 16.0 84.0 0 0 0
Cyprus 3963 100 0 0 0 0 0 100 0 0 0
Czech Republic 27758 47.0 51.0 2.0 0 0 34.0 55.7 10.2 0 0
Denmark (exc.Faroes) 5064 100 0 0 0 0 100 0 0 0 0
Estonia 25269 100 0 0 0 0 100 0 0 0 0
Finland 246040 100 0 0 0 0 100 0 0 0 0
France 186891 89 10.7 0.1 0 0 93.0 5.8 1.2 0 0
FYR of Macedonia 15003 0 97.2 2.8 0 0 0 96.2 3.8 0 0
Germany 108772 95.9 4.1 0.0 0 0 92.9 6.3 0.8 0 0
Greece 71419 55.5 42.6 1.9 0 0 0.0 95.4 4.6 0 0
Hungary 21809 96.7 3.3 0 0 0 8.9 89.6 1.5 0 0
Ireland 8113 100 0 0 0 0 100.0 0 0 0 0
Italy 125913 94 5.4 0.2 0 0 94 5 0.6 0 0
Latvia 32506 100 0 0 0 0 100 0 0 0 0
Liechtenstein 105 100 0 0 0 0 100 0 0 0 0
Lithuania 20955 100 0 0 0 0 100 0 0 0 0
Luxembourg 934 100 0 0 0 0 100 0 0 0 0
Malta 42 0 100 0 0 0 0 100 0 0 0
Monaco 5 100 0 0 0 0 100 0 0 0 0
Netherlands 3790 97.4 2.6 0 0 0 95.0 5.0 0 0 0
Poland 94994 49.0 48.2 2.8 0 0 26.6 52.8 19.8 0.7 0
Portugal 42678 97.0 2.0 1.0 0 0 95.9 4.1 0 0 0
Romania 80549 3.7 93.2 3.1 0 0 0 78.1 21.9 0 0
San Marino 10 100 0 0 0 0 100 0 0 0 0
Slovakia 21500 53.7 46.3 0 0 0 0.5 98.8 0.7 0 0
Slovenia 12628 46.8 53.2 0 0 0 24.8 75.2 0 0 0
Spain 233153 84.3 15.1 0.7 0 0 92.9 6.8 0.3 0 0
Sweden 333915 100 0 0 0 0 100 0 0 0 0
United Kingdom 73474 99.6 0.4 0.0 0 0 99.6 0.4 0.0 0 0

Total 1982692 81.5 18.6 1.0 0 0 76.0 20.7 3.3 0.0 0

SO2 winter season average 2004/2005 [%]

Country

Natural 
vegetation 

area

SO2 annual average, 2005  [%]

Note: Countries not included due to lack of land cover data: Andorra, Iceland, Norway, Serbia and Montenegro, Switzerland 
and Turkey. 

 

5.1.2 Uncertainties 
The absolute and relative mean interpolation uncertainty of the map of the annual averages, expressed 
by the cross-validation RMSE, is 1.9 µg.m-3, i.e. about 53 % of the average of the values measured at 
all rural stations. For the map of the winter averages it is 2.3 µg.m-3, i.e. about 54 % of the average of 
the values measured at all rural stations. 

In case one would like to aim for one indicator for inter-annual trend analysis of the reduction of SO2 
exceedances, one should consider using the winter season average preferable to the annual averages. 
Despite its higher concentrations and their slightly worse performance on the error statistics, they 
show statistically a more accurate behaviour when comparing predicted values against measured 
values.  
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The maps of the probability of the limit value exceedance are constructed, using concentration (Figure 
5.1), uncertainty maps (Figures A4.6) and the limit values (i.e. 20 µg.m-3 in the case of both SO2 
vegetation-related indicators), see Figure 5.2. The maps show that there is only a small location in 
Bulgaria where the limit value of the annual average may be exceeded with a probability of 25 - 50 %. 
The other small location is at Katowice, south Poland, where the limit value for the winter season 
average may be exceeded with a probability larger than 75 %.  

 

 
Figure 5.2 Probability of the limit value exceedance map for the SO2 indicators annual average concentration in 
the year 2005 (left) and winter average concentration for the season 2004/2005 (in µg.m-3) on European scale 
for rural areas, 10 x 10 km grid resolution, as a result of interpolation method 3-S.E-a. (Stations with annual 
averaged measurement values above the limit value are marked red; station measurements below the limit value 
are marked green). 
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6 NOx maps for 2005 
6.1 NOx annual average vegetation indicator 
The interpolated map for the vegetation indicator annual average NOx concentrations are presented in 
Figure 6.1. The rural NOx map has been created by combining monitoring data from rural background 
monitoring stations with the EMEP model output, altitude field, wind speed, solar radiation in a linear 
regression model (N.Eawr), followed by the interpolation of its residuals with ordinary kriging 
(method 3-N.Eawr-a). Measurement were used from rural background stations which reported either 
NOx or NO + NO2 monitoring data, with inclusion of an additional 23 rural background stations for 
which the NOx concentrations were estimated from the available NO2 measurements. 

Compared to the 2004 mapping exercise where altitude was included as the only regression parameter, 
this time the regression model has been extended with wind speed and solar radiation. The 
performance of the extended model is improved and for further work it is recommended to use the 3N-
Eawr-a method.   

6.1.1 Natural vegetation exposure 
The NOx limit value (LV) for the protection of vegetation is set on 30 µg.m-3. Figure 6.1 shows 
exceedances in Northern Italy, southern France, and the Benelux area and around large urban 
agglomerations (London, Paris, Barcelona, and Lyon). In these regions large fractions of the natural 
vegetation is exposed to concentrations above the LV (see Table 6.1). For the whole of Europe, 
exceedances are estimated in 2.2% of the natural vegetation area. 

 
Figure 6.1 Rural concentration map of NOx - annual average, year 2005. Units: µg.m-3. 
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Table 5.1 Vegetation area exposure to NOx – annual average 2005, (LV 30 µg.m-3).  

< 10 10 - 20 20 - 30 30 - 40 > 40
[km2] µg.m-3 µg.m-3 µg.m-3 µg.m-3 µg.m-3

Albania 20036 50.4 35.2 14.4 0 0
Austria 52015 55.1 37.8 7.1 0 0
Belgium 6453 0.2 56.2 27.6 14.0 2.0
Bosnia-Herzegovina 30936 53.0 46.8 0.2 0 0
Bulgaria 46977 51.0 48.2 0.7 0 0
Croatia 27708 14.7 76.4 8.9 0 0
Cyprus 3629 11.3 69.1 19.6 0 0
Czech Republic 27758 20.1 77.1 2.8 0 0
Denmark (ex.Faroes) 4551 79.9 20.1 0 0 0
Estonia 24173 98.2 1.8 0 0 0
Finland 244587 99.7 0.3 0 0 0
France 185821 9.9 51.7 29.6 8.5 0.3
FYR of Macedonia 15003 59.6 39.4 1.0 0 0
Germany 108461 1.7 74.8 23.4 0.2 0
Greece 67621 32.9 45.6 21.5 0.0 0
Hungary 21809 3.3 94.3 0.4 2.0 0
Ireland 7740 99.6 0.4 0 0 0
Italy 124912 15.4 30.5 37.3 12.1 4.6
Latvia 32070 92.4 7.6 0 0 0
Liechtenstein 105 0 30.7 69.3 0 0
Lithuania 20852 81.5 18.5 0.0 0 0
Luxembourg 934 0 38.1 61.9 0 0
Malta 22 0 100.0 0 0 0
Netherlands 3607 1.0 14.7 56.9 26.1 1.3
Poland 94799 46.8 52.2 1.0 0 0
Portugal 42267 59.9 38.8 1.3 0 0
Romania 80498 61.5 38.1 0.4 0 0
San Marino 10 0 0 98.1 1.9 0
Slovakia 21500 52.0 48.0 0.0 0 0
Slovenia 12628 10.6 67.1 22.2 0.0 0
Spain 231893 62.6 30.2 6.2 1.0 0.1
Sweden 331266 97.8 2.2 0 0 0
United Kingdom 69716 88.2 7.8 3.0 0.8 0.1

Total 1962355 58.5 30.2 9.1 1.9 0.3

Country
Natural 

vegetation 
2005 Percent [%]

  
Note: Countries not included due to lack of land cover data: Andorra, Iceland, Norway, Serbia and Montenegro, Switzerland 
and Turkey. 

 

6.1.2 Uncertainties 
The absolute and relative mean interpolation uncertainty of this map of the annual averages, expressed 
in the RMSE from the cross-validation, is 9.7 µg.m-3, i.e. about 55.9 % of the average of the values 
measured at all rural stations. 

The map of the probability of the NOx limit value exceedance is constructed, using the concentration 
map (Figure 6.1), the uncertainty map (Figure A5.5) and the limit value (i.e. 30 µg.m-3), see Figure 
6.2. The highest probability of limit value exceedance is at locations and regions with large 
agglomerations, such as London, Ruhr Gebiet, Paris, French Rhone Valley, German Rhine Valley, 
Italian Po Valley, and Benelux. Also the Italian, French and Spanish Mediterranean coastal zone 
elevated probability of exceedance. It is to be expected that the likelihood of limit value exceedances 
in these areas will continue to occur in the years to come due to significant NOx emissions from 
human activities, not leading easily to non-exceedance levels. 
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Figure 6.2 Probability of the limit value exceedance map for the annual average NOx concentration (in µg.m-3) 
on European scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of interpolation method 3-
N.Eawr-a. (Stations with annual averaged measurement values above the limit value are marked red; station 
measurements below the limit value are marked green). 

 

 

 
 



European air quality maps 2005 including uncertainty analysis 50



 

ETC/ACC Technical Paper 2007/7    51

7 Discussion, recommendations and conclusions 
 

7.1 Introduction  
This report presents the updated European interpolated air quality indicator maps based on the 2005 
monitoring data as reported by EU Member States in 2006 for pollutants PM10, ozone NOX and SO2. 
It represents a follow-up from similar activities on 2004 data in 2006 (Horálek et al., 2007). In 
addition to analysing a new year of data, improvements of the interpolation methodologies have been 
examined with the intention to come to recommendations on which interpolation method to be used 
best or preferred on a more regular basis for the production and updating of such indicator maps. 
These maps are intended to serve as input into EEA’s state and impact indicators and assessments at a 
European scale, e.g., population and ecosystem exposure assessment.  

The focus of this work is on ground-based measurements as primary information, using results from 
chemistry transport modeling (CTM) and other data as secondary, supplementary sources. This is in 
contrast to the work supporting the development of the European Thematic Strategy on Air Pollution, 
which gives prominence to modelling as primary source of information, using monitoring data to 
calibrate the model. While some of the methods and data sources are similar, to some extent the two 
methods can be regarded as complementary. 

In this report, similar methodologies as in Horálek et al. (2007) are applied to the 2005 datasets for the 
same pollutants. The maps of air quality are produced at a resolution of 10 x 10 km, covering all of 
Europe, and include both rural background and urban and suburban background monitoring data 
retrieved from the AirBase database. Spatially resolved supplementary data are used in the 
interpolation methodologies to improve the spatial assessment. 

Reassessed are the interpolations of the annual averaged values for the indicators as defined in the EU 
Directives. In addition, the same supplementary data sources (altitude, meteorological parameters, 
EMEP dispersion model output) as used for the 2004 maps have been reselected for their positive 
contribution to the regressions and interpolations. We reassessed their usage for the 2005 data. In most 
cases, the same parameters appeared to be selected for achieving the best fit in the regression analysis, 
confirming the robustness of using them routinely. Additional to previous work, this comparison 
between years has been done now for both the rural and the urban areas. Attention is also given to the 
question of the uncertainty and variability related to the interpolations and to the 10x10 km gridded 
resolution, applied for mapping of the interpolated concentration fields. 

To examine the hypothesis that the use of CTMs in general improves interpolation results, something 
that we concluded in Horálek et al. (2007) only for the Unified EMEP model, we introduced a 
comparison with another CTM. As representative substitute we selected the LOTOS-EUROS 
dispersion model output, since this is also a well established regional scale CTM applied in Europe, 
and from which data was readily available. For this study the comparison was limited to the 
interpolation method that does not include other supplementary data in addition to the CTM and the air 
quality measurements. The hypothesis was confirmed. The spatial interpolations led to comparable 
results in most cases. This supports the justification of using such well established models for air 
quality mapping.  

Parallel to this, a study concerning the temporal resolution of the assessment was performed. Denby et 
al. (2008) -  ETC/ACC Technical Paper 2007/8 – assesses for PM10 and ozone indicators the 
interpolation performances using daily interpolations averaged to annual values and compared their 
behaviour for several data years and compared them to those obtained by the annual averages based  
interpolations.  

This chapter further provides a more detailed summary of the conclusions of this study, as well as 
providing recommendations for usage of specific methods for mapping of particular air quality 
indicators. Next to this, the majority of recommendations given in Horálek et al. (2007) are still valid. 
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From a political point of view, a key question is to what extent air quality is either above or below a 
particular limit value in a certain area. But because of the significant scientific uncertainties, this 
question can not be answered very accurately for any particular location. Therefore, it was interesting 
to evaluate the probability that limit vales would be exceeded, taking into account the scientific 
uncertainties. Section 7.4 includes several conclusions on the found uncertainties and experiences 
from the exceedance probability mapping trials.  

 

7.2 Recommended interpolation methods for regular updating  
Chapters 3 to 6 describe the mapping of air quality monitoring data for the year 2005 on the basis of 
the preferred interpolation method. Included is an assessment of the interpolation uncertainty and the 
exceedance probability in case of limit or target values or objectives as defined by the air quality 
directives. Additionally, the chapters present some examples of health and vegetation impact 
assessment for the year 2005. The selection of the interpolation method used as the preferred method 
was based on several criteria. Taking the best statistical fit as the starting point, also other criteria were 
considered, such as correspondence with the (close to) best performers for other indicators of the same 
pollutant, extent of coverage of the European mapping domain, the best performer for the on 2004-
data, and furthermore practical and pragmatic reasons like continuity in the indicator updating over the 
(past) years, facilitating trend analyses. If a method would score better on these other criteria and did 
not have a much worse statistical fit, this was selected. In this way subjective expert judgment is 
considered to lead to an acceptable determination of “best” methods.   

Table 7.1 provides an overview per pollutant indicator and per type of area for the preferred 
interpolation method as has been used for the 2004 air quality data (Horálek et al. (2007) and for the 
2005 data (this paper). For each of the entities a recommendation is given for a specific method for 
future use in EEA assessments and (core set) indicators, especially for those produced and updated on 
a regular basis. Also, the motivation for the choice is given, based on the selection criteria. 

Up to now, both ozone vegetation indicators for rural areas were created using the trend analysis using 
ordinary cokriging of the rural background measurements, combined with altitude. Maps for the EEA 
Core Set Indicator 005 (CSI 005, 2006) and in EEA air pollution assessment reports are based on this 
method. However, both 2004 and 2005 show for these indicators that the linear regression with EMEP 
model output, altitude field and surface solar radiation in a linear regression model (O.Ear), followed 
by the interpolation of its residuals by ordinary kriging (method 3-O.Ear-a) convincingly appears to be 
a better method. Nevertheless, for consistency over the years (1996 – 2004) the earlier method was 
still prolonged. However, comparison with 2005 data confirms that the linear regression with EMEP 
model output, altitude field and surface solar radiation in a linear regression model (O.Ear), followed 
by the interpolation of its residuals by ordinary kriging (3-O.Ear-a) appears to be the best, leading to 
the proposal to switch methods for the indicator CSI005 analyses. To avoid discontinuities in the trend 
of vegetation exposure, it is recommended to recalculate the indicators for a few recent years using 
both ‘old’ and ‘new’ method in parallel.  

For both SO2 natural vegetation indicators the maps have been created by combining the 2005 
measurement data at rural background stations with the EMEP model output in a linear regression 
model (S.Ea), followed by the interpolation of its residuals by ordinary kriging (method 2-O.E-a). As 
the same method has been selected for the preparation of the 2004-map, it is also recommended to be 
used in future mapping activities. However, it is clear that non-compliance with the LVs only occurs at 
a few locations. Due to the meteorological variability it might well be that in another year exceedance 
might be observed over larger areas but it unlikely that this would happen in more than 1-2% of the 
total area. Therefore, it is recommended not to map these indicators on a routine basis.  

For the NOx vegetation indicator where at the 2004 mapping exercise altitude was included as the only 
regression parameter, for 2005 mapping the regression model was extended with wind speed and solar 
radiation. The performance of the extended model was better and for further work it is recommended 
to use the new (3-N.Eawr-a) method.   
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7.3 Interpolation without dispersion model output 
Dispersion modelling output data are frequently included as supplementary data source in the best or 
preferred interpolation methods. Advantage of using this data source as supplementary data to the 
monitoring data is its positive contribution to the interpolation results and its large European coverage. 
A drawback, however, could be its delayed availability compared to the monitoring data and the other 
supplementary data sources (meteorology and altitude, available even before the monitoring data). 
Excluding the dispersion modelling output data from the interpolation would allow a delivery of 
interpolated maps about half a year earlier and provide more timely support to (indicator) assessments 
if timeliness would be considered as more important than accuracy and a complete European 
coverage. The delivery would be able in April of year+2 instead of November of year+2. However, 
this requires alternative interpolation methods than those recommended in Table 7.1. Table 7.2 
presents for the 2005 data the best performing interpolation methods not using dispersion modelling 
data. This table also presents the preferred methods for the year 2004 of which most were also the best 
performers. Based on the almost full correspondence between methods used in the two data-years we 
would recommend to use the method as is listed at 2005 in case no modelling data is applied.    
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Table 7.1 Summary table on best or preferred interpolation methods. 
Substance  Urban 

/rural 

Indicator Preferred method on 2004 data 

(Horálek et al. 2007) 

Preferred method on 2005 data 

(this paper) 

Motivation on selected  

preferred method 

Advice on  specific method 
for future  

Annual 
average 

2nd best: Ordinary kriging of 
residuals of linear regression 
model using EMEP model 
output, altitude, solar 
radiation and wind speed 

2nd best: Ordinary kriging of 
residuals of linear regression 
model using EMEP model 
output, altitude, solar 
radiation and wind speed 

Rural 

36th maximum 
daily average 

See previous row See previous row 

Same 1st and 2nd best in 2004 and 2005. 

2004: 2nd best solution as to fit preferred 
because of better coverage of areas without 
measurements, continuity with earlier work and 
its performance close to best results. 

2005: 2nd best selected for the same reasons. 

Ordinary kriging of 
residuals of linear 
regression model using 
EMEP model output, 
altitude, solar radiation 
and wind speed 

(3-P.Eawr-a) 

 

Annual 
average 

Close 2nd best: Ordinary 
kriging on monitoring data 
only 

Best: Ordinary kriging of 
residuals of linear regression 
model using EMEP model  

2004: 2nd best preferred: close to best, in line 
with best and used method at urban 36th max. 
daily average indicator, simpler to generate. 

2005: Different method preferred: better fit and 
better coverage of areas without stations. 

PM10 

Urban 

36th maximum 
daily average 

Best: See previous row Best: See previous row 2004: Best. 

2005: See previous row 

Ordinary kriging of 
residuals of linear 
regression model using 
EMEP model 

(2-UP.E-a) 

 

Ozone Rural 26th highest 
maximum 8-
hour running 
average 

Ordinary cokriging on 
monitoring data, including 
altitude (*) 

Close 2nd best: Ordinary 
kriging of residuals of linear 
regression model using 
EMEP model output, altitude 
and  solar radiation 

2004: (*) No EMEP model data available leading 
to limited comparison; spatial methods perform 
better than linear regression. 

2005: EMEP data now available. Best is OC, but 
2nd best is preferred: close to best, better 
coverage of area without stations, overall (close) 
best performer at all other O3 indicators (both 
rural and urban) and therefore considered to be 
robust. 

Ordinary kriging of 
residuals of linear 
regression model using 
EMEP model output, 
altitude and  solar 
radiation  

(3-O.Ear-a) 
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Substance  Urban 

/rural 

Indicator Preferred method on 2004 data 

(Horálek et al. 2007) 

Preferred method on 2005 data 

(this paper) 

Motivation on selected  

preferred method 

Advice on  specific method 
for future  

SOMO35 Best: Ordinary kriging of 
residuals of linear regression 
model using EMEP model 
output, altitude and solar 
radiation. 

Close 2nd best: Ordinary 
kriging of residuals of linear 
regression model using 
EMEP model output, altitude 
and solar radiation. 

Appears robust method over the years.  

2005: Close 2nd best preferred: used last year 
and see above and below. 

 

AOT40 crops 2nd best: Ordinary cokriging 
on monitoring data, including 
altitude 

Best: Ordinary kriging of 
residuals of linear regression 
model using EMEP model 
output, altitude and solar 
radiation. 

2004: Best was ordinary kriging of residuals of 
linear regression using EMEP model output, 
altitude, solar radiation and rel. humidity. 2nd 
best used for consistency with AOT40forest’s 
best performer and with previous years. 

2005: Different method preferred: best fit, 
similar to 2004’s best performer, better area 
coverage, preferred and used at all other O3 
indicators and appears to be robust. 

  

AOT40 forests Best: Ordinary cokriging on 
monitoring data, including 
altitude 

Best: Ordinary kriging of 
residuals of linear regression 
model using EMEP model 
output, altitude and solar 
radiation. 

2005: Different best method preferred: in line 
with AOT40crops’ best performer and 
arguments above.  

Ordinary kriging of 
residuals of linear 
regression model using 
EMEP model output, 
altitude and  solar 
radiation 

(3-O.Ear-a) 

 

26th highest 
maximum 8-
hour running 
average 

Best: Ordinary cokriging on 
monitoring data, including 
altitude 

Best: Ordinary Kriging of 
residuals of linear regression 
model using EMEP model 
output, wind speed and solar 
radiation 

2004: with very close 2nd best OK with altitude. 

2005: Different best method preferred: better fit 
and better methodological consistency with all 
other ozone indicator maps (both rural and 
urban). 

Ozone 
(cont.) 

Urban 

SOMO35 Close 2nd best: Ordinary 
kriging of  monitoring data  

Best: Ordinary Kriging of 
residuals of linear regression 
model using EMEP model 
output, wind speed and solar 
radiation 

2004: best is OC with altitude. 2nd best 
preferred: close to best and materials were ready 
to use. 

2005: See previous row 

Ordinary Kriging of 
residuals of linear 
regression model using 
EMEP model output, 
wind speed and solar 
radiation 

(3-UO.Ewr-a) 
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Substance  Urban 

/rural 

Indicator Preferred method on 2004 data 

(Horálek et al. 2007) 

Preferred method on 2005 data 

(this paper) 

Motivation on selected  

preferred method 

Advice on  specific method 
for future  

SO2 Rural Annual 
average 

Ordinary kriging of residuals 
of linear regression model 
using EMEP model output 

Ordinary kriging of residuals 
of linear regression model 
using EMEP model output 

Appears robust method. 

  Winter 
average 

Not done Ordinary kriging of residuals 
of linear regression model 
using EMEP model output 

In line with annual average results: methodology 
appears consistent and robust. 

Ordinary kriging of 
residuals of linear 
regression model using 
EMEP model output 

(2-S.E-a) 

Little to no exceedance in 
Europe therefore 
recommended not to map 
these indicators on a 
routine basis. 

 

NOx Rural Annual 
average 

Ordinary kriging of residuals 
of linear regression model 
using EMEP and altitude 

Ordinary kriging of residuals 
of linear regression model 
using EMEP, altitude, wind 
speed, solar radiation 

2005: addition of meteorological parameters 
appears to improve performance significantly. 

Ordinary kriging of 
residuals of linear 
regression model using 
EMEP, altitude, wind 
speed, solar radiation 

(3-N.Eawr-a) 

       

PM2.5   Not pursued because of data 
scarcity. 

Not pursued because of data 
scarcity. 

2004: linking to PM10 mon. data or EMEP 
model PM2.5 output gives poor fit. 

2005: See Annex PM10-PM2.5 assessment 
feasibility study. Re-assess in 2009 with more 
reported PM2.5 stations. 

n/a 
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Table 7.2 Summary of adviced interpolation methods when no dispersion model output data is used in the 
interpolated mapping. Advice is based on results from the application on 2004 and 2005 monitoring data.  

Substance  Urban 

/rural 

Indicator Preferred interpolation when not  

using dispersion modelled data 

on 2004 data (Horálek et al. 2007) 

Preferred interpolation when not  

using dispersion modelled data 

 on 2005 data (this paper) 

Annual 
average 

Rural 

36th max. 
daily avg 

Lognormal cokriging on 
monitoring data, including altitude 

Lognormal cokriging on 
monitoring data, including altitude 
(1-d) 

Annual 
average 

PM10 

Urban 

36th max 
daily avg 

Ordinary kriging on monitoring 
data only  
(Used for final mapping as close 2nd best.) 

Indifferent: Ordinary kriging or 
Lognormal kriging on monitoring 
data only (1-a or 1-b) 

     

26th h. 
max 8-hr 
avg 

SOMO35 

AOT40 
crops 

Ozone Rural 

AOT40 
forests 

26th h. 
max 8-hr 
avg 

Ozone 
(cont.) 

Urban 

SOMO35 

Ordinary cokriging on monitoring 
data, including altitude  
(Used at AOT40crops and urban SOMO35 
for final mapping, but was close 2nd best)  

Ordinary cokriging on monitoring 
data, including altitude (1-c) 

     

SO2 Rural Annual 
average 

Lognormal kriging on monitoring 
data only 

  Winter 
average 

Not done 
Lognormal kriging on monitoring 
data only (1-b) 

     

NOx Rural Annual 
average 

Lognormal cokriging on 
monitoring data, including altitude 

Lognormal cokriging on 
monitoring data, including altitude 
(1-d) 

     

PM2.5   Not pursued because of data 
scarcity. 

Not pursued because of data 
scarcity. 
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7.4 Final conclusions relating to the mapping methodology 
 

Mapping methodology 

1. There appears to be a reasonable agreement between the analyses using EMEP and LOTOS- 
EUROS modelling results. Even the fact that in some cases LOTOS-EUROS provides a better 
fit, the differences are sufficiently small to justify for the time being the usage of the EMEP-
model as we did for the final mapping with the argument of its somewhat larger mapping 
domain and on its more established updating cycle. This does not exclude the use of LOTOS-
EUROS in the near future when its data availability has become better established. It would 
allow making use of its better fit on the PM10 indicators and its advantage of having a grid 
resolution scaling feature providing zoom-in options to more regional areas in Europe. 

 

2. For some substances and indicators (rural PM10, rural SOMO35, SO2) the preferred method is 
the same in 2005 as in 2004 (see Table 7.1), suggesting that in those cases the methods are 
relatively robust and an annual comparison between methods does not appear to be necessary. 
Frequent comparison and changing of methods for indicators updated within the EEA regular 
production processes should be avoided to guarantee better the stability in the messages to be 
send out and limits production resources. It is recommended to fix the method for some years 
and change it only when EEA and ETC experts believes in the robustness to move from one 
method to another method resulting from a parallel development process. The frequency will 
depend on the methodological and expertise developments in this area.   

 

3. For other substances (rural ozone vegetation indicators, urban PM10 and urban ozone, NOx) 
the new analysis suggests that a different method is to be preferred. We recommended using 
the new method from now onward. 

 

4. A multi-annual analysis with data of some past 10 yrs of EMEP model runs should be done to 
map and explain trends on aspects of stations density influences and method or model 
influences for ozone and PM10 to determine more definitely the level of inter-annual 
variability of the best performing method.  

 

5. To ensure that discontinuities in the indicator trend analysis are avoided due to a switch 
between interpolation methods in case of vegetation exposure (for CSI005), it is 
recommended to recalculate the trends for a few recent years and in addition, to use both the 
‘old’ and ‘new’ methods in parallel for the coming years, however, leading to about half a 
year later delivery of the ozone indicator update due to the later model data availability. 

 

6. Like for the 2004 maps, not always the “best” method in terms of fit was selected, because 
other criteria were considered to be more important than the best statistical fit. For example, 
spatial interpolation methods using additional data (e.g., EMEP) can have the advantage of 
larger spatial coverage in areas where monitoring stations are missing. Also consistency 
between all indicators of one pollutant can be an argument not to choose the method that 
performs best statistically. In such cases, the statistical performance levels should not differ 
too much. 

 
 
7. If one would consider timeliness more important than accuracy and Europe-wide coverage, 

half a year can be gained by creating maps only based on monitoring data, without usage of 
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EMEP model results. In that case Table 7.2 gives recommendations depending on the 
indicator on which method is best to use. The recommendations are given using similar 
criteria as those of Table 7.1.  

 

8. Improvements in the regression, through the use of other regression parameters, may 
ultimately lead to improvements in the residual kriging. The use of other data sources such as 
other land use characteristics next to altitude, or air pollutant satellite imagery, or even more 
directly high resolution emission estimates, may provide similar improvements to the multiple 
regression and hence the residual kriging.  

 

Mapping results 

9. For PM10, health exposure assessment reveals exposure above the limit values in a number of 
areas of Europe. In comparison to its neighbouring countries, the concentrations in France are 
relatively low. It can not be excluded that these low levels are caused by the low correction 
factor applied in the French networks for correcting the data for non-reference measuring 
configurations (de Leeuw, 2005). The number of Europeans exposed to annual mean 
concentrations of PM10 above the limit value of 40 ug.m-3 is 9% of the total population; in the 
case of the limit value of 50 ug.m-3 it is 28%. The numbers of premature deaths on European 
and regional scales have been estimated and show a range that is partly caused by the 
differences in PM10 concentration over Europe and partly by the differences in age 
distributions and baseline mortalities. The uncertainties in the numbers caused by the 
uncertainties in the relative risk factor are relatively large. 

  

10. Similar assessments and estimates have been executed for the ozone human health indicators, 
ozone vegetation (crops and forests) indicators, natural vegetation SO2 indicators and 
vegetation NOx indicator. Striking are the high likelihood in exceeding the ozone health target 
value in southern and south-eastern Europe. Furthermore, there are the higher exposure 
exceedances of crops and forests to ozone in 2005 compared to 2004: almost 50 % of all 
agricultural land may be exposed to ozone exceeding the target value of 18 mg.m-3.h and 
almost 90 % may be exposed to levels in excess of the long-term objective of 6 mg.m-3.h. The 
difference in comparison with 2004 results has its cause not only in the higher ozone 
concentrations, but also in the switch to an improved interpolation method leading to 
presenting the larger area.   

 

11. Little to no exceedance is observed for both annual and winter season SO2 in Europe. 
Therefore it is recommended not to map these indicators on a routine basis. Nevertheless, In 
case one would like to aim for one indicator for inter-annual trend analysis of the SO2 
exceedances, one should consider using the winter season average preferable to the annual 
averages. Despite its higher concentrations and its slightly worse performance on the error 
statistics, its shows statistically a more accurate behaviour when comparing predicted values 
against measured values.  

 

12. For NOx the regression model method extended with wind speed and solar radiation was 
selected, while the 2004 mapping exercise included altitude as the only regression parameter.  
The performance of the extended model gives better results and for future updates it is 
recommended to use the new (3N-Eawr-a) method.  

 



European air quality maps 2005 including uncertainty analysis 60

Uncertainties 

13. The following conclusions relating to the uncertainties for the mapping of different substances 
can be drawn: 

• The relative uncertainty of rural PM10 maps is about 26%, the relative uncertainty of urban 
PM10 maps is about 20% 

• The relative uncertainty of rural ozone maps is different for different indicators: about 
10% in the case of 26th highest daily maximum 8-hour average, about 35% in case of 
SOMO35 and about 40% in case of both AOT40 indicators 

• The relative uncertainty of urban ozone maps is 9% in the case of 26th highest daily 
maximum 8-hour average and 32% in case of SOMO35 

• The relative uncertainty of rural SO2 and NOx maps is about 50-55%. 
 

14. Both the uncertainty and probability maps presented in this report accounts only for the 
interpolation error. Other sources of uncertainty (e.g. measuring errors, representativeness, 
and model uncertainty) have not been included. It is recommended to identify and quantify the 
sources of uncertainty external to the interpolation methodologies as well as to study of effects 
of impacts of monitoring uncertainties on mapping. 

 

15. The approach, the weighting function and its related criterion used to combine and merge the 
concentration and uncertainty of the rural and urban maps into final concentration and 
probability of exceedance maps need to be addressed further on its validity, leading to 
improvements and being better be able describing its involved uncertainty.    

 

16. The following more general conclusions related to the probability of limit or target value 
exceedances (PoE) and their maps can be drawn: 

• Resulting PoE maps may guide further action with respect to implementation of abatement 
measures and to the design of the monitoring network.  

• In regions with a high uncertainty in the indicator value there might be no need to reduce 
this uncertainty (e.g. by establishing additional stations) when the probability map 
indicates that exceedance is most unlikely.  

• On the other hand, there will be areas where the concentration is below the limit value but 
the probability map indicates that exceedance is likely. Although these areas are formally 
speaking in compliance, one may conclude that, in order to avoid non-compliance in 
another year, abatement measure should be considered.  

• The exceedance probability maps show that relationship between the actual and the 
interpolated value and the associated uncertainty is much more complex than is often 
assumed. This calls for a careful consideration of the selection of the particular output 
indicator to be presented and the way of presenting it, especially in view of the message to 
be communicated. 

 

17. The concentration maps in general underestimate the high values in at areas with no 
measurement, as is indicated by the cross-validation scatter plots. The underestimation of 
interpolation is smaller in the urban areas for both PM10 and ozone. This is probably caused by 
the higher number of urban/suburban stations in comparison to the number of the rural 
stations. The level of underestimation is visible from the scatter plots in the Annexes). 
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18. Next to the concentration maps, the uncertainty maps were constructed. The maps show 
higher uncertainty in areas with low density of stations. The areas with the highest uncertainty 
are southern Italy, west Balkan (or the whole Balkan for some pollutants), Iceland and the 
northern Scandinavia.  

 

19. Based on the concentration and uncertainty maps, the maps of probability of limit value 
exceedances (PoE) have been estimated. 
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Annex 1 Input data 
A1.1 Introduction 
The input data used depends on the mapping methodology applied. Chapter 4 of Horálek et al. (2007) 
provides a complete overview on sources and specifications of the input data. For clarity and 
readability of this paper we provide here the full list of the used data. The interpolation methods of 
type 1 use measured air pollution data, together with the coordinates and altitude of the measurement 
stations. The advanced mapping methods use also supplementary parameters, such as output from the 
dispersion models, altitude data covering the whole study area, meteorological parameters and 
population density. The resolution of such input data should be, if possible, higher than or comparable 
to the resolution of the maps constructed, which is 10 x 10 km. 

A1.2 Measured air quality data 
The air quality data were extracted from the European monitoring database AirBase, supplemented by 
several rural EMEP stations which are not reported to AirBase. Only data from stations classified by 
AirBase and/or EMEP as rural, suburban and urban background stations has been used. Industrial 
and traffic station types are not considered, since they represent local scale concentration levels not 
applicable at the mapping resolution employed. The following components and their indicators were 
considered:  

PM10  – annual average [µg.m-3], year 2005 
– 36th maximum daily average value [µg.m-3], year 2005  

Ozone  – 26th highest daily maximum 8-hour average value [µg.m-3], year 2005 
– SOMO35 [μg.m-3.day], year 2005 
– AOT40 for crops [μg.m-3.hour], year 2005 
– AOT40 for forests [μg.m-3.hour], year 2005 

SO2  – annual average [µg.m-3], year 2005 
 – winter average [µg.m-3], winter 2004-2005 

NOx  – annual average [µg.m-3], year 2005 
NO2  – annual average [µg.m-3], year 2005 (for purposes of NOx mapping only) 
NO  – annual average [µg.m-3], year 2005 (for purposes of NOx mapping only) 

SOMO35 is the annual sum of maximum daily 8-hour concentrations above 35 ppb (i.e. 70 μg.m-3). 
Winter average is the average over the six months from October to March.  

In case of components affecting human health (i.e. PM10, and the ozone parameters 26th highest daily 
maximum 8-hour average value and SOMO35) data from rural, urban and suburban background 
stations are considered. In case of components affecting vegetation (SO2, NOx and both AOT40 
parameters for ozone) only rural background stations are considered. The paucity of PM2.5 data 
available from AirBase precludes further analysis of this pollutant, see Annex 7. 

Only the stations with annual data coverage of at least 75 percent are used. The stations from French 
overseas areas (departments) have been excluded. Additionally, one Greek ozone station (GR0110R) 
with highly questionable data has been excluded from the analysis. 

Table A1.1 shows the number of the measurement stations selected for the individual pollutants and 
their respective indicators. 
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Table A1.1 Number of the stations selected for the individual indicators and areas. For rural areas the rural 
background stations and for urban areas the urban and suburban background stations are used. 

NOx direct NO & NO2 NO2 onlyNOx direct & derived
annual 36th max. 26th highest annual winter annual annual annual annual
average  daily mean max. daily 8h average average average average average average

rural 214 206 440 442 283 271 132 +  126 +  67 =   325
urban 800 800 843 841 - - - - - -

PM10 ozone SO2

SOMO35

 
In addition to the AirBase data, 8 additional rural PM10 stations from the EMEP database have been 
used to reach a more extended spatial coverage by measurement data.  

For a considerable number of stations NO Bx is measured, however not reported as such but separately as 
NO and NOB2 B. For these 126 rural background stations reporting NO and NO2 separately, the NOx 
concentrations were derived according the equation 

 NOx = NO2 + 46/30.NO          (3.1) 

where all components are expressed in µg.m-3, with a molecular mass for NO of 30 and for NO2 of 46 
g.mol-1. For the NOx mapping these stations were added to the set with reported NOx concentrations 
resulting in a extended set of 258 stations. For the remaining 67 stations with NO2 data reported only, 
the NOx values were estimated according Horálek et al. (2007), Section 5.4.1, increasing the total 
ultimately to a set of 325 stations.   

A1.3 Unified EMEP model output 
The well established European chemistry transport model we used is the photochemical version of the 
Unified EMEP model (revision rv2_5_beta2), which is a Eulerian model with a resolution of 50 x 50 
km. The disaggregation to the 10x10km grid cells is done as described in Section 4.4 of Horálek et al. 
(2007). Output from this model (2005 data extracted in October 2007) is used for the same parameter 
set as the set of measurement parameters in Section 3.2: 
PM10  – annual average [µg.m-3], year 2005 

– 36th maximum daily average value [µg.m-3], year 2005 

Ozone  – 26th highest daily maximum 8-hour average value [µg.m-3], year 2005 
– SOMO35 [μg.m-3.day], year 2005 
– AOT40 for crops [μg.m-3.hour], year 2005 
– AOT40 for forests [μg.m-3.hour], year 2005 

SO2  – annual average [µg.m-3], year 2005 
 – winter average [µg.m-3], season 2004/2005 

NOx  – annual average [µg.m-3], year 2005 

The model is described by Simpson et al. (2003) and Fagerli et al. (2004). The model results are based 
on the emissions for the relevant year (Vestreng et al., 2007) and actual meteorological data (from 
PARLAM-PS, i.e. special dedicated 2000 version of HIRLAM numerical weather prediction model, 
with parallel architecture, see Sandnes Lenschow and Tsyro, 2000). 

A1.4 LOTOS-EUROS model output 
As comparable air chemistry transport model for interpolated air quality mapping of the health-related 
pollutant indicators the following 2005 data output of LOTOS-EUROS model (Schaap et al., 2007) 
was used: 

PM10  – annual average [µg.m-3], year 2005 
– 36th maximum daily average value [µg.m-3], year 2005 

Ozone  – 26th highest daily maximum 8-hour average value [µg.m-3], year 2005 
– SOMO35 [μg.m-3.day], year 2005 
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The data were extracted on 17-19 October 2007 by TNO in netCDF for the years 2004 and 2005. The 
pollutant parameters extracted are PM10 daily averages and ozone hourly averages in a grid resolution 
of 25x25km for the whole modeling domain, which a somewhat less extended than that of EMEP. The 
same disaggregation as with the EMEP data has been applied to meet the 10x10 km grid interpolation 
resolution. 

A1.5 Altitude 
The station altitude from AirBase (or EMEP) is only considered in this study at the interpolation 
cokriging techniques using primarily monitoring data (methodology type 1).  

For the methodologies of type 3, using as supplementary information the altitude in their linear 
regression model we used the European covering altitude data field (in meters) of GTOPO30, original 
grid resolution of 30 x 30 arcsec. For details, see Horálek et al (2007). 

A1.6 Meteorological parameters 
Actual meteorological surface layer parameters are extracted from the Meteorological Archival and 
Retrieval System (MARS) of the ECMWF (European Centre for Medium-range Weather Forecasts). 
The derived parameters currently used extracted from the ECMWF variables, specified in detail in 
Horálek et al. (2007) Section 4.5, are: 

Wind speed  – annual average [m.s-1], year 2005 

Surface solar radiation – annual average [MWs.m-2], year 2005 

Temperature (in 2 meters) – annual average [°C], year 2005 

Relative humidity  – annual average [%], year 2005 

Next to this, we tested the use of surface pressure (according the recommendation of Horálek et al., 
2007), but finally we decided to ignore this parameter, because of almost no improvement of the 
results in the case of its use at the pollutant, except NOx (see Section A5.1.1). 

A1.7 Population density  
Population density [inhbs.km-2] is based on JRC data for the majority countries (Source EEA, 
pop01c00v3int, official version Aug. 2006; Owner: JRC). For the countries which are not included in 
this database (i.e. for Andorra, Albania, Bosnia-Herzegovina, Cyprus, Island, Lichtenstein, FYR of 
Macedonia, Norway, Serbia and Montenegro, Switzerland, and Turkey) we used population density 
data from an alternative source, the ORNL LandScan (2002) Global Population Dataset. However, 
these data were not available for the southern part of Cyprus. See Horálek et al. (2007) Section 4.9 for 
the detailed specification and the aggregation executed on the populations density data.  

As mentioned in Horálek et al. (2007), preliminary comparisons between the ORNL LandScan and the 
JRC datasets for countries covered by both datasets demonstrated significant differences between 
these two databases. Thus we compared the aggregated data for the individual countries with the 
official UN population data (95Hhttp://www.un.org/popin/data.html) for these countries. This comparison 
showed good agreement of JRC and UN data, but underestimation of ORNL data. Based on this 
comparison the multiplied factor 1.65 was applied for all ORNL data. 

For the health impact assessment, performed according to standard population attributive principles 
(WHO, 2001), an update of country-specific demographic data has been taken from the UN population 
Division (UN, 2006). 

A1.8 Land cover 
The input data from CORINE Land Cover 2000 (CLC2000) – grid 250 x 250 m, version 8/2005 
version 2, (Source and owner: EEA, lceugr250_00) is used. The countries missing in this database are 
Iceland, Norway, Switzerland, Serbia and Montenegro, and Turkey. 
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In an effort to reduce the time demanding calculations on large data quantity involved with the 
250 x 250 m grid resolution an aggregation to a 500 x 500 m grid resolution is performed first, before 
the exceedance mapping and table extraction takes place. The ultimate map and table results are not 
influenced by this resolution aggregation. 
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Annex 2 PM10 spatial analysis  
General introduction to the spatial analysis 
 

For both rural and urban maps the examination and selection process is described in three subsections:  
1. supplementary data selection for linear regression model and its analysis 
2. spatial interpolation comparison and selection of interpolation method for mapping  
3. the interpolation uncertainty analysis of the selected mapping method 

The first subsection concentrates on determining whether a linear regression model using 
supplementary parameters next to modelling data would improve the fit of predicted and measurement 
values. Simultaneously, the set of most significant contributing parameters is selected. This analysis is 
based on the 2005 data. It leads to a nomination of the best performing linear regression model to be 
used for selecting the best method of methodology type 3. Next to this, the linear regression model 
used on 2004 data (Horálek et al., 2007) is nominated for further comparison as well. The model 
selected could be the same for 2004 and 2005 data, if possible. Also, both the linear regression models 
of methodology type 2 (using EMEP model output only) and methodology type 4 (using LOTOS-
EUROS model output only) are included in the comparison for reasons given in chapter 1. The 
nominated linear regression models are examined and compared with statistical indicators. The goal is 
to rank and select the best fitting linear regression model from the group of methods belonging to 
methodologies 2, 3 and 4. A good performing regressions model as part of a whole interpolation 
mapping methodology directs the selection of the best or preferred method for mapping. However, the 
subsequent interpolation of the regression residuals plays the major role in the ultimate selection of the 
best or preferred interpolation mapping method.   

The second subsection describes the comparison of these subsequent residual interpolations by means 
of cross-validation and statistical indicators, including the interpolation methodology type 1, using the 
monitoring data only as well. The main comparison criterion is RMSE, followed by MAE, MPE, 
MedAE and other indicators. RMSE, SDE, MAE, MedAE and MPSE should be as small as possible, 
see Annex 6 for a further description. MPE, minimum error and maximum error should be as near to 
zero as possible. The SDE is not included in the comparison tables since it is almost equal to the 
RMSE; inherent to the fact that at all cases the MPE (being part of SDE equation) is close to zero. The 
R2 should be as close to 1 as possible. All the statistical indicators, with exception of R2, are expressed 
in the same unit as the interpolated parameter (generally µg.m-3; for AOT40 in (µg.m-3).h and for 
SOMO35 in (µg.m-3).day). The method selected on basis of these criteria as being or preferred is used 
to create interpolation maps for each indicator. 

The third section is to examine the level of uncertainties in the ultimately selected interpolation 
mapping method of the air pollution indicator throughout Europe, especially for areas without 
measurement stations. Firstly, differences in the concentration maps resulting from the preferred 
method with those of the other interpolation methods are compared and briefly discussed.  

Cross-validation analysis evaluates by RMSE the absolute and relative mean uncertainty of the map 
based on the selected interpolation method and the linear regression of the cross-validation scatter 
plots for provides insight in the over- or under-estimation of the predicted values compared to the 
measured values of each indicator. The level of the smoothing effect of the interpolation is 
demonstrated by the parameters of linear regression y = a·x + c: a high intercept c means 
overestimated predicted values at low air pollution indicator measurements, and a low slope a means 
underestimation of the predicted values at high measurement values. The R2 indicates the level of 
correlation of the predicted values of the interpolation method with the measurement values: The 
closer R2 is to 1, the better the correlation.  

Alternatively to the cross-validation approach, a simple comparison between the measured and 
interpolated values in the points of measurement is made, using scatter plots (resp. the parameters of 
the fitted regression line, i.e. R2, slope a and intercept c). This comparison of measured and 
interpolated values shows the uncertainty at the stations locations (points) itself, while the cross-
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validation simulates the behaviour of the interpolation at locations and areas without measurement. 
The uncertainty at measurement locations is caused partly by the smoothing effect of interpolation and 
partly by the spatial averaging of the values in 10x10 km grid. 

Additionally to the concentration maps, the uncertainty maps are constructed representing the maps of 
the predicted standard error of estimation. Based on concentration and uncertainty maps, the maps of 
probability of the limit value exceedance are constructed. 

The same procedures as described above are followed for the ozone, SO2 and NOx indicators. For 
particulate matter rural, urban and combined maps are constructed for the annual mean and the 36th 
highest daily mean. The available PM2.5 data is insufficient for preparing PM2.5 maps, see Annex 7.  

A2.1 Rural maps 

A2.1.1 Linear regression analysis 
In Horálek et al. (2007) the linear regression model selected for rural PM10 mapping of 2004 data was 
for both indicators the model using, apart from air pollution modelling output data, the supplementary 
parameters altitude, wind speed, surface solar radiation (coded below as P.Eawr).  

With the 2005 data, the selection of supplementary data parameters considered in the stepwise 
regression with backward elimination are altitude, meteorological parameters (i.e. wind speed, surface 
solar radiation, temperature, relative humidity, surface pressure) and EMEP model output. The 
selected parameters, apart from EMEP model output, best fitting the regression model are altitude, 
relative humidity and temperature (coded as P.Eaht). The models using EMEP and LOTOS-EUROS 
modelling output only (coded P.E resp. P.L) are examined as well.  

Thus, the following linear regression models to be examined are: 

Submodel Input parameters 

P.E  EMEP model output 
P.Eaht  EMEP model output, altitude, relative humidity, temperature 
P.Eawr  EMEP model output, altitude, wind speed, surface solar radiation 
P.L  LOTOS-EUROS model output 
 

The statistical performance of these four different linear regression models is presented in Table A2.1 
for both indicators.  
Table A2.1 Statistical indicator values of the selected linear regression models indicating the correlation 
between supplementary data and the annual average and 36th daily maximum mean of the 2005 measurement 
PM10 concentrations in the rural areas. 

Indicator

Linear regr. model R2 adjusted 
R2

st. error  
[µg.m-3]

RMSE  
[µg.m-3] R2 adjusted 

R2
st. error  
[µg.m-3]

RMSE  
[µg.m-3]

P.E 0.111 0.107 7.512 7.477 0.152 0.148 13.318 13.255
P.Eaht 0.306 0.292 6.687 6.608 0.341 0.329 11.822 11.683
P.Eawr 0.289 0.276 6.764 6.685 0.304 0.291 12.150 12.007

P.L 0.164 0.160 7.285 7.251 0.164 0.160 7.285 7.251

PM10 annual average, 2005 PM10 max. 36th daily mean, 2005 

 

Table A2.1 shows the results for the PM10 annual average concentration. The values of R2 and RMSE 
for the models of the methodology type 2 (i.e. P.E) and 3 (P.Eaht and P.Eawr) show quite clearly that 
the addition of supplementary parameters substantially improves the closeness of the regression 
relation by an increased R2 of about 0.2 and a decreased RMSE by approximately 0.8µg.m-3, i.e. one 
tenth. Similarly, the R2 and RMSE for the models of types 2 (P.E) and 4 (P.L) indicate that the 
closeness of regression is higher when the LOTOS-EUROS modelled concentration field is used, 
instead of the EMEP modelled field.  
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The results in the table for the 36th maximum daily average PM10 value are quite similar to those of the 
annual average. The addition of supplementary parameters substantially improves the closeness of the 
regression relation by an increased R2 of 0.19 and a decreased RMSE of about one ninth. The 
closeness of the regression improves when output from the LOTOS-EUROS model is used, instead of 
EMEP model output. 

Conclusions:  

• At both indicators the addition of supplementary parameters substantially improves the 
closeness of the linear regression relation with the indicator values of the PM10 measurements. 

• At both indicators the closeness of the linear regression is higher when using the LOTOS-
EUROS modelled concentration field instead of the EMEP modelled field. 

However, these conclusions do not determine which method of methodology type 2, 3 and 4 (methods 
with or without supplementary data next to modelling data) would be best or preferred for the 
interpolation mapping method. They do indicate that the methods using linear regressions most likely 
will perform better by including additional supplementary parameter next to modelling data. 

A2.1.2 Spatial interpolation 
As explained in Section 2.1, from the four methodological types we examined several promising 
interpolation methods on their performance by comparing the RMSE and other statistical indicators 
from cross-validation: 

1. Interpolation using primarily monitoring data 

a. Ordinary kriging (OK)   b. Lognormal kriging (LK)  
c. Ordinary cokriging (OC)  d. Lognormal cokriging (LC) 

2. Interpolation using monitoring data and EMEP modelling data 

Linear regression using EMEP model output (P.E), followed by interpolation of its residuals 
using OK. 

3. Interpolation using monitoring data, EMEP model data and other supplementary data 

Linear regression model using EMEP model output, altitude, relative humidity and 
temperature (P.Eaht), followed by interpolation of its residuals using OK 

Linear regression model using EMEP model output, altitude, relative humidity and 
temperature (P.Eawr), followed by interpolation of its residuals using OK 

4. Interpolation using monitoring data and LOTOS-EUROS modelling data 

Linear regression using LOTOS-EUROS model output (P.L) plus interpolation of its residuals 
using OK. 

 

The statistical indicators of the cross-validation of the methods are presented in Table A2.2 for the 
annual averages and in Table A2.3 for the 36th maximum daily averages. In the same tables the 
resulting linear regression equations and correlation coefficient R2 from the cross-validation scatter 
plots with the measurements on the x axis, and the predicted values on the y axis are also presented. 
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Table A2.2 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the PM10 annual 
averages for 2005 in rural areas. Apart from R2 and a, all statistical indicators are in μg.m-3. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interp. OK 6.44 0.45 -23.26 20.57 4.72 3.50 6.67 0.365 13.97 0.344
1-b interp. LK 6.45 0.47 -25.94 18.61 4.74 3.54 6.61 0.356 14.20 0.342
1-c interp. OC 5.53 0.43 -21.36 14.76 4.03 2.94 5.93 0.468 11.76 0.522
1-d interp. LC 5.45 0.12 -23.64 13.87 3.88 2.64 4.95 0.461 11.61 0.541
2-P.E-a lin. regr. P.E + OK 6.15 0.20 -21.54 22.16 4.48 3.34 6.77 0.398 13.04 0.400
3-P.Eaht-a lin. r. P.Eaht + OK 5.64 0.07 -26.04 24.04 3.92 2.76 5.67 0.535 9.98 0.498
3-P.Eawr-a lin. r. P.Eawr + OK 5.52 0.13 -19.24 25.34 3.98 2.83 5.67 0.539 9.95 0.517
4-P.L-a lin. regr. P.L + OK 5.87 0.15 -20.81 21.15 4.25 3.37 6.34 0.437 12.14 0.454

mapping method
annual average PM10 [µg.m-3]

linear regr. y = a.x + c

 
Table A2.3 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the PM10 indicator 36th 
maximum daily averages for 2005 in rural areas. Apart from R2 and a, all other statistical indicators are in 
μg.m-3. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interp. OK 11.03 0.93 10.99 -50.30 32.67 8.05 6.06 0.442 21.52 0.418
1-b interp. LK 10.97 0.79 10.94 -51.19 29.54 7.99 6.04 0.428 21.92 0.422
1-c interp. OC 10.18 0.92 10.14 -48.31 26.98 7.50 5.56 0.465 20.66 0.508
1-d interp. LC 9.86 -0.12 9.86 -49.73 23.43 7.04 4.82 0.462 19.76 0.543
2-P.E-a lin. regr. P.E + OK 10.36 0.40 10.35 -48.35 34.26 7.40 5.21 0.489 19.27 0.483
3-P.Eaht-a lin. r. P.Eaht + OK 9.86 0.08 9.86 -45.46 34.94 6.86 5.08 0.585 15.41 0.535
3-P.Eawr-a lin. r. P.Eawr + OK 9.70 0.16 9.70 -46.48 38.21 6.93 5.35 0.584 15.53 0.548
4-P.L-a lin. regr. P.L + OK 10.1594 0.47 10.149 -47.81 33.42 7.32 5.38 0.495 19.12 0.503

mapping method
36th maximum daily average PM10 [µg.m-3]

linear regr. y = a.x + c

 

A number of comparison conclusions can be drawn from the results provided in Tables A2.2 and 
A2.3for the rural areas: 

• When ranking of the statistics on their performance at both indicators, the best results for 
methods of methodology type 1, interpolation with monitoring data only, are obtained by 
lognormal cokriging, method 1-d. This confirms the results from Horálek et al. (2007). 

• When ranking of the statistics RMSE (and also SDE and R2) at both indicators, the best results 
for methods of type 3, linear regression followed by interpolation of its residuals, are obtained 
by ordinary kriging of the residuals of the linear regression model P.Eawr, which uses EMEP 
model output, altitude, solar radiation and wind speed (method 3-P.Eawr-a). The same was 
concluded in Horálek et al. (2007) on the 2004 data. This confirms the suitability of these 
parameters for interpolation purposes. 

• The comparison of the method of the types 2 and 4 (i.e. use of EMEP or LOTOS-EUROS 
model) shows slightly better results for the type 4 (i.e. use of LOTOS-EUROS), based on 
RMSE (and also SDE, MAE and R2). However, the difference is 2-5 % and the performance 
of both models is similar. 

• The comparison of the method of the types 2 and 3 shows better results for the type 3 (i.e. 
including other supplementary parameter), based on RMSE (and also MPE, SDE, MAE, R2 
and MPSE). The addition of supplementary parameters improves the interpolation, which 
confirms the findings of Horálek et al. (2007) on 2004 data. 
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• The comparison of the scatter plots of the methods of type 1 and 3 shows that the method of 
type 3 (3-P.Eawr-a) gives at both indicators better results for slope (highest), i.e. it is expected 
this method will show the smaller underestimations for high values in areas with no 
measurements. Its intercept at both indicators is smallest, i.e. expected is the method will show 
the smallest overestimations of predicted values at low values in areas without measurements. 
Method 3-P.Eawr shows just a bit higher R2 values than method 1-d, meaning method 3-
P.Eawr provides also the best correlation with the measured values and expectedly the best 
representation of predicted for areas without measurements.  

• An inter-comparison of the methods of the types 1, 2 and 3 shows that the best results for 
2005 data are given by method 1-d (lognormal cokriging on monitoring data only) and 3-
P.Eawr-a (linear regression model using the EMEP model output, altitude, wind speed and 
surface solar radiation, P.Eawr, followed by ordinary kriging of its residuals). Method 1-d 
gives slightly better results for the case of annual average, whereas method 3.P-Eawr-a does 
for the 36th maximum daily average.  

• As observed with the 2004 data (Horálek et al., 2007), good results of lognormal cokriging are 
obtained with the 2005 data again, even though it is no more than an interpolation of measured 
data only. This can be explained by the fact that this method uses logarithmic transformation 
which corresponds to a logarithmic-normal distribution of PM10. For future applications it is 
still recommended to examine methods that enable logarithmic transformation of PM10 values 
and the use of supplementary parameters. 

 

The conclusions on the linear regression and interpolation analysis confirm method 3-P.Eawr-a (linear 
regression model using EMEP model output, altitude, wind speed and surface solar radiation, followed 
by interpolation of its residuals by ordinary kriging) on the 2005 data as the preferred method for PM10 
rural mapping for both indicators. It is the same as used for the 2004 mapping in Horálek et al. (2007) 
and as such an additional motivation for its continued use. Even though for the annual average method 
1-d performs slightly better (same as with the 2004 data), method 3-P.Eawr-a is preferred for its 
European coverage with its supplementary data of areas without measurements.   

The resulting rural maps for the annual mean PM10 concentrations and 36th maximum daily average 
PM10 using the selected interpolation method 3-P.Ewr-a are shown in Figure A2.1, values of the key 
parameters (see Annex 6 for variogram definitions) used for mapping are given in Table A2.4. 

 
Table A2.4 Parameters of the linear regression model and variogram of method 3-P.Eawr-a used for final 
mapping of PM10 indicators annual average (left) and 36th maximum daily mean (right) for 2005 in the rural 
areas, i.e. linear regression model P.Eawr following by the interpolation on its residuals using ordinary kriging 
(OK). 

annual average 36th max. d. m.
coeff. coeff.

c (constant) 15.0 19.2
a1 (EMEP model 2005) 1.02 1.11
a2 (altitude GTOPO) -0.0098 -0.0118
a3 (wind speed 2005) -2.76 -5.39
a4 (s. solar radiation 2005) 0.80 1.49
nugget 20 55
sill 40 135
range  [km] 250 250

linear regr. model P.Eawr  + 
OK on its residuals

. 
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Figure A2.1 Maps showing the PM10 indicators annual average (left) and 36th maximum daily mean (right), in 
µg.m-3 on the European scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of the linear 
regression model P.Eawr and ordinary kriging of its residuals. Absolute and relative mean uncertainty of these 
maps expressed by RMSE is 5.5 µg.m-3 and 25.9 % (left), and 9.7 µg.m-3 and 26.3 % (right). 

 

A2.1.3 Uncertainty analysis 
 

Comparing concentration maps of the interpolation methods 

The interpolated maps of rural PM10 based on the preferred method 3-P.Eawr-a as well as methods 1-
d, 2P.E-a and 4P.L-a are shown in Figure A2.2 for the annual average and Figure A2.3 for the 36th 
maximum daily averages. In Figures A2.4 and A2.5 the differences between the selected method 3-
P.Eawr-a and the other methods are shown. The maps based on the preferred method 3P.Eawr-a 
clearly show the impact of using altitude in the regression: lower levels are seen in the Alps and 
Pyrenees. The largest differences between method 1-d at one hand and the other three at the other hand 
are the concentrations in the north-west part of Europe: concentrations in UK, Ireland and Scandinavia 
are higher estimated by method 1-d than by the other. The overestimation of PM10 in these areas by 
method 1-d, i.e. the method using measurement data only, is caused by the lack of stations in these 
areas. 

Figure A2.6 illustrates for both indicators the differences between method 2-P.E-a (EMEP) and the 
corresponding method 4-P.L-a (LOTOS-EUROS). The annual mean pattern in the methods is very 
similar: EMEP shows only slightly lower concentration in Scandinavia. In the 36th maximum daily 
averages maps the EMEP model tends to give higher values in south and east Europe. 
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Figure A2.2 Maps showing the annual average PM10 concentration (in µg.m-3) on the European scale for rural 
areas in 2005, 10 x 10 km grid resolution, as a result of the interpolation methods 1-d (top left), 2P.E-a (top 
right), 3P.Eawr-a (bottom left) and 4P.L-a (bottom right). 
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Figure A2.3 Maps showing 36th maximum daily mean PM10 concentration (in µg.m-3) on the European scale for 
rural areas in 2005, 10 x 10 km grid resolution, as a result of the interpolation methods 1-d (top left), 2P.E-a 
(top right), 3P.Eawr-a (bottom left) and 4P.L-a (bottom right). 
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Figure A2.4 Maps showing the difference of the selected method 3-P.Eawr-a and the method 1-d (left), resp. 2-
P.E-a (right) for annual average PM10 concentration (in µg.m-3) on the European scale for rural areas in 2005, 
10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of the alternative 
method (1-d left, 2-P.E-a right) compared to the preferred method 3-P.Eawr-a. 

 
Figure A2.5 Maps showing the difference of the selected method 3-P.Eawr-a and the method 1-d (left), resp. 2-
P.E-a (right) for PM10 indicator 36th maximum daily value (in µg.m-3) on the European scale for rural areas in 
2005, 10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of the alternative 
method (1-d left, 2-P.E-a right) compared to the preferred method 3-P.Eawr-a. 
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Figure A2.6 Maps showing the difference between the methods using output form the EMEP model (2-P.E-a) 
and from the LOTOS-EUROS model (4-P.L-a) for PM10 annual average (left) and 36th maximum daily value 
(right) in µg.m-3 on the European scale for rural areas in 2005, 10 x 10 km grid resolution. Negative values 
show higher concentrations of method 4-P.L-a. 

 

Uncertainty estimated by cross-validation 

For the preferred method a more in-depth uncertainty analysis has been made. The basic uncertainty 
analysis is given by cross-validation. Using RMSE as the most common indicator, the absolute mean 
uncertainty of the maps in positions without measurement within the areas covered by measurements - 
i.e. excluding areas lacking monitoring stations such as the Balkan - can be expressed in µg.m-3 (see 
Tables A2.2. and A2.3). The absolute mean uncertainty for method 3-P.Eawr-a of the map of PM10 
annual average expressed by RMSE is 5.5 µg.m-3 and for 36th maximum daily mean PM10 values is 9.7 
µg.m-3. 

Alternatively, this uncertainty can be expressed as the absolute RMSE uncertainty being a percentage 
of the mean air pollution indicator value for all stations. The relative mean uncertainty for method 3-
P.Eawr-a of the rural map of PM10 annual average is 25.9% and of 36th maximum daily average PM10 
values is 26.3%. This uncertainty is slightly higher (of about 2.5%) than the uncertainty of 2004 maps. 
This relative value is quite good result in comparison with the requirement of minimum relative 
uncertainty at the level 50% for the modelling of PM10 annual average according to the 1st DD.  

Figure A2.7 shows the cross-validation scatter plot for each air pollutant indicator for the selected 
method 3-P.Ewr-a. The nature of cross-validation (concentration measured in the estimated point is 
not used for estimation) enables to evaluate the quality of the interpolation at locations without 
measurements but within the area covered by measurements. The level of R2 indicates that about 52% 
(in the case of annual average), resp. 55% (in the case of 36th maximum daily mean) of the variability 
is estimated by the interpolation. From the scatter plot the level of underestimation in high values in 
the places with no measurement can be seen: e.g., the annual average value 45 µg.m-3 is for such 
places without measurement estimated on average by the value of about 35 µg.m-3 only.  
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Figure A2.7 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
PM10 indicators annual average (left) and 36th maximum daily mean (right) for rural areas in 2005, as a result 
of the linear regression model P.Eawr and ordinary kriging of its residuals. R2 and the slope a (from the linear 
regression equation y = a·x + c) should be as close 1 as possible, the intercept c should be as close 0 as 
possible. 

 

Comparing point measurement values with the predicted grid value 

Additional to the cross-validation, a simple comparison between the measured and interpolated values 
in a 10x10 km grid has been made. By this comparison it can be seen to what extend the predicted 
value of the corresponding grid cell represents the measured values covered by that cell. As 
illustration, such simple comparison scatter plot is presented here in this paper only once as Figure 
A2.8.  
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Figure A2.8 Correlation between predicted values for 10x10 grid (y-axis) and measurements (x-axis) for the 
PM10 indicators annual average (left) and 36th maximum daily mean (right) for rural areas in 2005, as a result 
of the linear regression P.Eawr and ordinary kriging of its residuals.  

 

The results of the cross-validation compared to this gridded validation examination are summarised in 
Table A2.5. Both figure and table show a better correlated relation between measurement stations and 
interpolated corresponding grid values for both indicators (i.e higher R2, smaller intercept and the 
slope closer to 1) then at the cross-validation predictions (Figure A2.7). This has its cause in the fact 
that the simple comparison of points measurements and gridded interpolated values shows the 
uncertainty at the stations locations (points) itself, while the cross-validation simulates the behaviour 
of the interpolation at positions without measurement within the areas covered with measurements. 
The uncertainty at measurement locations is caused partly by the smoothing effect of interpolation and 
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partly by the spatial averaging of the values in 10x10 km grid. Similar agreement with the measured 
data has been found in the analysis of the 2004-data (Horálek et al, 2007). 
 

Table A2.5 Linear regression equation and coefficient of determination R2 from the scatter plots of the predicted 
values based on cross-validation (above) and aggregation into 10x10 km grid (bottom) versus the measured 
values for PM10 indicators annual average (left) and 36th maximum daily mean (right) for rural areas in 2005 as 
a result of the linear regression model P.Eawr and ordinary kriging of its residuals. 

equation R2 equation R2

(i) Cross-validated predictions y = 0.539x +  9.951 0.517 y = 0.584x + 15.531 0.548
(ii) 10x10 km grid predictions y = 0.683x + 6.776 0.787 y = 0.723x + 10.222 0.839

prediction

Indicator
PM10, rural areas

Annual average 36th max.d.mean

 
 
 
Uncertainty maps 

Next to the concentration maps (Figure A2.1), the uncertainty maps are constructed (see Figure A2.9). 
The uncertainty presented here corresponds to the kriging standard error, which is in fact the standard 
deviation of the predicted values. As expected, both maps show higher uncertainty at areas with lower 
station density.  

 
Figure A2.9 Absolute uncertainty maps for maps of PM10 indicators annual average (left) and 36th maximum 
daily mean (right), in µg.m-3 on the European scale for rural areas in 2005, on the 10 x 10 km grid resolution, as 
a result of the linear regression P.Earw and ordinary kriging of its residuals. The maps are applicable in the 
rural areas only. 

 

Probability maps 

Next, the maps of the probability of the limit value exceedance have been constructed, using the 
concentration and uncertainty maps (i.e. Figures A2.1 and A2.9) and the limit values (LV, defined in 
the directive as 40 µg.m-3 for the annual average and 50 µg.m-3 for the 36th maximum daily mean). The 
probability map is presented in Figure A2.10. Areas with the probability of limit value exceedance 
above 75% are marked in red; areas below 25% are marked in green. The red areas indicate areas for 
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which exceedance may occur very likely due to high concentration close to or already above LV, 
including such enclosed uncertainty that exceedance is likely. Or lower concentrations with such high 
uncertainty levels reaching above the LV that exceedance is very likely. Vice versa, in the green areas 
it is not very likely to have prediction values showing exceedance and/or such enclosed uncertainties 
that reaching above the LV not very likely.   

Areas with 25-50%, resp. 50-75% probability of LV exceedance are marked in yellow and orange. The 
yellow colour indicates the areas with the estimated values below limit value for which there exists a 
reasonable chance of exceeding the limit. Contrary, the orange areas are above the limit value 
according to estimation, but with a chance of non exceedance caused by the uncertainty of the 
estimation. 

Next to the estimation of the probability of the limit value exceedance, the real measured values at the 
stations are presented in the maps: The stations with the measured values above limit values are 
marked by red, whereas the stations with the measured values below the limit are marked by green. 
Neither orange nor yellow is applied in this case: Only the interpolation, not the measurement 
uncertainty is considered. 

 

 
Figure A2.10 Maps with the probability of the limit value exceedance for PM10 indicators annual average (left) 
and 36th maximum daily mean (right), in µg.m-3 on the European scale for rural areas in 2005, on the 10 x 10 km 
grid resolution, as a result of the linear regression P.Earw and ordinary kriging of its residuals. The maps are 
applicable in the rural areas only. 
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A2.2 Urban maps 

A2.2.1 Linear regression analysis 
The same procedure as in Section A2.1.1 is now followed for the urban and suburban areas.  

With the use of 2005 data the supplementary parameters selected are, apart from the EMEP model 
output: surface solar radiation, relative humidity and temperature. The models using EMEP and 
LOTOS-EUROS modelling output only (coded UP.E resp. UP.L) are examined as well. In Horálek et 
al (2007) the use of supplementary parameters were not used in the final mapping in the case of urban 
PM10, so no other set of variables is examined. 

Thus, the following linear regression models to be examined are: 

Submodel Input parameters 

UP.E  EMEP model output 
UP.Erht EMEP model output, surface solar radiation, relative humidity, temperature 
UP.L  LOTOS-EUROS model output 
 

The statistical performance of these three linear regression models is presented in Table A2.6 for both 
indicators.  
Table A2.6 Statistical indicator values of the selected linear regression models indicating the correlation 
between supplementary data and the annual average and 36th daily maximum mean of the 2005 measurement 
PM10 concentrations in the urban areas. 

Indicator

Linear regr. 
model R2 adjusted R2 st. error  

[µg.m-3]
RMSE  

[µg.m-3] R2 adjusted R2 st. error  
[µg.m-3]

RMSE  
[µg.m-3]

UP.E 0.059 0.058 10.23 10.22 0.066 0.063 19.63 19.63
UP.Erht 0.192 0.188 9.50 9.47 0.233 0.229 17.84 17.79

UP.L 0.045 0.044 10.31 10.29 0.011 0.010 20.22 20.19

PM10 annual average, 2005 PM10 max. 36th daily mean, 2005 

 
 

Table A2.6 shows the results for the PM10 annual average concentration. The values of R2 and RMSE 
for the models of the methodology type 2 (i.e. UP.E) and 3 (UP.Erht) show quite clearly that the 
addition of supplementary parameters substantially improves the closeness of the regression relation 
by an increased R2 of about 0.13 and a decreased RMSE by approximately 0.7, i.e. of about 7%. 
Similarly, the R2 and RMSE for the models of type 2 (P.E) and 4 (P.L) indicate that the closeness of 
regression is slightly higher when the EMEP modelled concentration field is used, instead of the 
LOTOS-EUROS modelled field. However, at both models the correlation between the measured and 
modelled values is quite poor. This is most likely due to the fact that these models are not developed 
for the urban areas. 

The table shows for the 36th maximum daily average PM10 value that the results are quite similar to 
those of the annual average. The addition of supplementary parameters substantially improves the 
closeness of the regression relation by an increased R2 of 0.16 and a decreased RMSE of about one 
tenth. The closeness of the regression improves when output from the EMEP model is used, instead of 
LOTOS-EUROS model output. However, the correlation between measured and modelled values in 
case of both models is poor as well. 

Conclusions: 

• At both indicators the addition of supplementary parameters substantially improves the 
closeness of the linear regression relation with the indicator values of the PM10 measurements. 
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• At both indicators the closeness of the linear regression is higher when using the EMEP 
modelled concentration field instead of the LOTOS-EUROS modelled field. 

• However, at both models the correlation between the measured and modelled values is quite 
poor, most likely due to the fact that both models are not developed for modelling (sub)urban 
areas.  

These conclusions do indicate that the methods using linear regressions most likely will perform better 
by including additional supplementary parameter next to modelling data in the interpolation methods 
for (sub)urban PM10 indicators, which will be compared in next section. 

 

A2.2.2 Spatial interpolation 
As explained before (introduction, Section 2.1 and A2.1.2) we compare the following interpolation 
methods on their performance: 

1. Interpolation using primarily monitoring data 

a. Ordinary kriging (OK)   b. Lognormal kriging (LK)  

2. Interpolation using monitoring data and EMEP model data 

 Linear regression using EMEP model output (UP.E), followed by interpolation of its residuals 
using OK. 

3. Interpolation using monitoring data, EMEP model data and other supplementary data 

Linear regression model using EMEP model output, surface solar radiation, relative humidity, 
and temperature (UP.Erht), followed by interpolation of its residuals using OK 

4. Interpolation using monitoring data and LOTOS-EUROS model data 

Linear regression using LOTOS-EUROS model output (UP.L), followed by interpolation of 
its residuals using OK. 

(Neither ordinary nor lognormal cokriging is included, as preliminary analysis proofed to bring no 
improvement for urban PM10. This is likely due to the week correlation of PM10 with altitude in urban 
areas.) 

The statistical indicators of the cross-validation of the methods are presented in Table A2.7 for the 
annual averages and in Table A2.8 for the 36th maximum daily averages. In the same tables the 
resulting linear regression equations and R2 from the cross-validation scatter plots are also presented.  
 

Table A2.7 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the PM10 annual 
averages for 2005 in urban areas. Apart of R2 and a, all other statistical indicators are in μg.m-3 

RMSE MPE min. max MAE MedAE MPSE
error error a c R2

1-a interpolation OK 5.51 0.07 -36.73 26.18 3.72 2.32 4.82 0.722 7.660 0.710
1-b interpolation LK 5.52 0.00 -36.44 26.39 3.71 2.37 4.45 0.710 7.910 0.710
2-UP.E-a lin. regr. UP.E + OK 5.49 0.01 -36.96 26.73 3.67 2.32 4.93 0.726 7.580 0.714
3-UP.Erht-a lin. r. m. UP.Erht + OK 5.62 -0.02 -37.29 21.05 3.81 2.50 4.65 0.726 7.460 0.701
4-UP.L-a lin. regr. UP.L + OK 5.46 0.01 -36.61 26.62 3.65 2.34 4.93 0.722 7.590 0.716

mapping method
annual average PM10 [µg.m-3]

linear regr. y=a.x+c
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Table A2.8 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the PM10 indicator 36th 
maximum daily averages for 2005 in urban areas. Apart of R2 and a, all other statistical indicators are in μg.m-3 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interpolation OK 9.98 0.13 -77.69 37.17 6.54 3.86 8.85 0.757 11.3 0.746
1-b interpolation LK 9.92 -0.01 -77.15 37.19 6.50 3.92 7.63 0.745 11.76 0.749
2-UP.E-a lin. regr. UP.E + OK 9.91 0.00 -77.59 37.24 6.47 4.02 8.98 0.760 11.09 0.750
3-UP.Erht-a lin. r. m. UP.Erht + OK 10.32 -0.14 -78.33 37.84 6.87 4.37 9.15 0.759 10.99 0.730
4-UP.L-a lin. regr. UP.L + OK 9.90 0.06 -77.56 36.59 6.46 3.90 9.05 0.757 11.28 0.751

mapping method
36th maximum daily average  [µg.m-3]

linear regr. y=a.x+c

 
 

As indicated in Chapter, 1 inter-annual comparison would be done this in paper for the urban areas in 
addition to the one for rural areas in Horálek et al. (2007). Table A2.9 shows the RMSE of the cross-
validation using the 2005 data for the nominated methods of the four methodology types. 
 

Table A2.9 Comparison of different interpolation methods showing RMSE for the PM10 indicators annual 
average and 36th maximum daily averages for the yeas 2004 and 2005 in urban areas. The smaller RMSE 
means the more accurate the estimation by the mapping method. RMSE is in μg.m-3. 

2004 2005 avg 2004 2005 avg
1-a interpolation OK 5.37 5.51 5.44 9.49 9.98 9.73
1-b interpolation LK 5.38 5.52 5.45 9.50 9.92 9.71
2-UP.E-a lin. regr. UP.E + OK 5.34 5.49 5.42 9.64 9.91 9.77
3-UP.Erht-a lin. r. m. UP.Erht + OK 5.40 5.62 5.51 9.54 10.32 9.93

mapping method
annual average 36th max. daily mean 

 
 

A number of comparison conclusions can be drawn from the results provided in Tables A2.7 - A2.9 
for the urban areas: 

• When ranking the statistics at both indicators on the 2005 data, very similar results are 
obtained for the methods of type 1, interpolation with monitoring data only. This is similar to 
Horálek et al. (2007) on the 2004 data. 

• Methods of type 2 and 4, i.e. linear regression using EMEP and LOTOS-EUROS model 
output respectively, show also quite similar interpolation performance at both PM10 indicators.  

• Comparison of the methods of type 1 and 2 shows slightly better overall performance for the 
method of type 2 (2-UP.E-a, i.e. linear regression without including other supplementary 
parameter followed by residual interpolation). Concluding, the addition of modelling data 
improves the interpolation performance slightly. 

• The comparison of the method of the type 2 and 3 shows better results for the method of type 
2 (2-UP.E-a), based on RMSE and most other statistical indicators. In conclusion: the addition 
of other supplementary parameters does not improve the interpolation.  

• The comparison of the cross-validation scatter plots of the four methods shows quite similar 
results on slope a and intercept c and slightly better results for correlation coefficient for the 
methods of type 2 and 4 than for the other methods.  

• An inter-comparison of the methods of the types 1, 2 and 3 shows that the best results for 
2005 data are given by method 2-UP.E-a (linear regression model using EMEP model output, 
UP.E, followed by ordinary kriging of its residuals), based on RMSE, MPE, SDE, MAE and 
R2. Like with the 2005 data, the methods of the type 1 and 2 on 2004 data are quite similar 
performing with a small advantage for type 1 at the 36th max. daily average. 
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The conclusions on the linear regression and interpolation analysis designate method 2-UP.E-a (linear 
regression using EMEP model output only, followed by interpolation of its residuals by ordinary 
kriging) on the 2005 data as the preferred method for PM10 urban mapping for both indicators. Even 
though the methods of type 1 do perform almost as good as well on 2005 data, and at 36th max. daily 
average even slightly better on 2004 data, we prefer 2-UP.E-a for its considerably more complete 
coverage of the European continent by the EMEP model, especially at areas without measurements 
(e.g. northern Scandinavia). 

The resulting urban maps for the annual mean PM10 concentrations and 36th maximum daily average 
PM10 using the selected interpolation method 2-UP.E-a are shown in Figure A2.11. Values of the key 
parameters used for mapping are given in Table A2.10. 

 
Table A2.10 Parameters of the linear regression model and variogram of method 2-UP.E-a used for final 
mapping of PM10 indicators annual average (left) and 36th maximum daily mean (right) for 2005 in the urban 
areas, i.e. linear regression model UP.E following by the interpolation on its residuals using ordinary kriging 
(OK). 

annual average 36th max. daily mean
coeff. coeff.

c (constant) 19.0 28.2
a1 (EMEP model 2005) 0.82 0.85
nugget 15 45
sill 65 255
range  [km] 390 390

 linear regr. model P.E  + OK 
on its residuals

 
 

 
Figure A2.11 Maps showing PM10 indicators annual average (left) and 36th maximum daily mean (right), in 
µg.m-3 on the European scale for urban areas in 2005, 10 x 10 km grid resolution, as a result of the linear 
regression UP.E and ordinary kriging of its residuals. Absolute and relative mean uncertainty of these maps 
expressed by RMSE is 5.5 µg.m-3 and 20.0 % (left), and 9.9 µg.m-3 and 21.4 % (right). The maps are applicable 
in the urban areas only. (The reduced concentrations in France compared to its surrounding areas may have its 
cause in the PM10 correction factors France applied on the measurements of the French monitoring network.)   
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A2.2.3 Uncertainty analysis 
 

Comparing concentration maps of the interpolation methods 

The interpolated maps of urban PM10 based on the preferred method 2-UP.E-a as well as methods 1-a, 
2UP.Erht-a and 4P.L-a are shown in Figure A2.12 for the annual average and Figure A2.13 for the 
36th maximum daily averages. In Figures A2.14 and A2.15 the differences between the selected 
method 3-P.Eawr-a and the other methods are shown. The urban maps show relative small differences 
between the individual methods in comparison to what we see at the rural maps in Section A2.1.3. 
This can be explained by the higher density of the urban monitoring stations throughout the mapping 
domain. (The lower values in France compared to those in surrounding countries may have its cause in 
the different approach the French apply the correction factors on PM10 measurements of their 
monitoring networks. Expected is that in future this difference will resolve due to the French intention 
to adapt their correction procedure.) 

Compared to the other maps, the map of method 3-UP.Erht-a shows increased concentrations at 
mountainous areas such as in Spain and the Alps. This becomes especially clear in the difference maps 
of Figures A2.14 and A2.15. 3-UP.Erht-a is the only method using meteorological parameters, which 
may explain the cause of these increased values.  

The resulting urban maps obtained by the methods 2-UP.E-a and 4-UP.L-a (i.e. using EMEP and 
LOTOS-EUROS models) are almost the same, as can be seen in the difference maps of Figure A2.16. 
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Figure A2.12 Maps showing the annual average PM10 concentration (in µg.m-3) on the European scale for urban 
areas in 2005, 10 x 10 km grid resolution, as a result of the interpolation methods 1-a (top left), 2-UP.E-a (top 
right), 3-UP.Erht-a (bottom left) and 4-UP.L-a (bottom right). The maps are applicable in the urban areas only. 
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Figure A2.13 Maps showing 36th maximum daily average PM10 concentration (in µg.m-3) on the European 
scale for urban areas in 2005, 10 x 10 km grid resolution, as a result of the interpolation methods 1-a (top left), 
2-UP.E-a (top right), 3-UP.Erht-a (bottom left) and 4-UP.L-a (bottom right). The maps are applicable in the 
urban areas only. 
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Figure A2.14 Maps showing the difference of the selected method 2-UP.E-a and the method 1-a (left), resp. 3-
UP.Erht-a (right) for annual average PM10 concentration (in µg.m-3) on the European scale for urban areas in 
2005, 10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of the alternative 
method (1-a left, 3-UP.Erht-a right) compared to the preferred method 2-UP.E-a. 

 

Figure A2.15 Maps showing the difference of the selected method 2-UP.E-a and the method 1-a (left), resp. 3-
UP.Erht-a (right) for PM10 indicator 36th maximum daily value (in µg.m-3) on the European scale for urban 
areas in 2005, 10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of the 
alternative method (1-a left, 3-UP.Erht-a right) compared to the preferred method 2-UP.E-a. 
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Figure A2.16 Maps showing the difference between the methods using output form the EMEP model (2-UP.E-a) 
and from the LOTOS-EUROS model (4-UP.L-a) for PM10 annual average (left) and 36th maximum daily value 
(right) in µg.m-3 on the European scale for urban areas in 2005, 10 x 10 km grid resolution. Negative values 
show higher concentrations of method 4-P.L-a. 

 

Uncertainty estimated by cross-validation  

Again but now for urban areas, the RMSE from the cross-validation, in µg.m-3, is considered. RMSE 
is the most common indicator for the uncertainty estimation of the maps in positions without 
measurement within the areas covered by measurements (see Tables A2.7. and A2.8). The absolute 
mean uncertainty for the preferred method 2-UP.E-a of the map of PM10 annual average expressed by 
RMSE is 5.5 µg.m-3 and of 36th maximum daily mean PM10 values is 9.9 µg.m-3. 

Alternatively, the relative mean uncertainty can be expressed as the percentage of the absolute mean 
uncertainty value compared to the mean air pollution indicator value for all stations. The relative mean 
uncertainty of the urban map of PM10 annual average is 20.0% and of 36th maximum daily average 
PM10 values is 21.4% when method 2-UP.E-a is used for mapping. This uncertainty is slightly better 
(of about 1%) than the uncertainty of relevant 2004 maps. As in the case of rural areas, the relative 
uncertainty is quite satisfactory in comparison of the demand of 50% for modelling results according 
to 1st DD. 

In Figure A2.17 the cross-validation scatter plot for the selected method 2-UP.E-a is shown. In 
comparison with the cross-validation scatter plots for the rural areas (Figure A2.7), the 
underestimation of interpolation is smaller in the urban areas (given by higher R2 and slope a). This is 
caused probably by higher number of urban/suburban stations in comparison with the rural stations. 
From the figures the level of underestimation of high values in the places with no measurement can be 
seen, e.g., the annual average 60 µg.m-3 is estimated in the places without measurement on average as 
51 µg.m-3. 
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Figure A2.17 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
PM10 indicators annual average (left) and 36th maximum daily mean (right) for urban areas in 2005, as a result 
of the linear regression P.E and ordinary kriging of its residuals. R2 and the slope a (from the linear regression 
equation y = a·x + c) should be as close 1 as possible, the intercept c should be as close 0 as possible 

 

Comparing point measurement values with the predicted grid value 

Additionally to the cross-validation, a simple comparison between the measured and interpolated 
values in a 10 x 10 km grid has been made. This comparison shows to what extend the predicted value 
of the corresponding grid cell represents the measured point values covered by that cell. The 
regression results of this comparison are presented in Table A2.12, together with the regression results 
of the cross-validation scatter plots. 

This simple comparison with gridded predictions shows the uncertainty at locations with 
measurements itself, while cross-validation simulates the behaviour of interpolation in the positions 
with no measurements within the area covered by measurements. The uncertainty at measurement 
locations is caused partly by the smoothing effect of interpolation and partly by the spatial averaging 
of the values in 10x10 km grid. As expected, the correlation between stations measurements and 
corresponding predicted grid values is better at of the simple comparison (higher R2, slope closer to 1, 
lower intercept) compared to the cross-validation predictions, see Table A2.12. All table parameters 
show better conformity between measured and interpolated values in urban areas, compared to those 
in Table A2.5 for the rural areas (according all parameters, i.e. R2, slope and the intercept). The 
agreement of the measured values with the estimated values is somewhat better than has been found 
for the 2004-data. 

 
Table A.2.12 Linear regression equation and coefficient of determination R2 from the scatter plots of the 
predicted values based on cross-validation (above) and aggregation into 10x10 km grid (bottom) versus the 
measured values for PM10 indicators annual average (left) and 36th maximum daily mean (right) for urban areas 
in 2005 as a result of the linear regression model UP.E and ordinary kriging of its residuals. 

equation R2 equation R2

(i) Cross-validated predictions y = 0.723x + 7.578 0.714 y = 0.759x + 11.085 0.750
(ii) 10x10 km grid predictions y = 0.822x + 4.870 0.877 y = 0.846x + 7.509 0.896

prediction

Indicator
PM10, rural areas

Annual average 36th max.d.mean

 
 

Uncertainty maps 

Next to the concentration maps (Figure A2.11), again the uncertainty maps in Figure A2.18 are 
constructed. The maps show higher uncertainty in areas with lower density of urban and suburban 
stations. The uncertainty increases the further away from the stations. Similar effect occurred at the 
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rural stations used for mapping uncertainty in rural areas. The areas with the highest uncertainty are 
southern Italy, west Balkan and the northern Scandinavia.  

Figure A2.18 Uncertainty maps for maps of PM10 indicators annual average (left) and 36th maximum daily mean 
(right), in µg.m-3 on the European scale for urban areas in 2005, 10 x 10 km grid resolution, as a result of the 
linear regression UP.E and ordinary kriging of its residuals. The maps are applicable in the urban areas only. 

 
Probability maps 

Next, the maps of the probability of the limit value exceedance in urban areas have been constructed, 
using concentration and uncertainty maps (i.e. Figures A2.11 and A2.18) and the limit values (LV, i.e. 
40 µg.m-3 for the annual average and 50 µg.m-3 for the 36th maximum daily mean) The probability map 
is presented in Figure A2.19. The urban annual average shows high likelihood of exceedances in areas 
of south-east Europe, south Poland, Italian Po Valley and south Spain. The rest of Europe shows a 
likelihood of exceedance of less then 25%. Concerning the daily probability of exceedance the areas 
with high likelihood of annual based exceedance are now much more extended, covering the whole of 
eastern Europe, Italy as a whole and large additional areas in north-western Spain, Portugal and the 
Benelux. Furthermore are there a considerable increased number of measurement stations with a daily 
limit exceedance than with an annual limit exceedance (station values above the limit value are 
marked red and station values below are in green, as explained in Section 2.3). 
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Figure A2.19 Probability of the limit value exceedance maps for PM10 indicators annual average (left) and 36th 
maximum daily mean (right), in µg.m-3 on the European scale for urban areas in 2005, 10 x 10 km grid 
resolution, as a result of the linear regression UP.E and ordinary kriging of its residuals. The maps are 
applicable in the urban areas only. 
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Annex 3 Ozone spatial analysis  
The same procedures as described in Annex 2 are followed for the ozone indicators as well.  

The following ozone indicators are examined:  

- human health:  26th highest daily maximum 8-hour average concentration and SOMO35 

- vegetation:  AOT40 for crops and AOT40 for forests  

For the health-related indicators the most suitable and preferred method for interpolated mapping of 
each indicator of the rural and urban areas are analysed again separately. Out of the separate rural and 
urban maps based on the selected interpolation method, the final combined indicator map is created. 
For the vegetation-related indicators only rural maps are considered. The spatial analysis, method 
selection and uncertainty analysis for the rural mapping is described in Section A3.1 and for the urban 
mapping in Section A3.2. See for details in the procedure the introduction of Annex 2. The creation of 
the combined map for each indicator is covered by Chapter 4. 

 

A3.1 Rural maps 

A3.1.1 Linear regression analysis 
In Horálek et al. (2007) the linear regression model selected for rural ozone mapping of 2004 data was 
used for the SOMO35 only. That model used, apart from air pollution modelling output data, the 
supplementary parameters altitude and surface solar radiation (coded below as O.Ear). This model is 
included in the comparison with 2005 data again.  

With the 2005 data the selection of the supplementary data parameters - apart from the EMEP model 
output - fitting the linear regression significantly best are altitude and relative humidity (coded O.Eah) 
for 26th highest daily maximum 8-hour average concentration and AOT40 for forests. Altitude and 
solar radiation (coded O.Ear) are the best for SOMO35 and AOT40 for crops.  

The linear regression models using EMEP and LOTOS-EUROS modelling output only (coded O.E 
resp. O.L) are examined as well. Its purpose was to inter-compare the performance of the contribution 
of different dispersion model data as input. It was limited to the health indicators only to keep it within 
time and resources limits. 

Thus, the following linear regression models to be examined are: 

Submodel Input parameters 

O.E  EMEP model output 
O.Ear  EMEP model output, altitude, surface solar radiation 
O.Eah  EMEP model output, altitude, relative humidity 
O.L  LOTOS-EUROS model output 
 

The statistical performance of these four different linear regression models is presented in Table A3.1 
for the human health indicators and Table A3.2 for the vegetation indicators.  
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Table A3.1 Statistical indicator values of the selected linear regression models indicating the correlation 
between supplementary data and the 26th highest daily maximum 8-hour mean and SOMO35 of the 2005 
measurement ozone concentrations in the rural areas 

.

Indicator

Linear regr. 
model R2 adjusted R2 st. error  

[µg.m-3]
RMSE  

[µg.m-3] R2 adjusted R2 st. error  
[µg.m-3]

RMSE  
[µg.m-3]

O.E 0.319 0.317 14.48 14.46 0.326 0.324 2673 2666
O.Ear 0.449 0.446 13.05 12.99 0.509 0.506 2286 2275
O.Eah 0.461 0.458 12.91 12.85 0.501 0.498 2304 2293

O.L 0.077 0.074 16.86 16.82 0.214 0.212 2886 2880

Ozone, 26th h.d.max.8-hr, 2005 Ozone, SOMO35, 2005

 
 

Table A3.2 Statistical indicator values of the selected linear regression models indicating the correlation 
between supplementary data and the AOT40 for crops and the AOT40 for forests of the 2005 measurement ozone 
concentrations in the rural areas. 

Indicator
Linear 
regr. 

model
R2 adjusted 

R2
st. error  
[µg.m -3]

RMSE  
[µg.m-3]

R2 adjusted 
R2

st. error  
[µg.m-3]

RMSE  
[µg.m-3]

O.E 0.338 0.337 9378 9357 0.367 0.365 14665 14632
O.Ear 0.537 0.534 7860 7825 0.519 0.516 12812 12755
O.Eah 0.530 0.527 7917 7882 0.526 0.523 12720 12663

Ozone, AOT40 crops, 2005 Ozone, AOT40 forests, 2005

 
 

Tables A3.1 and A3.2 show at all four indicators better values of R2 and RMSE for the linear 
regression models of the methodology type 2 (i.e. O.E) and 3 (O.Eah and O.Ear) then for type 1 (O.E) 
or 4 (O.L), indicating that the addition of supplementary parameters results in a substantially better 
linear regression model. 

For the human health indicators we inter-compared the output of dispersion models as the only 
regression variable. At both indicators the R2 and RMSE for the regression model of methodology 
types 2 (O.E) and 4 (O.L) indicate that the closeness of regression is higher when the EMEP modelled 
concentration field is used, instead of the LOTOS-EUROS modelled field. 

Conclusions: 

• At all for indicators the addition of supplementary parameters substantially improves the 
closeness of the linear regression relation with the measured ozone indicators. 

• For both health indicators the EMEP model performs better than the LOTOS-EUROS model. 

These conclusions indicate that the methods using linear regressions most likely will perform better by 
including additional supplementary parameter and the EMEP modelling data. However, the regression 
residual interpolations will have to be compared to the interpolation methods (in next section) on the 
primary monitoring data to explicitly appoint the best or preferred method for the final mapping.  
 

A3.1.2 Spatial interpolation 
From the four methodological types we examine the most promising interpolation methods by 
comparing the RMSE and other statistical indicators from the cross-validation. (Neither lognormal 
kriging nor lognormal cokriging has been examined, because preliminary analysis showed worse 
results than ordinary kriging and ordinary cokriging at all ozone indicators. Furthermore, ozone 
indicators do not have a lognormal distribution in space, so there would be no improvement in the 
results). Only for the health-related indicators we compare the use of EMEP modelled output against 
that of LOTOS-EUROS due to limited time and resources within the project.  
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The four methods we examine are: 

1. Interpolation using primarily monitoring data 

a. Ordinary kriging (OK)   c. Ordinary cokriging (OC)  

2. Interpolation using monitoring data and EMEP model data 

 Linear regression using EMEP model output (O.E), followed by interpolation of its residuals 
using OK. 

3. Interpolation using monitoring data, EMEP model data and other supplementary data 

Linear regression model using EMEP model output, altitude and surface solar radiation 
(O.Ear), followed by interpolation of its residuals using OK 

Linear regression model using EMEP model output, altitude and relative humidity (O.Eah), 
followed by interpolation of its residuals using OK 

4. Interpolation using monitoring data and LOTOS-EUROS model data 

Linear regression using LOTOS-EUROS model output (O.L), followed by interpolation of its 
residuals using OK 

The statistical indicators of the cross-validation of the methods are presented per ozone indicator in a 
separate table (Tables A3.3 to A3.6). All the statistical indicators, with exception of R2, are expressed 
in the same units as the relevant ozone indicator. In the same tables the linear regression equations and 
R2 from the cross-validation scatter plots with the measurements on the x axis, and the predicted 
values on the y axis are given. 
Table A3.3 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for ozone indicator 26th 
highest daily maximum 8-hour average value, for 2005 in rural areas. Apart from R2 and a, all other statistical 
indicators are in μg.m-3. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interpolation OK 12.4 0.0 -75.4 108.5 7.8 5.5 12.1 0.514 57.89 0.499
1-c interpolation OC 12.2 0.0 -70.1 108.8 7.7 5.4 9.4 0.556 52.88 0.516
2-O.1-a lin. regr. O.E + OK 13.0 -0.1 -77.8 105.0 8.3 5.9 12.5 0.511 58.20 0.459
3-O.Ear-a lin. r. m. O.Ear + OK 12.3 -0.1 -71.1 106.5 7.5 5.0 11.9 0.541 54.58 0.511
3-O.Eah-a lin. r. m. O.Eah + OK 12.3 -0.1 -72.1 107.8 7.5 5.1 11.7 0.540 54.71 0.507
4-O.L lin. regr. O.L + OK 12.6 -0.2 -76.9 108.4 7.9 5.4 12.3 0.524 56.57 0.487

mapping method linear regr. y=a.x+c
26th highest maximum daily 8-hour mean  [µg.m-3]

 
 

Table A3.4 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for ozone indicator 
SOMO35, for 2005 in rural areas. Apart from R2 and a, all other statistical indicators are in μg.m-3.days. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interpolation OK 2425 -35 -21111 8446 1492 938 2322 0.423 3492 0.443
1-c interpolation OC 2137 -36 -17476 8948 1329 843 1388 0.591 2465 0.568
2-O.1-a lin. regr. O.E + OK 2507 -69 -21809 9175 1575 1001 2185 0.440 3358 0.407
3-O.Ear-a lin. r. m. O.Ear + OK 2173 -59 -18743 9038 1299 833 1845 0.553 2679 0.552
3-O.Eah-a lin. r. m. O.Eah + OK 2207 -43 -18936 9310 1331 860 1735 0.545 2739 0.538
4-O.L lin. regr. O.L + OK 2487 -76 -21220 9141 1533 919 2018 0.468 3179 0.419

mapping method linear regr. y=a.x+c
SOMO35  [µg.m-3.d]
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Table A3.5 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for ozone indicator AOT40 
for crops, for 2005 in rural areas. Apart from R2 and a, all other statistical indicators are in μg.m-3.hours. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interpolation OK 7807 1 -62177 36947 4672 2721 7105 0.544 8594 0.541
1-c interpolation OC 7647 22 -55115 36149 4667 3013 5762 0.585 7843 0.561
2-O.1-a lin. regr. O.E + OK 8558 -68 -65507 42839 5217 3168 6344 0.556 8316 0.465
3-O.Ear-a lin. r. m. O.Ear + OK 7677 -42 -62481 39380 4639 2851 6692 0.577 7968 0.556
3-O.Eah-a lin. r. m. O.Eah + OK 7666 -71 -63262 39979 4599 2961 6324 0.591 7664 0.558

mapping method linear regr. y=a.x+c
AOT40 for crops  [µg.m-3.h]

 
 
Table A3.6 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for ozone indicator AOT40 
for forests, for 2005 in rural areas. Apart from R2 and a, all other statistical indicators are in μg.m-3.hours. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interpolation OK 13035 -59 -107958 56866 7692 4354 11388 0.503 14880 0.499
1-c interpolation OC 12643 -9 -97501 56085 7618 4388 9058 0.544 13713 0.529
2-O.1-a lin. regr. O.E + OK 13744 -239 -121907 60747 8153 4643 10793 0.496 14953 0.448
3-O.Ear-a lin.r.m. O.Ear + OK 12474 -215 -107927 58678 7276 4337 10510 0.550 13354 0.541
3-O.Eah-a lin.r.m. O.Eah + OK 12514 -312 -112626 57611 7202 4422 10205 0.545 13412 0.538

mapping method linear regr. y=a.x+c
AOT40 for forests  [µg.m-3.h]

 
 

A number of comparison conclusions can be drawn from the results provided in Tables A3.3 - A3.6 
for the rural areas: 

• When ranking the statistics (RMSE, SDE, MAE, R2 and MPSE) of the interpolation methods 
of methodology type 1, i.e. using 2005 monitoring data only, the best results are obtained with 
ordinary cokriging, method 1-c, at all ozone indicators for the rural areas. This confirms the 
results from Horálek et al. (2007) on the 2004 data.  

• When ranking the statistics for the methods of methodology type 3, at both human health 
indicators the best results are obtained by the linear regression model using EMEP model 
output, altitude and solar radiation, followed by its residual interpolation using ordinary 
kriging (method 3-O.Ear-a). The same was concluded in Horálek et al. (2007) on the 2004 
data, however, only for SOMO35. (The health indicator 26th highest daily maximum 8-hour 
average was not examined due to lack of the EMEP model data availability). 

• Furthermore, this ranking of the statistics for the methods of methodology type 3 shows at the 
vegetation indicators, that the results for method 3-O.Ear-a and 3-O.Eah are about equal. At 
AOT40 for crops method 3-O.Eah-a performs negligible better, while at AOT40 for forests of 
that is the case for method 3-O.Ear-a. We consider both methods as equally performing for the 
vegetation indicators. 

• The comparison of the method of the types 2 and 4 (i.e. use of EMEP or LOTOS-EUROS 
model) shows better results for the type 2 (i.e. use of EMEP), based on RMSE (and all other 
statistical indicators). However, the difference is only 2% and consider them equally 
performing in their contribution to the linear regression model, followed by its residuals 
interpolation. 

• The comparison of the method of the methodology types 2 and 3 shows better results for the 
methods of type 3 (i.e. including other supplementary parameter) for all ozone indicators, 
based on RMSE (and almost all statistical indicators). It confirms that for the 2005 data the 
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addition of supplementary parameters improves the interpolations. In Horálek et al. (2007) on 
2004 data it was not so obvious to conclude that for all indicators.  

• The comparison of the scatter plots shows that the methods 1-c and both the examined 
methods of type 3 give the best results. The method 1-c at both health indicators performs 
slightly better for slope a (highest), i.e. it is expected this method will show the smaller 
underestimations for high values in areas with no measurements. Its intercept at both 
indicators is smallest, i.e. expected is the method will show the smallest overestimations of 
predicted values at low values in areas without measurements. Also its correlation coefficient 
(R2) values are highest, meaning method 1-c provides also the best correlation with the 
measured values and expectedly the best representation of predicted for areas without 
measurements. For AOT40 for forests this is valid for method 3-O.Ear-a; for AOT40 for crops 
the method 1-c gives the best results in the case of R2, while the method 3-O.Eah-a for slope 
and intercept. Nevertheless, the results of the methods 1-c, 3-O.Ear-a and 3-O.Eah-a for all 
indicators are quite close to each other and therefore not driving the appointment of the best 
method.  

• An inter-comparison of the methods of the types 1, 2 and 3 shows that the best results for 
2005 data are given by both methods of type 1 (ordinary cokriging on monitoring data only) 
and both of type 3 (linear regression model with supplementary parameters, following by 
ordinary kriging of its residuals). The methods of the type 1 are just slightly better at human 
health indicators and AOT40 for crops, while the methods of the type 3 are just slightly better 
at AOT40 for forests.  

Concluding from the above, the selection of most preferred method needs clearly to be taken from the 
methods of the types 1 and 3. Additionally, methods of type 3 have the advantage of providing a more 
complete European coverage, especially at areas lacking monitoring stations. Taking furthermore into 
account the slightly better performance of method 3-O.Ear-a, as one of the two of type 3, at both 
health indicators and at the AOT40 for forests, with very close 2nd best performance at the AOT40 for 
crops, we prefer to use for the rural mapping for all four indicators this method 3-O.Ear-a.  

Other considerations leading to this selection are related to the results with 2004 data. On the 2004 
data method 3-O.Ear-a was selected also as best for the health indicator SOMO35, in absence of the 
26th highest daily maximum 8-hr mean (Horálek et al., 2007). Furthermore, the results on both AOT40 
vegetation indicators showed quite equal or even better performance at methods of type 3 (3-O.Ear-a) 
compared to the method of type 1, ordinary kriging using monitoring data including altitude in the 
EEA indicator on exposure of ecosystems to air pollution (CSI005). For consistency in the indicator 
assessment over the years (1996 – 2004) the type 1 method was still prolonged. However, current 
comparison with 2005 data confirms method 3-O.Ear-a to be the best, leading to the decision to switch 
methods for the indicator CSI005 analysis.  

The resulting rural maps for the 26th highest daily maximum 8-hour average concentration and for 
SOMO35 using the selected interpolation method 3-O.Ear-a are shown in Figure A3.1. Figure A3.2 
shows the vegetation indicators AOT40 for crops and AOT40 for forests using the same method 3-
O.Ear-a. Values of the parameters used for mapping are given in Table A3.7.  
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Table A3.7 Parameters of the linear regression model and variogram of method 3-O.Ear-a used for final 
mapping of ozone measurement parameters 26th highest daily maximum 8-hour average values, SOMO35, 
AOT40 for crops and AOT40 for forests for 2005 in the rural areas, i.e. linear regression model O.Ear following 
by the interpolation on its residuals using ordinary kriging (OK). 

high. 26th max. d. 8h SOMO35 AOT40 for crops AOT40 for forests
coeff. coeff. coeff. coeff.

c (constant) 21.82 -2089 -11877 -22328
a1 (EMEP model 2005) 0.659 0.452 1.178 0.427
a2 (altitude GTOPO) 0.0131 3.201 8.821 12.512
a3 (s. solar radiation 2005) 1.57 405 1836 2984
nugget 125 3.1E+06 4.3E+07 1.0E+08
sill 160 3.6E+06 4.6E+07 1.2E+08
range  [km] 530 510 960 510

linear regr. model O.Ear + 
OK on its residuals

 

 

 
Figure A3.1 Maps showing health ozone indicators 26th highest daily maximum 8-hour average values (left, in 
µg.m-3) and SOMO35 (right, in µg.m-3.days) on European scale for rural areas in 2005, 10 x 10 km grid 
resolution, as a result of the linear regression model O.Ear and ordinary kriging of its residuals. Absolute and 
relative mean uncertainty of these maps expressed by RMSE is 12.3 µg.m-3 and 10.3 % (left), and 2173 µg.m-3 
and 35.5 % (right). 
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Figure A3.2 Maps showing vegetation ozone indicators AOT40 for crops (left) and AOT40 for forests (right), in 
µg.m-3.h) on European scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of the linear 
regression model O.Ear and ordinary kriging of its residuals. Absolute and relative uncertainty of these maps 
expressed by RMSE is 7677 µg.m-3.h and 40.7 % (left), and 12474 µg.m-3.h and 41.5 % (right).  

 

A3.1.2 Uncertainty analysis 
 

Comparing concentration maps of the interpolation methods 

The interpolated maps of rural ozone health indicators based on the preferred method 3-O.Ear-a as 
well as methods 1-c, 2O.E-a and 4O.L-a are shown in Figure A3.3 for the 26th highest daily maximum 
8-hour average and Figure A3.4 for the SOMO35. In Figures A3.7 and A3.8 the differences between 
the selected method 3-O.Ear-a and the other methods are shown. Due to its poor measurement station 
coverage in the south-east of Europe we excluded this area from the interpolation on monitoring data 
only (method 1-c). The patterns of the four methods are quite similar, except that the concentration 
levels differ between methods. At the preferred method 3-O.Ear-a the contribution of parameter 
altitude is clearly visible with more elevated ozone concentrations at the orogenetic areas. This may be 
caused by the dependency of ozone to altitude. 

Figure A3.9 illustrates for both indicators the differences between method 2-O.E-a (EMEP) and the 
corresponding method 4-O.L-a (LOTOS-EUROS). Both ozone health indicators have a pattern in the 
methods being quite similar, with EMEP showing somewhat higher concentrations in Scandinavia and 
LOTOS-EUROS tending to have higher concentrations in the south of Europe, and more specifically 
south Balkan and Greece. 

The interpolated maps of rural ozone vegetation indicators based on the preferred method 3-O.Ear-a as 
well as methods 1-c, are shown in Figure A3.5 for the AOT40 for crops and Figure A3.6 for the 
AOT40 for forests. In Figure A3.10 the differences between the selected method 3-O.Ear-a and the 
other method 1-c are shown. Methods 2O.E-a and 4O.L-a have not been examined and inter-compared 
on the vegetation indicators. (The basic aim was to examine the interpolation behaviour when using a 
different dispersion model then the EMEP model which we used so far only. We limited this inter-
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comparison to health indicators only). At the interpolation on monitoring stations only, the Balkan 
region was excluded from the mapping calculations due to its poor measurement station coverage. 

 

 
Figure A3.3 Maps showing ozone 26th highest daily maximum 8-hour average values (in µg.m-3) on European 
scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of interpolation method 1-c (top left), 2-
O.E-a (top right), 3-O.Ear-a (bottom left) and 4-O.L-a (bottom right). 
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Figure A3.4 Maps showing of ozone SOMO35 (in µg.m-3.days) on European scale for rural areas in 2005, 
10 x 10 km grid resolution, as a result of interpolation method 1-c (top left), 2-O.E-a (top right), 3-O.Ear-a 
(bottom left) and 4-O.L-a (bottom right).  
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Figure A3.5 Maps showing ozone AOT40 for crops (in µg.m-3.h) on European scale for rural areas in 2005, 
10 x 10 km grid resolution, as a result of interpolation method 1-c (left) and 3-O.Ear-a (right).  
 

 

 
Figure A3.6 Maps showing ozone AOT40 for forests (in µg.m-3.h) on European scale for rural areas in 2005, 
10 x 10 km grid resolution, as a result of interpolation method ordinary cokriging 1-c (left) and 3-O.Ear-a 
(right).  
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Figure A3.7 Maps showing the difference of the selected method 3-O.Ear-a and the method 1-c (left), resp. 2-
O.E-a (right) for 26th highest daily maximum 8-hour average values (in µg.m-3) on the European scale for rural 
areas in 2005, 10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of the 
alternative method (1-c left, 2-O.E-a right) compared to the preferred method 3-O.Ear-a. 

 

 
Figure A3.8 Maps showing the difference of the selected method 3-O.Ear-a and the method 1-c (left), resp. 2-
O.E-a (right) for SOMO35 (in µg.m-3.days) on the European scale for rural areas in 2005, 10 x 10 km grid 
resolution. Negative values show up at areas with higher concentrations of the alternative method (1-c left, 2-
O.E-a right) compared to the preferred method 3-O.Ear-a. 
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Figure A3.9 Maps showing the difference between the methods using output form the EMEP model (2-O.E-a) 
and from the LOTOS-EUROS model (4-O.L-a) for 26th highest daily maximum 8-hour average in µg.m-3 (left) 
and SOMO35 in µg.m-3.day (right) on the European scale for rural areas in 2005, 10 x 10 km grid resolution. 
Negative values show higher concentrations of method 4-O.L-a. 

 

 
Figure A3.10 Maps showing the difference of the selected method 3-O.Ear-a and the method 1-c for AOT40 for 
crops (left) and AOT40 for forests (right) in mg.m-3.hours on the European scale for rural areas in 2005, 10 x 10 
km grid resolution. Negative values show up at areas with higher concentrations of the alternative method 1-c 
compared to the preferred method 3-O.Ear-a. 

 

Uncertainty estimated by cross-validation 
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The absolute mean uncertainty in the rural maps in the areas covered by measurements is estimated by 
RMSE from the cross-validation as the most common indicator. The values are expressed in the units 
of its indicator (see Tables A3.3 – A3.6).  

The absolute mean and relative mean uncertainty using the preferred method 3-O.Ear-a to create the 
rural map for all four indicators is given in Table A3.8. The relative mean uncertainty is the 
percentage of the absolute mean uncertainty value compared to the mean air pollution indicator value 
for all stations.  
Table A3.8 Absolute and relative mean uncertainty in the 2005 rural maps created with 3-O.Ear-a of the four 
ozone indicators, expressed as RMSE of the cross-validation. 

Absolute units Relative (%)
26th h.d.max.8hr avg 12.3 µg.m-3 10.3
SOMO35 2173 µg.m-3.days 35.5
AOT40c 7677 µg.m-3.hours 40.7
AOT40f 12474 µg.m-3.hours 41.5

Ozone, rural, 2005, 
method 3-O.Ear-a

Uncertainty
 (RMSE of cross-validation)

 
  

In the Figures A3.11 and A3.12 the cross-validation scatter plots for the selected method 3-O.Ear-a are 
shown. The figures demonstrate the level of the underestimation of high values in the positions with 
no measurement within the areas covered by measurements. For example, the 26th highest maximum 
daily 8-hour value at the level 140 µg.m-3 is for such places estimated on average by the value of about 
130 µg.m-3 only. 
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Figure A3.11 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
ozone health indicators 26th highest daily maximum 8-hour average values (left) and SOMO35 (right) for rural 
areas in 2005, as a result of the linear regression model O.Ear and ordinary kriging of its residuals.  
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Figure A3.12 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
ozone vegetation indicators AOT40 for crops (left) and AOT40 for forests (right) for rural areas in 2005, as a 
result of the linear regression O.Ear and ordinary kriging of its residuals.  

 

Comparing point measurement values with the predicted grid value 

Additionally to the cross-validation, a simple comparison between the measured and interpolated 
values in a 10x10 km grid has been made. This comparison shows to what extend the predicted value 
of the corresponding grid cell represents the measured values covered by that cell. The regression 
results of the cross-validation compared to this gridded validation examination are summarised in 
Tables A3.9 and A3.10. The results of this simple comparison are quite poor, compared to both the 
cross-validation results (smaller improvement than expected) and last year’s results, with e.g. a R2 for 
SOMO35 of 0.77.  

The table shows (except AOT40 for crops) better correlated relation between simple comparison of 
measurement stations and interpolated corresponding grid values for indicators (i.e. higher R2, smaller 
intercept and the slope closer to 1) then at the cross-validation predictions (Figure A3.11 and A3.12). 
This has its cause in the fact that the simple comparison between points measurements and gridded 
interpolated values shows the uncertainty at the stations locations (points) itself which tends to include 
less uncertainty then the cross-validation, simulating the behaviour of the interpolation at positions 
without measurement within the areas covered with measurements. The uncertainty at measurement 
locations is caused partly by the smoothing effect of interpolation and partly by the spatial averaging 
of the values in 10x10 km grid. Similar agreement with the measured data has been found in the 
analysis of the 2004-data (Horálek et al, 2007). 
 

Table A3.9 Linear regression equation and coefficient of determination R2 from the scatter plots of the predicted 
values based on cross-validation (above) and aggregation into 10x10 km grid (bottom) versus the measured 
values for ozone indicators 26th highest daily maximum 8-hour average values (left) and SOMO35 (right) for 
rural areas in 2005 as a result of the linear regression model O.Eaw and ordinary kriging of its residuals. 

equation R2 equation R2

(i) Cross-validated predictions y = 0.5413x + 54.581 0.5111 y = 0.5528x + 2678.7 0.5522
(ii) 10x10 km grid predictions y = 0.5726x + 50.884 0.6053 y = 0.5663x + 2591.5 0.6014

prediction

Indicator
ozone, rural areas

26th high. d. 8-hr mean SOMO35
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Table A3.10 Linear regression equation and coefficient of determination R2 from the scatter plots of the 
predicted values based on cross-validation (above) and aggregation into 10x10 km grid (bottom) versus the 
measured values for ozone indicators AOT40 for crops (left) and AOT40 for forests (right) for rural areas in 
2005 as a result of the linear regression model O.Eaw and ordinary kriging of its residuals. 

equation R2 equation R2

(i) Cross-validated predictions y = 0.5775x + 7943.6 0.5561 y = 0.5497x + 13354 0.5409
(ii) 10x10 km grid predictions  y = 0. 5707x + 8045.1 0.5707 y = 0.5776x + 12480 0.6145

prediction

Indicator
ozone, rural areas

AOT40 for crops AOT40 for forests

 
 

Uncertainty maps 

Next to the concentration maps (Figures A3.1 and A3.2), the uncertainty maps are constructed, see 
Figures A3.13 on the health indicators and Figure A3.14 on the vegetation indicators. The uncertainty 
presented corresponds to the kriging standard error, which is in fact the standard deviation of the 
predicted values. As expected, both figures show higher uncertainty at areas with lower rural station 
density and uncertainty increases the further away from the stations, e.g. in the Balkan, Scandinavia, 
Spain, Scotland, Iceland and southern Italy.  

 
Figure A3.13 Uncertainty maps for the maps of the ozone health indicators 26th highest daily maximum 8-hour 
average values (left, in µg.m-3) and SOMO35 (right, in µg.m-3.days) on European scale for rural areas in 2005, 
10 x 10 km grid resolution, as a result of the linear regression model P.Ear and ordinary kriging of its residuals. 
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Figure A3.14 Uncertainty maps for the maps ozone vegetation indicators AOT40 for crops (left) and AOT40 for 
forests (right), in µg.m-3.h on European scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of 
the linear regression model P.Ear and ordinary kriging of its residuals. 

 
Probability map 

Next, the maps of the probability of the target value exceedance in rural areas has been constructed, 
see Figure A3.15, using concentration and uncertainty maps (i.e. Figures A3.1 left and Figure A3.13 
left) and the target values (TV, i.e. 120 µg.m-3) for the 26th highest daily maximum 8-hour mean. The 
map shows high (> 75%) likelihood of daily mean exceedance in south Europe and to some less 
extend (> 50%) in central Europe, with more moderate likelihood (25-50%) more north-west ward, 
reaching relative modest (<25%) likelihood of exceedance in the north-west part of Europe.  
 
The probability of target value of exceedance map in Figure A3.15 for AOT40 for crops has been 
composed from its concentration map (Figure A3.2), its uncertainty map (Figure A3.14 left) and its 
target value (TV, i.e. 18,000 µg.m-3.h).  
 
The ozone directive does not define a target value for the AOT40 for forests; therefore no probability 
of exceedance map has been prepared. No limit or target value is set for the (WHO recommended) 
ozone health indicator SOMO35, therefore no probability of exceedance map could be prepared. 
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Figure A3.15 Probability of the limit value exceedance map for ozone health indicator 26th highest daily 
maximum 8-hour average values (in µg.m-3, left) and vegetation indicator AOT40 for crops (µg.m-3.h, right) on 
European scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of the linear regression model 
P.Ear and ordinary kriging of its residuals. 
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A3.2 Urban maps 

A3.2.1 Linear regression analysis 
The same procedure as in Section A3.1.1 is now followed for the urban and suburban areas for both 
health-related ozone indicators.  

Horálek et al. (2007) used as mapping method the ordinary kriging on 2004 monitoring data only; no 
supplementary parameters were used in the final mapping in the case of urban ozone. Therefore, no 
method using a linear regression model or supplementary data is nominated here again.  

With the use of 2005 data the supplementary parameters useful for further analysis of the linear 
regression model performance selected are, apart from EMEP model output: wind speed and relative 
humidity (coded UO.Ewh). For consistency with the rural mapping, another comparative set of 
variables is considered, i.e. solar radiation instead of relative humidity: wind speed and surface solar 
radiation (coded UO.Ewr). The models using EMEP and LOTOS-EUROS modelling output only 
(coded UO.E resp. UO.L) are examined as well.  

Thus, the following linear regression models to be examined are: 

Submodel Input parameters 

UO.E  EMEP model output 
UO.Ewh EMEP model output, wind speed, relative humidity  
UO.Ewr EMEP model output, wind speed, surface solar radiation 
UO.L  LOTOS-EUROS model output 
 

The statistical performance of these four linear regression models is presented in Table A3.11 for both 
human health indicators. 
Table A3.11 Statistical parameter values for the selected linear regression models indicating their correlation 
between the ozone measurements based 26th highest daily maximum 8-hour mean and SOMO35 ozone 
concentration for 2005 in the urban areas. 

Indicator

Linear regr. 
model R2 adjusted R2 st. error  

[µg.m-3]
RMSE  

[µg.m-3] R2 adjusted R2 st. error  
[µg.m-3]

RMSE  
[µg.m-3]

UO.E 0.413 0.413 12.19 12.17 0.455 0.454 1666 1664

UO.Ewh 0.526 0.525 10.96 10.94 0.502 0.500 1594 1590
UO.Ewr 0.514 0.512 11.10 11.07 0.488 0.486 1617 1613

UO.L 0.108 0.107 15.0 15.0 0.291 0.290 1900 1897

Ozone, 26th h.d.max.8-hr, 2005 Ozone, SOMO35, 2005

 
 

Table A3.11 shows the results for the 26th highest daily maximum 8-hour average ozone 
concentration. The values of R2 and RMSE for the models of the methodology type 2 (i.e. UO.E) and 3 
(UO.Ewh and UO.Ewr) show quite clearly that the addition of supplementary parameters substantially 
improves the closeness of the regression relation by an increased R2 of about 0.11 and a decreased 
RMSE by approximately 1.4, i.e. one tenth. Similarly, the R2 and RMSE for the models of type 2 
(UO.E) and 4 (UO.L) indicate that the closeness of regression is considerably higher when the EMEP 
modelled concentration field is used, instead of the LOTOS-EUROS modelled field. 

The table shows for SOMO35 quite similar results as for the first indicator, however, with smaller 
differences between the models. The addition of supplementary parameters improves the closeness of 
the regression relation by a maximum R2 increase of 0.05 and a decreased RMSE of about 4%. The 
closeness of the regression improves considerably when output from the EMEP model is used, instead 
of LOTOS-EUROS model output. 
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Conclusions: 

• At both indicators the addition of supplementary parameters improves the closeness of the 
linear regression relation with the indicator values of the ozone measurements. 

• At both indicators the closeness of the linear regression is considerably higher when using the 
EMEP modelled concentration field instead of the LOTOS-EUROS modelled field. Despite 
the models are not developed for urban modelling purposes the EMEP shows still reasonable 
correlation (R2 just above 0.4), whereas LOTOS-EUROS shows indeed rather poor correlation 
for ozone. 

These conclusions do indicate that the methods using linear regressions most likely will perform better 
by including additional supplementary parameter next to EMEP modelling data in the interpolation 
methods on (sub)urban ozone indicators, which will be compared in next section. 

A3.2.2 Spatial interpolation 
From the four methodological types we examine the most promising interpolation methods by 
comparing the RMSE and other statistical indicators from the cross-validation. (Neither lognormal 
kriging nor lognormal cokriging has been examined, because preliminary analysis showed worse 
results than ordinary kriging and ordinary cokriging at both health-related ozone indicators.)  

The four methods we examine are:  

1. Interpolation using primarily monitoring data 

a. Ordinary kriging (OK)   c. Ordinary cokriging (OC)  

2. Interpolation using monitoring data and EMEP model data 

 Linear regression using EMEP model output (UO.E), followed by interpolation of its residuals 
using OK. 

3. Interpolation using monitoring data, EMEP model data and other supplementary data 

Linear regression model using EMEP model output, wind speed and relative humidity 
(UO.Ewh), followed by interpolation of its residuals using OK 

Linear regression model using EMEP model output, wind speed and surface solar radiation 
(UO.Ewr), followed by interpolation of its residuals using OK 

4. Interpolation using monitoring data and LOTOS-EUROS model data 

Linear regression using LOTOS-EUROS model output (UO.L), followed by interpolation of 
its residuals using OK 

The statistical indicators of the cross-validation of the methods are presented in Table A3.12 for the 
26th highest daily maximum 8-hour average ozone concentration and in Table A3.13 for SOMO35. All 
the statistical indicators, with exception of R2, are expressed in the same units as the relevant ozone 
indicator. 
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Table A3.12 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for ozone indicator 26th 
highest daily maximum 8-hour average value for 2005 in urban areas. Apart of R2 and a, all other statistical 
indicators are in μg.m-3 

RMSE MPE min. max MAE MedAE MPSE
error error a c R2

1-a interp. OK 10.25 0.00 -42.08 67.23 7.09 5.16 8.20 0.609 44.15 0.603
1-c interp. OC 10.24 -0.01 -42.78 67.18 7.10 5.27 7.89 0.613 43.69 0.603
2-UO.E-a lin. regr. UO.E + OK 10.11 0.04 -39.18 58.48 7.20 5.23 9.60 0.628 42.14 0.597
3-UO.Ew h-a lin. regr. UO.Ew h + OK 10.12 -0.04 -39.18 54.62 7.21 5.14 7.86 0.642 40.44 0.598
3-UO.Ew r-a lin. regr. UO.Ew r + OK 10.01 0.09 -39.16 52.99 7.13 5.05 9.11 0.638 41.02 0.605
4-UO.L-a lin. regr. UO.L + OK 10.09 -0.11 -44.60 69.43 7.01 5.19 8.25 0.636 41.07 0.600

mapping method
26th highest maximum daily 8-hour mean  [µg.m-3]

linear regr. y=a.x+c

 
Table A3.13 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for ozone indicator 
SOMO35 for 2005 in urban areas. Apart of R2 and the slope a, all other statistical indicators are in μg.m-3.days. 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interp. OK 1473 2 -7097 10260 1001 692 1303 0.583 1882.8 0.576
1-c interp. OC 1470 0 -6814 10252 1000 687 1307 0.585 1868.7 0.578
2-UO.E-a lin. regr. UO.E + OK 1486 0 -7036 9781 1015 690 1363 0.595 1829.4 0.567
3-UO.Ew h-a lin. r. m. UO.Ew h + OK 1474 1 -6783 9223 1004 659 1295 0.598 1818.7 0.574
3-UO.Ew r-a lin. r. m. UO.Ew r + OK 1459 4 -6690 9421 1000 664 1312 0.605 1792.0 0.582
4-UO.L-a lin. regr. UO.L + OK 1510 -5 -7361 10919 1018 686 1257 0.604 1784.6 0.555

mapping method
SOMO35  [µg.m -3.days]

linear regr. y=a.x+c

 
 

As indicated in Chapter 1, inter-annual comparison would be done this in paper for the urban areas in 
addition to the one for rural areas in Horálek et al. (2007). Table A3.14 shows the RMSE of the cross-
validation using the 2005-data for the nominated methods of the five methodology types. This 
comparison could only be performed for SOMO35, while no 2004-data output of the EMEP model 
output was available for the 26th highest daily maximum 8-hour averages. 
  

Table A3.14 Comparison of different interpolation methods showing RMSE for the ozone indicator SOMO35 for 
the yeas 2004 and 2005 in urban areas. The smaller RMSE means the more accurate the estimation by the 
mapping method. RMSE is in μg.m-3.days. 

2004 2005 avg
1-a interpolation OK 1413 1473 1443
1-c interpolation OC 1372 1470 1421
2-UO.E-a lin. regr. UO.E + OK 1464 1486 1475
3-UO.Ehw-a lin. r. m. UO.Ehw + OK 1434 1474 1454
3-UO.Erw-a lin. r. m. UO.Erw + OK 1426 1459 1443

mapping method
SOMO35  [µg.m-3.days], RMSE

 
 

A number of comparison conclusions can be drawn from the results provided in Tables A3.12 – A3.14 
for the urban areas: 

• When ranking the statistics (RMSE, SDE, MAE, R2 and MPSE) of the methods of 
methodology type 1, interpolation using 2005 monitoring data only, slightly better results for 
both ozone indicators are obtained with ordinary cokriging, method 1-c. This is similar to 
Horálek et al. (2007) as far as it was examined on the 2004 data. 
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• When ranking statistics within the methods of methodology type 3, slightly better results are 
obtained by the linear regression model using EMEP output, wind speed and surface solar 
radiation, followed by residual interpolation by ordinary kriging, method 3-UO.Ewr-a.  

• The statistics of methods of both methodology type 1 and 3 show very comparable 
performances. As such these statistical indicators do not provide the driving arguments for the 
selection of the method to use best or preferred for urban ozone health indicator interpolated 
mapping. Methods of type 3 have the advantage of providing a more complete European 
coverage, especially at areas lacking monitoring stations. 

• The comparison of the method of the types 2 and 4 (i.e. use of EMEP or LOTOS-EUROS 
model) shows quite similar results at both ozone indicators, with EMEP providing slightly 
better results at SOMO35 and LOTOS-EUROS slightly better at the 26th highest daily 
maximum 8-hour mean. Preference would go to EMEP due to its better regression 
performance in Section A3.2.1. 

• The comparison of the method of the methodology types 2 and 3 shows better results for the 
methods of type 3 (i.e. linear regression including next to modelling output also other 
supplementary parameter) for both ozone indicators, based on RMSE (and almost all 
statistical indicators). The addition of supplementary parameters improves the interpolation on 
2005 data, which was not a clear-cut case at the use of 2004 data in Horálek et al. (2007). 

• The linear regression results of cross-validation scatter plots show that the smoothing effect of 
the interpolation is lowest for methods 1-c and 3-UO.Ewr which show similarly highest R2, 
they show similar lowest overestimated predictions (lowest intercepts) at the lower indicator 
values, and they show smallest underestimated predictions at the higher indicator values 
(slope closest to 1). The slightly better results are given by the method UO.Ewr. 

• An inter-comparison of the methods of the types 1, 2, 3 shows that overall slightly better 
results are obtained with the methods of type 3 (linear regression model including 
supplementary data, following ordinary kriging of its residuals) for 2005 data, and within that 
type the method 3-UO.Ewr-a (linear regression using EMEP output, wind speed and surface 
solar radiation) performs best. 

Concluding from the above the selection of the most preferred method for urban ozone mapping is 3-
UO.Ewr-a at both health indicators. It shows overall the best statistical indicators for both health 
indicators. Furthermore, it has the advantage of providing European coverage, also at areas without 
measurements. Finally, it uses the same meteorological supplementary parameter as the method (3-
O.Ear-a) selected for interpolated mapping of both ozone health indicators for the rural areas.   

The resulting urban maps for the 26th highest daily maximum 8-hour mean and for SOMO35 using the 
selected interpolation method 3-UO.Ewr-a are shown in Figure A3.16. Values of the key parameters 
used for mapping are given in Table A3.15. 
 

Table A.3.15 Parameters of the method used for final mapping of ozone measurement parameters 26th highest 
daily maximum 8-hour average values(left) and SOMO35 (right) for 2005 in the urban areas, i.e. linear 
regression model O.Ewr following by the interpolation on its residuals using ordinary kriging (OK). 

highest 26th max. d. 8h SOMO35
coeff. coeff.

c (constant) 51.93 -41.8
a1 (EMEP model 2005) 0.577 0.525
a2 (wind speed 2005) -5.744 -376.2
a3 (s. solar radiation 2005) 1.170 245.6
nugget 60 1.2E+06
sill 100 2.0E+06
range  [km] 140 100

linear regr. model UO.Ewr + 
OK on its residuals
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Figure A3.16 Maps showing ozone health indicators 26th highest daily maximum 8-hour average values (left, in 
µg.m-3) and SOMO35 (right, in µg.m-3.days) on European scale for urban areas in 2005, 10 x 10 km grid 
resolution, as a result of interpolation method 3-UO.Ewr-a. Absolute and relative uncertainty of these maps 
expressed by RMSE is 10 µg.m-3 and 8.9 % (left), and 1459 µg.m-3.days and 32.4 % (right). The maps are 
applicable in the urban areas only. 

 

A3.2.3 Uncertainty analysis 
 

Comparing concentration maps of the interpolation methods 

The interpolated maps of urban ozone health indicators based on the preferred method 3-UO.Ewr-a as 
well as methods 1-c, 2UO.E-a and 4UO.L-a are shown in Figure A3.17 for the 26th highest daily 
maximum 8-hour average and Figure A3.18 for the SOMO35. In Figures A3.19 and A3.20 the 
differences between the selected method 3-O.Ewr-a and other methods are shown. The patterns of the 
four methods are quite similar: the maps all show a reducing concentration gradient from southern to 
northern Europe. The difference maps show some regional differences between the concentration 
levels of the preferred method 3-UO.Ewr-a and method 1-c and 2UO.e-a. The difference with 1-c may 
be explained by reduced interpolation accuracy away from the stations, whereas the difference with 
for 2-UO.E-a is most likely determined by the meteorological parameters at the daily based indicator.   

Figure A3.21 illustrates for both indicators the difference between method 2-O.E-a (EMEP) and the 
corresponding method 4-O.L-a (LOTOS-EUROS). Both ozone health indicators show a pattern in the 
methods being quite similar, with EMEP showing somewhat higher concentrations in northern 
Scandinavia and LOTOS-EUROS tending to have somewhat higher concentrations in south Sweden 
with a typical emphasize at the region Oslo-Göteborg. Furthermore, at several regions in the south of 
Europe, and more specifically south Balkan, Greece and central Spain, LOTO-EUROS tends to show 
higher concentrations. In comparison with the rural maps, the urban differences are smaller between 
the methods, having their main cause in the higher number of urban stations than there rural stations 
being used in the interpolations. However, particular differences such as for Greece are related to 
differences in the interpolation methods itself. 
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Figure A3.17 Maps showing ozone 26th highest daily maximum 8-hour average values (in µg.m-3) on European 
scale for urban areas in 2005, 10 x 10 km grid resolution, as a result of interpolation method 1-c (top, left), 2-
UO.E-a (top, right), 3-UO.Ewr-a (bottom, left) and 4-UO.L-a (bottom, right).  
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Figure A3.18 Maps showing ozone SOMO35 (in µg.m-3.days) on European scale for urban areas in 2005, 
10 x 10 km grid resolution, as a result of interpolation method 1-c (top, left), 2-UO.E-a (top, right), 3-UO.Ewr-a 
(bottom, left) and 4-UO.L-a (bottom, right). 
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Figure A3.19 Maps showing the difference of the selected method 3-UO.Ewr-a and the method 1-c (left), resp. 2-
UO.E-a (right) for 26th highest daily maximum 8-hour average values (in µg.m-3) on the European scale for 
urban areas in 2005, 10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of 
the alternative method (1-c left, 2-UO.E-a right) compared to the preferred method 3-UO.Ewr-a. 

 

 
Figure A3.20 Maps showing the difference of the selected method 3-UO.Ewr-a and the method 1-c (left), resp. 2-
UO.E-a (right) for SOMO35 (in µg.m-3.days) on the European scale for urban areas in 2005, 10 x 10 km grid 
resolution. Negative values show up at areas with higher concentrations of the alternative method (1-c left, 2-
UO.E-a right) compared to the preferred method 3-UO.Ewr-a. 
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Figure A3.21 Maps showing the difference between the methods using output form the EMEP model (2-UO.E-a) 
and from the LOTOS-EUROS model (4-UO.L-a) for 26th highest daily maximum 8-hour average in µg.m-3 (left) 
and SOMO35 in µg.m-3.day (right) on the European scale for rural areas in 2005, 10 x 10 km grid resolution. 
Negative values show higher concentrations of method 4-UO.L-a. 

 

Uncertainty estimated by cross-validation 

The RMSE from the cross-validation is the most common indicator for the absolute mean uncertainty 
of the maps in the areas covered by measurements (see Tables A3.12 and A3.13). Using the preferred 
method 3-UO.Ewr-a, the absolute mean uncertainty of the urban map of the 26th highest daily 
maximum 8-hour average concentration is 10 µg.m-3 and for the the urban map of SOMO35 it is 1459 
µg.m-3.days.  

Alternatively, this uncertainty can be also expressed as the relative mean uncertainty, being the 
percentage the absolute mean uncertainty indicator value is compared to the mean indicator value for 
all stations. The relative mean uncertainty of the urban map of the 26th highest daily maximum 8-hour 
average concentration is 8.9 % and of the urban map of SOMO35 is 32.4 % in case method 3-
UO.Ewr-a is used for mapping. 

The Figure A3.22 presents the cross-validation scatter plot regression results for the urban areas. It 
shows the smoothing effect of the interpolation (preceded with or without linear regression) is lowest 
for method 1-c and 3-UO.Ewr. The figures demonstrate the level of underestimation of high values in 
positions without measurement within the areas covered by measurements: for example, the value of 
SOMO35 at the level of 10,000 µg.m-3.day is estimated in the places without measurement on average 
as about 7900 µg.m-3.day. 
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Figure A3.22 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
ozone indicators 26th highest daily maximum 8-hour average values (left) and SOMO35 (right) for urban areas 
in 2005, as a result of the linear regression model UO.Ewr and ordinary kriging of its residuals.  

 

Comparing point measurement values with the predicted grid value 

Additionally to cross-validation, a simple comparison between the measured and interpolated values in 
a 10x10 km grid has been made. This comparison shows to what extend the predicted value of the 
corresponding grid cell represents the measured values covered by that cell. The regression results of 
the cross-validation compared to this gridded validation examination are summarised in Table A3.16.  

This simple comparison shows at both urban indicators better correlation between stations 
measurements and corresponding predicted grid values (higher R2, slope closer to 1, lower intercept) 
than the cross-validation predictions. This has its cause in the fact that the simple comparison between 
points measurements and gridded interpolated values shows the uncertainty at the stations locations 
(points) itself which tends to include less uncertainty then the cross-validation, simulating the 
behaviour of the interpolation at positions without measurement within the areas covered with 
measurements. The uncertainty in the simple comparison is determined partly by the smoothing effect 
of interpolation and partly by the spatial averaging of the values in 10x10 km grid.  

The agreement of the measured and estimated values is better than in the case of rural areas; it is quite 
the same (for 26th highest max. daily 8-hor mean), resp. slightly worse (for SOMO35) in comparison 
with 2004 data in the case (R2 was 0.78, resp. 0.85). 

 
Table A3.16 Linear regression equation and coefficient of determination R2 from the scatter plots of the 
predicted values based on cross-validation (above) and aggregation into 10x10 km grid (bottom) versus the 
measured values for ozone indicators 26th highest daily maximum 8-hour average values (left) and SOMO35 
(right) for urban areas in 2005 as a result of the linear regression model UO.Ewr and ordinary kriging of its 
residuals. 

equation R2 equation R2

(i) Cross-validated predictions y = 0.6382x + 41.016 0.6052 y = 0.6047x + 1791.5 0.5816
(ii) 10x10 km grid predictions y = 0.7324x + 30.391 0.7774 y = 0.7185x + 1280.9 0.7862

prediction

Indicator
O3, rural areas

26th high. max. d. 8-hr mean SOMO35

 
 

Uncertainty maps 

Next to the concentration maps (Figure A3.16), the uncertainty maps are constructed, see Figure 
A3.23. The uncertainty is higher in areas with the lower density and increasing further away from the 
urban and suburban stations. The urban maps show a lower uncertainty compared to the rural 
uncertainty maps in Figure A3.13, for two reasons: (1) ozone concentrations tend to be lower in urban 
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areas compared to rural areas due to reductions caused by nitrogen emissions from the higher traffic 
intensity in urbanised areas, and (2) the higher number and therefore higher density of the urban (and 
suburban) stations in the mapping areas reduce the uncertainties between the stations. 

 

 
Figure A3.23 Uncertainty maps for the maps showing values of ozone parameters 26th highest daily maximum 8-
hour average values (left, in µg.m-3) and SOMO35 (right, in µg.m-3.days) on European scale for urban areas in 
2005, 10 x 10 km grid resolution, as a result of interpolation method 3-UO.Ewr-a. The maps are applicable in 
the urban areas only. 

 

Probability map 

Next, the map of the probability of the target value exceedance in rural areas has been constructed for 
the health indicator 26th highest daily maximum 8-hour average value, using the urban concentration 
and uncertainty map (i.e. Figures A3.16 left, and A3.23 left) with a ozone directive defined target 
values of 120 µg.m-3. The probability of exceedance map is presented in Figure A3.24. 

The map shows high (> 75%) likelihood of daily mean exceedance in a large region consisting of 
northern Italy, the southern and western Alps, the French and northern Spanish mediteranean coastal 
zone. Furthermore regions in central and southern Spain, central Germany and the region of Rome-
Napels. Large parts of south and central Spain, parts of Portugal, Italy and central-eastern Europe 
show quite moderate probability levels (> 50%) with 25-50% in the perifery of these regions. More 
north and north-westward bound the levels reach relative modest (<25%) likelihood of exceedance.  
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Figure A3.24 Probability of the limit value exceedance map for ozone parameter 26th highest daily maximum 8-
hour average values (in µg.m-3) on European scale for urban areas in 2005, 10 x 10 km grid resolution, as a 
result of interpolation method 3-UO.Ewr-a. The maps are applicable in the urban areas only. 
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Annex 4 SO2 spatial analysis  
The two SO2 ecosystem-related indicators are examined here: annual average and winter average SO2 
concentrations. It concerns vegetation that is considered only to occur at rural areas and therefore we 
focus on mapping of rural areas only in this Annex. 

 

A4.1 Rural maps 

A4.1.1 Linear regression analysis 
In Horálek et al. (2007) only the annual average has been examined and mapped on 2004 data, using a 
linear regression model with EMEP output only, followed by residual interpolation by ordinary 
kriging. This method is nominated for examination here again (coded S.E).  

With the 2005 data the selection of the supplementary parameters, apart from the EMEP model output, 
that fit the linear regression significantly are: wind speed, surface solar radiation and temperature 
(coded S.Ewrt) for both indicators.  

Thus, the following linear regression models to be examined are: 

Submodel Input parameters 

S.E  EMEP model output 
S.Ewrt  EMEP model output, wind speed, surface solar radiation, temperature 
 

The statistical performance of these two linear regression models is presented in Tables A4.1 for both 
indicators.  
Table A4.1 Statistical indicator values of the selected linear regression models indicating the correlation 
between supplementary data and the annual average and winter average of the 2005 measurement SO2 
concentrations in the rural areas. 

Indicator

Linear regr. 
model R2 adjusted R2 st. error  

[µg.m-3]
RMSE  

[µg.m-3] R2 adjusted R2 st. error  
[µg.m-3]

RMSE  
[µg.m-3]

S.E 0.269 0.266 2.44 2.44 0.323 0.321 3.01 3.00
S.Ewrt 0.344 0.335 2.33 2.30 0.409 0.400 2.83 2.80

SO2 Annual average, 2005 SO2 winter average, 2005

 
 

Table A4.1 shows at the two indicators better values of R2 and RMSE for the linear regression model 
of the methodology type 3 (S.Ewrt) than for the one of type 2 (i.e. S.E), indicating that the regression 
relation improves when supplementary parameters are included. For SO2 annual average the R2 
increases by 0.07 and RMSE decreases by approximately 5%. For the SO2 winter average R2 increases 
by 0.08 and RMSE decreases by about 6%.  

Conclusion:  

• At both indicators the addition of supplementary parameters show limit improvement, 
compared to the majority of other air pollution indicators, in the closeness of the linear 
regression relation with the measurement based indicator values. 

This conclusion indicates that the interpolation methods using linear regressions have limited profit of 
the inclusion of additional supplementary parameter. 
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A4.1.2 Spatial interpolation 
The four most promising methods of the three methodological types we examine (no cokriging method 
is examined because of lacking relation of SO2 concentrations with altitude), by comparing the RMSE 
and other statistical indicators from the cross-validation, are: 

1. Interpolation using primarily monitoring data 

a. Ordinary kriging (OK)   b. Lognormal kriging (LK)  

2. Interpolation using monitoring data and EMEP model data 

Linear regression using EMEP model output (S.E), followed by interpolation of its residuals 
using OK. 

3. Interpolation using monitoring data, EMEP model data and other supplementary data 

Linear regression model using EMEP model output, altitude and surface solar radiation 
(S.Ewrt), followed by interpolation of its residuals using OK 

 

The statistical indicators of the cross-validation of the methods are presented in Table A4.2 for the 
annual average SO2 concentration and in Table A4.3 for winter annual average SO2 concentration. The 
main criterion is RMSE, followed by MAE, MPE, MedAE and other indicators. All the indicators, 
with exception of R2, are expressed in µg.m-3. 
Table A4.2 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the SO2 annual 
averages for 2005 in rural areas. Apart of R2 and a, all other statistical indicators are in μg.m-3 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interp. OK 2.12 0.04 -9.75 4.51 1.42 0.93 1.91 0.472 1.96 0.447
1-b interp. LK 2.08 -0.03 -9.87 4.30 1.36 0.84 1.87 0.497 1.80 0.470
2-S.E-a lin. regr. S.E + OK 1.93 0.00 -9.93 5.35 1.29 0.89 1.71 0.592 1.49 0.547
3-S.Ewrt-a lin. r. m. S.Ewrt + OK 1.93 -0.01 -9.66 5.94 1.32 0.96 1.80 0.610 1.42 0.548

mapping method linear regr. y=a.x+c

 
Table A4.3 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the SO2 winter season 
averages for the season 2004/2005 in rural areas. Apart of R2 and a, all other statistical indicators are in μg.m-3 

RMSE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interp. OK 2.44 0.04 -14.99 6.23 1.61 0.98 2.20 0.563 1.91 0.551
1-b interp. LK 2.35 -0.02 -14.47 6.32 1.57 1.04 2.16 0.582 1.77 0.584
2-S.E-a lin. regr. S.E + OK 2.32 -0.06 -12.68 5.83 1.51 0.96 2.44 0.617 1.59 0.596
3-S.Ewrt-a lin. r. m. S.Ewrt + OK 2.37 -0.08 -12.77 5.87 1.58 1.00 2.52 0.624 1.55 0.585

mapping method
winter season average SO2 [µg.m-3]

linear regr. y=a.x+c

 

A number of comparison conclusions can be drawn from the results provided in Tables A4.2 and 
A4.3: 

• When ranking the statistics of the methods for within each indicator it can be concluded the 
methods give results quite close to each other, at for both the annual average and the winter 
average.  

• Ranking the statistics within the methods of methodology type 1, interpolation with 2005 
monitoring data only, the best results are obtained by the lognormal kriging, method 1-b. This 
is in line with the results in Horálek et al. (2007) on the 2004 data. 
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• When ranking the statistics for the method of the methodology types 2 and 3 shows no 
improvement for the type 3, i.e. including other supplementary parameter. It even tends to 
decrease the performance slightly as is most convincing to be seen at the winter average 
statistics. The addition of supplementary parameters next to the EMEP model output does not 
improve the interpolation. 

• The statistics in the tables for the cross-validation scatter plots of predicted against the 
measured values show that the winter average show slightly higher correlation (higher R2), 
somewhat lower overestimation at the lower values (smaller intercept) and a smaller 
underestimation at the higher values (slope closer to 1), then annual average. This indicates 
that the winter average might be a more accurate indicator than the annual averages. However, 
the statistical estimates of errors (Tables A4.2 and A4.3) show slightly higher values at the 
winter average.  

• An inter-comparison of the methods of the types 1, 2 and 3 shows that the best results for 
2005 data are given by method 2-S.E-a, i.e. linear regression model using only EMEP model 
output (S.E), followed by ordinary kriging of its residuals). This the same method as was used 
for the SO2 annual average mapping on the 2004 data in Horálek et al. (2007) and confirms 
may therefore support its robustness. 

 

Concluding from the above, the preferred method for the rural interpolated maps for the annual 
average SO2 concentrations and the annual average SO2 concentrations is the linear regression model 
using only EMEP output, followed by residual interpolation with ordinary kriging, method 3-S.E-a. 
The use of the EMEP modelled data is preferred, to guarantee the best European coverage of areas 
lacking measurements. No additional supplementary data sources are useful to improve the 
interpolations. The interpolated maps are shown in Figure A4.1. Values of the key parameters used for 
mapping are given in Table A4.4. 

 

In case one would like to aim for one indicator for inter-annual trend analysis in the reduction of SO2 
exceedances, one should consider the winter average concentrations. Despite their higher 
concentrations then the annual average and their slightly worse performance on the error statistics, 
they show more accurate behaviour when comparing predicted values against measured values. 
 

Table A4.4 Parameters of the method used for final mapping of SO2 indicators annual average for 2005 (left) 
and winter average for the season 2004/2005 (right) in the rural areas, i.e. linear regression model S.E 
following by the interpolation on its residuals using ordinary kriging (OK). 

annual average winter average
coeff. coeff.

c (constant) 1.549 1.009
a1 (EMEP model 2005) 0.812 0.916
nugget 1.0 1.5
sill 5.5 8.5
range  [km] 270 130

linear regression model S.E  
+ OK on its residuals
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Figure A4.1 Maps showing the SO2 indicators annual average concentration in the year 2005 (left) and winter 
average concentration for the season 2004/2005 (in µg.m-3) on European scale for rural areas, 10 x 10 km grid 
resolution, as a result of interpolation method 3-S.E-a. Absolute and relative uncertainty of these maps 
expressed by RMSE is 1.9 µg.m-3 and 53.1 % (left) and 2.3 µg.m-3 and 54.3 % (right). 

 

A4.1.3 Uncertainty analysis 
 

Comparing concentration maps of the interpolation methods 

In the Figures A4.2 and A4.3 the maps created by the preferred method 2-S.E-a and the alternative 
method 1-b are presented. In Figure A4.4 the differences between the selected method 2-S.E-a and the 
other method 1-b are shown. The differences between the methods are caused by the inclusion of 
EMEP dispersion model in the selected method. One can still recognise the EMEP grids and with 
support of this model data the limit value exceedance in specific areas is more refined determined and 
estimated in the map, for example the Katowice area in southern Poland.  

Due to its poor measurement station coverage in the south-east of Europe we excluded this area from 
the interpolation on monitoring data only (method 1-b). 
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Figure A4.2 Maps showing the annual average SO2 concentration (in µg.m-3) on European scale for rural areas 
in 2005, 10 x 10 km grid resolution, as a result of interpolation method 1-b (left) and 2-S.E-a (right).  

 

 
Figure A4.3 Maps showing the winter average SO2 concentration (in µg.m-3) on European scale for rural areas 
for winter season 2004/2005, 10 x 10 km grid resolution, as a result of interpolation method 1-b (left) and 2-S.E-
a (right).  
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Figure A4.4 Maps showing the difference of the selected method 2-S.E-a and the method 1-b for the SO2 
indicators annual average in 2005 (left) and winter average in season 2004/2005 (right) in µg.m-3.hours on the 
European scale for rural areas in 2005, 10 x 10 km grid resolution. Negative values show up at areas with 
higher concentrations of the alternative method 1-b compared to the preferred method 2-S.E-a. 

 

Uncertainty estimated by cross-validation 

The RMSE from the cross-validation is the most common indicator for the absolute mean uncertainty 
of the maps in the areas covered by measurements (see Tables A4.2. and A4.3). Using 2-S.E-a, this 
uncertainty of the rural map of the SO2 annual average is 1.9 µg.m-3; and of SO2 winter average is 2.3 
µg.m-3. 

Alternatively, this uncertainty can be also expressed as the relative mean uncertainty, being the 
percentage the absolute mean uncertainty is compared to the mean of the indicator values based on the 
measurements for all rural background stations. The relative uncertainty of the rural SO2 annual 
average map is 53.1% and of the rural SO2 winter average map it is 54.3%, in case method 3-S.E-a is 
used for mapping. This relative uncertainty is quite big – however, this is caused especially by 
generally small values of SO2. 

In the Figure A4.5 the cross-validation scatter plot for the selected method 3-S.E-a is shown. The 
nature of cross-validation (i.e. measured concentration in the point of estimation is excluded from the 
estimation) enables to evaluate the quality of the interpolation in the positions with no measurement 
within the areas covered by measurements. The level of the smoothing effect can be explained by the 
behaviour of parameters of its linear regression y = a·x + c: high intercept c means overestimation at 
the lower concentrations and a flat slope a means underestimation at the higher concentrations. The 
figure shows a certain amount of such smoothing effect, e.g. at a measurement value of 10 µg.m-3 
shows the annual average a predicted value of about 7 µg.m-3 and the winter average about the same, 
7.5 µg.m-3, which is clearly an underestimation at the higher values.  
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Figure A4.5 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
SO2 indicators annual average in 2005 (left) and winter average for the season 2004/2005 (right) for rural 
areas, as a result of the linear regression S.E and ordinary kriging of its residuals 

 

Comparing point measurement values with the predicted grid value 

Additionally to cross-validation, a simple comparison between the measured and interpolated values in 
a 10x10 km grid has been made. This comparison shows to what extend the predicted value of the 
corresponding grid cell represents the measured values covered by that cell. The regression results of 
the cross-validation compared to this gridded validation examination are summarised in Table A4.5. 
This simple comparison shows at both indicators better correlation between stations measurements and 
corresponding predicted grid values (higher R2, slope closer to 1, lower intercept) than the cross-
validation predictions. This has its cause in the fact that the simple comparison between point 
measurements and gridded interpolated values shows the uncertainty at the stations locations (points) 
itself which tends to include less uncertainty then the cross-validation, simulating the behaviour of the 
interpolation at positions without measurement within the areas covered with measurements. The 
uncertainty in the simple comparison is determined partly by the smoothing effect of interpolation and 
partly by the spatial averaging of the values in 10x10 km grid.  

The table values show that the agreement between point measurements and the estimated values at (in 
the points of measurements is very good: R2 is larger than 0.9, the slope is larger than 0.8 and the 
intercept is around 0.5 µg.m-3. This small underestimation between at point measurement and 
predictions is also confirmed by the small value of nugget value in Table A4.4. 
 

Table A4.5 Correlations between the predicted values of (i) the cross-validation and (ii) the 10x10 km grid 
respectively, and the measurements for the SO2 indicators annual average and winter average for rural areas in 
2005, as a result of the linear regression model S.E and ordinary kriging of its residuals. 

2-S.E-a lin. regr. S.E + OK equation R2 equation R2
(i) Cross-validated predictions y = 0.5919x + 1.494 0.5468 y = 0.6171x + 1.5876 0.5959
(ii) 10x10 km grid predictions y = 0.8405x + 0.5715 0.9248 y = 0.8800x + 0.4986 0.9557

Mapping method
Rural

Indicator SO2, 2005

annual average winter average

 
 

Uncertainty maps 

Next to the concentration maps (see Figure A4.1), the uncertainty maps are constructed, see Figure 
A4.6. As expected, the uncertainty is higher in areas with the lower density and increasing further 
away from the urban and suburban stations. The relative low density of SO2 measurement stations used 
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in the interpolations lead to the higher uncertainty values especially at areas further away from the 
stations.  

 

 
Figure A4.6 Uncertainty maps for the maps showing values of the SO2 indicators annual average concentration 
in the year 2005 (left) and winter average concentration for the season 2004/2005 (in µg.m-3) on European scale 
for rural areas, 10 x 10 km grid resolution, as a result of interpolation method 3-S.E-a. 

 

Probability maps  

Next, the maps of the probability of the limit value exceedance are constructed, using concentration 
and uncertainty maps (i.e. Figures A4.1 and A4.6) and the limit values (i.e. 20 µg.m-3 for both SO2 
vegetation-related indicators), see Figure A4.7. The maps show that there is only a small location in 
Bulgaria where the limit value of the annual average may be exceeded with a probability of 25 - 50 %. 
The other small location is at Katowice, south Poland, where the limit value for the winter season 
average may be exceeded with a probability larger than 75 %. 
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Figure A4.7 Probability of the limit value exceedance map for the SO2 indicators annual average concentration 
in the year 2005 (left) and winter average concentration for the season 2004/2005 (in µg.m-3) on European scale 
for rural areas, 10 x 10 km grid resolution, as a result of interpolation method 3-S.E-a. 
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Annex 5 NOx spatial analysis  
One NOx vegetation-related indicator is examined here: annual average NOx concentrations. It 
concerns vegetation that is considered only to occur at rural areas and therefore we focus on mapping 
of rural areas only in this Annex. 

 

A5.1 Rural maps 

A5.1.1 Linear regression analysis 
In Horálek et al. (2007) for the mapping of the 2004 annual average NOx indicator a linear regression 
model using EMEP model output and altitude has been used. This method is nominated for 
examination here again (coded N.Ea). 

With the 2005 data the selection of the supplementary parameters, apart from the EMEP model output, 
that fit the linear regression significantly are: wind speed, relative humidity and solar radiation. 
(Additional supplementary parameter would be surface pressure. However, it was decided not to use 
this parameter in final mapping: NOx is the only pollutant for which the use of surface pressure tends 
to improve the regression, but its improvement in the map results would be very limited compared to 
the additional computational capacity involved for preparing the surface pressure data). 

Thus, the following linear regression models to be examined are: 

Submodel Input parameters 

N.E  EMEP model output 
N.Ea  EMEP model output, altitude 
N.Eawr  EMEP model output, altitude, wind speed, and surface solar radiation  
 

The statistical performance of these three linear regression models is presented in Table A5.1.  

 
Table A5.1 Statistical indicator values of the selected linear regression models indicating the correlation 
between supplementary data and the annual average of the 2005 measurement NOx concentrations in the rural 
areas. R2 (and adjusted R2) should be as close as possible to 1; RMSE (and standard error) should be as low as 
possible. 

Indicator

Linear regr. 
model R2 adjusted R2 st. error  

[µg.m-3]
RMSE  

[µg.m-3]

N.E 0.150 0.147 12.56 12.52
N.Ea 0.179 0.174 12.35 12.30
N.Eawr 0.387 0.379 10.71 10.63

NOx annual average, 2005 

 
 

Table A5.1 shows better values of R2 and RMSE for the linear regression models of the methodology 
type 3 (N.Ea and N.Eawr) than for the one of type 2 (i.e. N.E), indicating that the regression relation 
improves when supplementary meteorological parameters are included: R2 increases by about 0.21 and 
RMSE decreases by about 14%. Altitude shows only little improvement.  
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Conclusions: 

• The addition of only altitude as supplementary parameter just slightly improves the linear 
regression the closeness of the linear regression relation with the indicator values of the 
measurements.  

• Whereas the extra addition of supplementary meteorological parameters considerably 
improves the closeness of the linear regression relation with the indicator values of the 
measurements. 
 

These conclusions do indicate that the methods using linear regressions model performance improves 
significantly by including additional supplementary parameter altitude and especially meteorological 
parameters as wind speed and solar radiation, next to EMEP modelling data, in the interpolation 
methods on rural NOx indicators. The individual models will be compared in next section.  
 

A5.1.2 Spatial interpolation 
Three types of the methods are examined. These methods are compared with each other using RMSE 
and other statistical indicators from cross-validation. 

1. Interpolation using primarily monitoring data 

a. Ordinary kriging (OK)   b. Lognormal kriging (LK)  
c. Ordinary cokriging (OC)   d. Lognormal cokriging (LC) 

2. Interpolation using monitoring data and EMEP model data 

 Linear regression using EMEP model output (N.E) and interpolation of its residuals using OK. 

3. Interpolation using monitoring data, EMEP model data and other supplementary data 

Linear regression model using EMEP model output and altitude (N.Ea), followed by 
interpolation of its residuals using OK 
Linear regression model using EMEP model output, altitude, wind speed, surface solar 
radiation (N.Eawr), followed by interpolation of its residuals using OK 
 

The statistical indicators of the cross-validation of the methods are presented in Table A5.2. The main 
criterion is RMSE, followed by MAE, MPE, MedAE and other indicators. All the indicators, with 
exception of R2, are expressed in µg.m-3. 

 
Table A5.2 Comparison of different interpolation methods showing RMSE and the other statistics and linear 
regression parameters from the cross-validation scatter plots of the predicted values for the NOx annual 
averages for 2005 in rural areas. Apart of R2 and a, all other statistical indicators are in μg.m-3 

RMSE SDE MPE min. max. MAE MedAE MPSE
error error a c R2

1-a interp. OK 10.66 10.66 0.09 -51.04 25.40 7.16 4.62 11.10 0.385 10.72 0.383
1-b interp. LK 10.59 10.59 0.01 -51.30 26.16 6.99 4.61 15.23 0.394 10.48 0.391
1-c interp. OC 10.49 10.48 0.41 -49.99 25.91 7.03 4.54 10.92 0.427 10.31 0.405
1-d interp. LC 9.48 9.46 0.56 -45.09 25.03 6.26 4.04 9.95 0.503 9.14 0.514
2-N.E-a lin. regr. N.E + OK 10.31 10.31 0.04 -48.98 24.14 6.63 4.00 10.79 0.426 9.96 0.423
3-N.Ea-a lin. r. m. N.Ea + OK 9.71 9.71 0.05 -46.87 24.48 6.21 3.91 10.63 0.456 9.44 0.491
3-N.Eawr-a lin. r. m. N.Eawr + OK 9.66 9.66 0.04 -46.68 26.64 6.51 4.38 9.48 0.535 8.21 0.506

mapping method
annual average NOx [µg.m-3]

linear regr. y=a.x+c
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A number of comparison conclusions can be drawn from the results provided in Tables A5.2: 

• When ranking the of the methods of interpolation with 2005 monitoring data only 
(methodology type 1), the best results with regard to RMSE and most other indicators are 
obtained with lognormal cokriging, method 1-d.  

• When ranking statistics within the methods of methodology type 3, slightly better results are 
obtained by the linear regression model using EMEP output, altitude, wind speed and solar 
radiation, followed by residual interpolation by ordinary kriging, method 3-N.Eawr-a. 

• The comparison of statistics of the methods of the methodology types 2 and 3 shows the 
improvement for the type 3 (i.e. including other supplementary parameter), based on RMSE 
and almost all other statistical indicators. The addition of supplementary parameters next to 
the EMEP model output improves the interpolation. 

• The statistics of the best performing methods of both methodology type 1 (1-d) and 3 (3-
N.Eawr-a) show very comparable performance. However, for the other methods of type 1 and 
3, type 3 shows clearly better performances. In combination with previous bullet this tends to 
provide more confidence in concluding that addition of supplementary parameters next to the 
EMEP model output improves the interpolation. 

• The statistics in Table A5.2 for the cross-validation scatter plots of predicted against the 
measured values shows that the predicted annual average according method 3-N.Eawr-a has 
highest correlation (higher R2), lowest overestimation at the lower values (lowest intercept) 
and the smallest underestimation at the higher values (slope closest to 1). This method shows 
the smallest smoothing effect of its linear regression providing the best fit of predicted values 
at the locations of the measurement based values. 

• An inter-comparison of the methods of the types 1, 2 and 3 shows that the best results are 
given by methods of methodological types 1 (lognormal cokriging using altitude) and 3 (linear 
regression model N.Eawr, followed by ordinary kriging of its residuals) for 2005 data (3-
N.Eawr-a). The good results of lognormal cokriging (despite it is not more than an 
interpolation of measurement data only) are given by the fact that this method uses 
logarithmic transformation which corresponds to a logarithmic-normal distribution of NOx. 
However, good results of RMSE in the case of the method 1-d are balanced by its very bad 
results of MPE. 

Concluding from the above the selection of the best and most preferred interpolation method for rural 
NOx vegetation indicator mapping is 3-N.Eawr-a. Its meteorological parameters improve the 
interpolation. Furthermore provides this method coverage of European areas without measurement 
stations, something that second best performing method 1-d does not facilitate in. The resulting rural 
map for the annual average NOx concentrations using 3-N.Eawr-a is shown in Figure A5.1. 
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Figure A5.1 Map showing the annual average NOx concentration (in µg.m-3) on ecosystems on European scale 
for rural areas in 2005, 10 x 10 km grid resolution, as a result of interpolation method 3-N.Eawr-a. Uncertainty 
of these maps expressed by RMSE is 9.7 µg.m-3, i.e. 55.9 %. 

 
Table A5.3 Parameters of the method used for final mapping of NOx indicator annual average for 2005 in the 
rural areas, i.e. linear regression model N.Eawr following by the interpolation on its residuals using ordinary 
kriging (OK). 

 

 

 

A5.1.3 Uncertainty analysis 
 

Comparing concentration maps of the interpolation methods 

In Figure A5.2 the maps created by the two other methods, 1-d and 2-N.E-a, are presented. These 
maps can be compared with the one of the preferred method 3–N.Eawr-a presented of Figure A5.1. In 
Figure A5.3 the differences between the selected method 3-N.Eawr-a and other methods are shown. It 
can be seen that method 1-d overestimates predicted concentrations values on the northern parts of the 
British Island and Ireland. This may be explained by the relative small number of rural stations present 
in this region. The effect of including altitude in the interpolation at the preferred method 3-N.Eawr-a 

annual average
coeff.

c (constant) 20.32
a1 (EMEP model 2005) 0.995
a2 (altitude GTOPO) -0.0140
a3 (wind speed 2005) -5.753
a4 (s. solar radiation 2005) 1.165
nugget 80
sill 190
range  [km] 3500

  linear regr. model N.Eawr   + 
OK on its residuals
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is also clearly visible for its lower values in the mountainous areas, such as the Pyrenees, Alps and in 
the Balkan. 

 

 
Figure A5.2 Maps showing the annual average NOx concentration (in µg.m-3) on European scale for rural areas 
in 2004, 10 x 10 km grid resolution, as a result of interpolation method 1-d (left) and 2-N.E-a (right). 

 

 
Figure A5.3 Maps showing the difference of the selected method 3-N.Eawr-a and the method 1-d (left), resp. 2-
N.E-a (right) for the annual average NOx concentration (in µg.m-3) on the European scale for rural areas in 
2005, 10 x 10 km grid resolution. Negative values show up at areas with higher concentrations of the alternative 
method (1-d left, 2-N.E-a right) compared to the preferred method 3-N.Eawr-a. 
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Uncertainty estimated by cross-validation 

The RMSE from the cross-validation is the most common indicator for the absolute mean uncertainty 
of the maps in the areas covered by measurements (see Table A5.2). The absolute mean uncertainty of 
the preferred method 3-N.Eawr-a for the rural map of NOx annual average expressed by RMSE is 9.7 
µg.m-3. 

Alternatively, this uncertainty can be also expressed as the relative mean uncertainty, being the 
percentage the absolute mean uncertainty is compared to the mean of the indicator values based on the 
measurements for all rural background stations. The relative uncertainty of the rural NO2 annual 
average map is 55.9% for method 3-N.Eawr-a. 

In the Figure A5.4 the cross-validation scatter plot for the selected method 3-N.Eawr-a is shown. The 
nature of cross-validation (i.e. measured concentration in the point of estimation is excluded from the 
estimation) enables to evaluate the quality of the interpolation in the positions with no measurement 
within the areas covered by measurements. The level of the smoothing effect can be explained by the 
behaviour of the parameters of its linear regression y = a·x + c: high intercept c means overestimation 
at the lower concentrations and a flat slope a means underestimation at the higher concentrations. The 
figure shows a certain amount of such smoothing effect, e.g. the annual average shows at 30 µg.m-3 
measurement value a predicted value of about 24 µg.m-3, which is clearly an underestimation at the 
higher values.  
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Figure A5.4 Correlation between cross-validation predicted values (y-axis) and measurements (x-axis) for the 
NOx indicator annual average for rural areas in 2005, as a result of the linear regression N.Eawr and ordinary 
kriging of its residuals. 

 

Comparing point measurement values with the predicted grid value 

In addition to cross-validation, a simple comparison between the measured and interpolated values in a 
10x10 km grid has been made. It shows to what extend the predicted value of the corresponding grid 
cell represents the measured values covered by that cell. The regression results of the cross-validation 
compared to this gridded validation examination are summarised in Table A5.4. This simple 
comparison shows a slightly correlation between stations measurements and corresponding predicted 
grid values (higher R2, slope closer to 1, lower intercept) than the cross-validation predictions. The 
uncertainties between point measurements and gridded interpolated values shows the uncertainty at the 
stations locations (points) itself and are of almost the same order of uncertainty of the cross-validation, 
simulating the behaviour of the interpolation at positions without measurement within the areas 
covered with measurements. 
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Table A5.4 Correlations between the predicted values of (i) the cross-validation and (ii) the 10x10 km grid 
respectively, and the measurements for the NOx indicators annual average for rural areas in 2005, as a result of 
the linear regression model N.Eawr and ordinary kriging of its residuals. 

equation R2
(i) Cross-validated predictions y = 0.5431x + 7.933 0.498
(ii) 10x10 km grid predictions y = 0.5563x + 7.716 0.508

prediction

NOx rural
Indicator

annual average

 
 

 

Uncertainty maps 

Next to the concentration map (see Figure A5.1), the uncertainty map is constructed, see Figure A5.5. 
Again, the uncertainty is higher in the areas with lower density of the rural stations, especially the 
areas without rural background station with NOx measurements, such as Iceland and Cyprus. In central 
Europe where the density is highest the uncertainty levels are lowest. 

 

 
Figure A5.5 Uncertainty map for map showing the annual average NOx concentration (in µg.m-3) on European 
scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of interpolation method 3-N.Eawr-a. 

 
 
Probability maps  

Next, the map of the probability of the NOx limit value exceedance is constructed, using concentration 
and uncertainty maps (i.e. Figures A5.1 and A5.4) and the limit value (i.e. 30 µg.m-3), see Figure A5.6. 

The highest probability of limit value exceedance is at locations and regions with large 
agglomerations, such as London, Ruhr Gebiet, Paris, Rhone Valley in France, Rhine valley in 
Germany, the Italian Po Valley, and the Benelux. Also the Italian, French, Spanish Mediterranean 
coastal zone elevated probability of exceedance.  
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Figure A5.6 Probability of the limit value exceedance map for the annual average NOx concentration (in µg.m-3) 
on European scale for rural areas in 2005, 10 x 10 km grid resolution, as a result of interpolation method 3-
N.Eawr-a. 
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Annex 6 Formulas of statistical indicators and other 
calculations  
 

Statistical indicators 

In the report, many statistical indicators are used: 

 

Linear regression 

In the linear regression analysis the indicators R2, adjusted R2, standard error of estimation and RMSE 
are applied, according to the equations 
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where )( isZ is the measured concentration at the i-th point, i = 1, …, N, 

)(ˆ
isZ is the estimated concentration at the i-th point using other points, 

Z is the arithmetic average of Z(s1), …, Z(sN), 

Ẑ is the arithmetic average of )(ˆ),...,(ˆ
1 NsZsZ , 

Nis the number of the measuring points, 
p is the number of parameters of the lin. regr. model including constant.  
 

R2 and adjusted R2 should be as close to 1 as possible. Standard error of estimation and RMSE should 
be as small as possible. 

 

Cross-validation 

The particular indicators used in cross-validation are the following: Root mean squared error (RMSE), 
mean prediction error (MPE) which is the same as the average bias, standard deviation of error (SDE), 
mean absolute error (MAE), minimum error, maximum error, median of absolute error (MedAE), and 
mean prediction standard error (MPSE). These indicators are calculated according to the equations 
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where  )( isZ  is the measured concentration at the i-th point, i = 1, …, N, 

)(ˆ
isZ  is the estimated concentration at the i-th point using other information, without the 

measured concentration at the i-th point, 
PSE(si) is the kriging standard error at the i-point, 
N is the number of the measuring points. 
 

RMSE, SDE, MedAE, MAE and MPSE should be as small as possible. MPE, minimum error and 
maximum error values should be as close to zero as possible. The SDE is in most cases of this report 
almost equal to RMSE, inherent to the fact that at in most cases the MPE (being part of SDE equation) 
is close to zero. 

Coefficient of determination R2 of cross-validation scatter plot is calculated similarly as in eq. (A6.1). 

 

Kriging and variograms 
Kriging 

Kriging is a statistical interpolation method, which makes use of the assumption that the spatial 
variance of the value being interpolated can be described as a function of distance. In other words, the 
further away a point is from a measurement then the larger the uncertainty is in its value. Kriging 
exploits this assumption, which is described by the semi-variogram model and its parameters of 
nugget, sill and range (see below), by trying to minimise the variance at the interpolation point, i.e. the 
most likely value at that point given the surrounding measurements. 
 
The spatial variance of the value to be interpolated, and described using the semi-variogram, is scale 
dependent. It depends on the spatial variability of the value and is also dependent on the spatial 
sampling frequency of that value. For the application described here, for instance, there are very few 
observations of air quality data at a rural scale that are within 20 km of each other, thus no information 
is known concerning the variability on spatial scales less than this. Even for the urban scale there are 
few observations of air quality within 5 km of each other, and so the variance on scales less than this is 
unknown. As a result the kriging methodology attributes a certain variance to these smaller scales, 
which is based on the variance at the lower limit of the resolved scales. This is termed, in kriging, the 
‘nugget’ value. If this was 0 then measurements close to each other would vary very little from each 
other. If this value was, for instance, 100 (μg.m-3)2 then even measurements close to each other would 
vary with a standard deviation of 10 μg.m-3. 
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When interpolations are carried out on a 10 x 10 km grid then the interpolation at that grid point is 
strongly weighted by the nearest measurements (possibly within the grid itself). When the nugget 
value is 0 then the grid point interpolation will be very close to the value of the nearest measurement. 
If there are 2 equally nearby measurements then the grid point will be close to their average value. 
However, if the nugget value becomes larger then the nearby measurements are weighted less, in 
regard to points further away, with the result that deviations from the very local measurements will 
occur in the interpolation, affected by measurements further away. 
 
When scatter plots are made of the observations against the gridded interpolations at the same point in 
space then their difference depends strongly on the relative weighting, as described above, resulting 
from the nugget value (more precisely the ration of the nugget to sill value). If the nugget is 0 then 
there will be very good correlation with very low RMSE. If nugget is high then there will be more 
deviation and a tendency towards a filtering of the results. In this way the nugget determines the error 
seen in the scatter plots. However, the nugget is itself based on a fit to available data (and to some 
extent on an optimisation of the method to reduce RMSE). In this way the nugget represents the 
uncertainty in the spatial representativeness at scales below the sampling scale, or at the lower limit of 
the sampling scale. For this reason I expect, and this could be confirmed by Jan, that the MSE found 
with this sort of comparison is very close to the nugget value used for the interpretations. 
 

Variogram parameters 

The basic parameters of the variogram are called nugget, sill and range, see Figure A6.1. 

Sill is the value at which the spatial variability doesn’t change with distance (plateau); range is the 
distance at which the spatial variability doesn’t change. The range gives information about the size of 
the search window as it is not interesting to account for those points where spatial variance is not 
related to distance. If the range is large, the long-range variation dominates; if small then the short 
distances dominate the variation. Nugget is the y-intercept, which represents the spatial uncorrelated 
noise and errors, since at zero distance we would expect no variability. The difference sill-nugget is 
sometimes called partial sill. 

Range

Sill

Nugget

2γ(h)

Distance or lag (h)

Model function

Observations

 
Figure A6.1 Diagram showing the important parameters that describe the variogram, 2γ(h), used in kriging 
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Merging criteria of rural and urban maps into combined concentration maps 
The European-wide population density grid is used for merging the rural and urban maps into one 
combined air quality indicator map. Both the rural map and the urban map are created for the whole of 
Europe. The population density grid helps to determine for which part of the area the respective map is 
used. 

For areas with population density less than the defined value of α1, the rural map is applied, and for 
areas with population density grids greater than the defined value α2, the urban map is applied. For 
areas with population density within the interval (α1, α2) the following relation is applied 

)(.)()(.)()(ˆ
12

1

12

2 sUssRssZ
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αα
αα

−
−

+
−

−
=  (A6.13) 

where )(ˆ sZ is the resulting value of concentration at the point s, 

R(s) is the concentration at the point s for the rural map, 

U(s) is the concentration at the point s for the urban map, 

α(s) is the density of population at the point s. 

 

Combining criteria of rural and urban uncertainty map for the combined probability map  
The combined map of probability of exceedance is derived composed from the combined map of 
concentrations and the combination of the rural and urban uncertainty map according a merging 
criterion as described in Section 2.3. It explains how the combined uncertainty is derived according 
the standard error propagation calculation on the level of grid cells.  

The uncertainty in the probability maps accounts only for the uncertainties caused by the interpolation. 
Uncertainties in the measurements, the supplementary data, linear regression and those caused by the 
urban/rural combination are not included.  
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Annex 7 PM2.5 in relation to PM10 
 

In many countries the monitoring network for PM2.5 are still under development. The number of 
operational PM2.5 stations is relatively small. In particular, the number of rural background stations is 
too low for constructing a rural PM2.5 map. As PM2.5 and PM10 measurements show a high correlation 
it was investigated whether, after a proper transformation, the more widely available PM10 data could 
be used as surrogate PM2.5 measurements. 

Co-located PM2.5 and PM10 measurements have been reported in 2004 and 2005 for 274 stations but 
not all stations cover the full two-year period. The data available from AirBase has been used as such, 
that is, it is assumed that, where needed, all PM data has been corrected for a non-reference method. 
Information on PM10 methods and correction factors is given in by Buijsman and de Leeuw (2004) and 
de Leeuw (2005); this information is, however, not up-to-date. Information on the applied PM2.5 
correction factors is not available. This lack of information hampers the comparison of results between 
countries. Any conclusion regarding PM2.5/PM10 relation should be handled witch caution in light of 
this uncertainty, see below. Data has been analysed with minimum data coverage of 75% on a daily 
basis. 

 

The correlation between co-located PM2.5 and PM10 measurements is generally high (averaged over all 
stations R=0.86 (2004) and R=0.88 (2005)). The inter-annual variations in correlation are small. There 
are striking differences between the countries. The Nordic countries (Denmark, Finland, Iceland, 
Norway, and Sweden) show a correlation which is clearly lower than in the more southern countries. 
The more frequent use of studded tyres and winter sanding in these countries may lead to increased 
coarse fraction during parts of the year, affecting the correlation between PM2.5 and PM10. Although 
there are only two (2004) or three (2005) operational rural background stations in the Nordic region, 
these two stations show a better correlation than found at the five (2004) or six (2005) (sub)urban 
background and at the eleven traffic stations. 

For all available stations, the correlation at (sub)urban background stations (R= 0.89) and rural 
background stations (R=0.89) is similar and better than at traffic stations (R=0.81). 

 

In Figure AIII.1 the annual mean concentrations of PM10 and PM2.5 are given as function of the station 
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Figure AIII.1 Annual mean concentrations of PM10 and PM2.5 (period 2004-2005)  
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classification. The figure indicates a wide spread in PM2.5 / PM10 ratios; the ratio clearly depends on 
the type of station.  

There are various options to calculate the PM2.5 / PM10 ratio. The simplest approach is to calculate it 
from the annual mean values: 

1025 PMPM CCratio =  or ∑∑= 1025
11

PMPM C
m

C
n

ratio       [M1] 

where C  is the annual mean value. The averaging is over n and m days, respectively. The number of 
days is not necessarily the same for PM10 and PM2.5.  

A second approach is to estimate the ratio as the slope of a linear regression of daily concentrations: 

bCratioC PMPM += 1025  

where C is the daily mean value and b is the intercept which could – optionally – be forced to zero. In 
this case, the ratio is obtained from:  

∑∑ ⋅= 10
2

1025
11

PMPMPM C
k

CC
k

ratio       [M2] 

 

where the averaging is over the k days with simultaneous measurements of PM10 and PM2.5 . 

In the third approach the ratio is calculated on a daily basis and next averaged over the full year: 

( )∑= 1025
1

PMPM CC
k

ratio         [M3] 

In further analysing of the data, two stations have been excluded as preliminary calculations indicated 
unrealistic ratios of more than 1.1 or smaller than 0.07. Calculations for each of the two years showed 
that the inter-annual variations in ratio are small. The results of the two years are therefore combined 
in further processing.  

Comparing the three methods generally results in similar ratios, see figure AIII.2. The largest 
differences are found when in method M1 the data coverage in calculating the annual means of PM2.5 
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Figure AIII.2 Comparison between method M1 and M2 in calculating the PM2.5 / PM10 ratio. The line 
corresponds to the 1:1 line. 
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and PM10 show relatively large differences. Method M2 will result in the best fit between PM2.5 and 
PM10 concentrations and is therefore to prefer. 

 

A closer look at the ratios suggests, next to the dependency on station type, a geographical 
dependency. To evaluate this, Europe has been divided in four regions (not all countries have reported 
valid paired PM2.5 and PM10 time series. Countries not included in the current analyses are printed in 
italic):  

1. Northern Europe: Norway, Sweden, Finland, Estonia, Lithuania, Latvia, Denmark and Iceland 
2. North-western Europe: United Kingdom, Ireland, the Netherlands, Belgium, Luxembourg, 

France north of 45 degrees latitude  
3. Central and Eastern Europe: Germany, Poland, Czech Republic, Slovakia, Hungary, Austria, 

Switzerland, Liechtenstein 
4. Southern Europe: France south of 45 degrees latitude, Portugal, Spain, Andorra, Monaco, 

Italy, San Marino, Slovenia, Croatia, Greece, Cyprus, Malta. 

Results (method M2) are presented in Table AIII.1 and Figure AIII.3. The ratios are in the range of 0.4 
to 0.8. In North and Central-East there is a clear tendency for lower ratios in the order rural-urban-
traffic. This indicates an increasing contribution of locally emitted coarse particles at urban and traffic 
sites. In Southern Europe there is no such significant tendency. The rural stations in North-Western 
Europe (4 time series in the UK, one in Belgium) have a ratio which is surprisingly low compared to 
the ratio at urban and traffic sites in this region. The low number of time series may a role here.  

 
Table AIII.1 PM2.5 / PM10 ratios and available number of time series as function of region and station type 

 

The ratio at rural stations is much lower in North-western and Southern Europe than in North and 
Central-East. A possible explanation is the importance of sea spray particles (NW Europe) and mineral 
(Sahara) dust (S Europe).  

The ratios presented here indicate some clear dependencies. However, as uncertainties in the ratios are 
large, one should be careful to draw conclusions. As mentioned above, detailed information how 
measurements using a non-reference method are treated is lacking; different procedure for PM2.5 and 
PM10 will be reflected in large differences in ratios. The ratio shows large station-to-station variability, 
see the standard deviations plotted in Figure AIII.3. For each station type the number and location of 
stations differs widely within a region (and also within a country). For example, in North-western 
Europe, 4 (out of 5) rural time series are located in the UK while 43 (out of 54) urban time series are 
in France.  

 PM2.5 / PM10 ratio number of time series 

region rural urban traffic rural urban traffic 

North 0.78 0.46 0.39 5 11 22 

North-West 0.53 0.61 0.59 5 54 17 

Central-East 0.76 0.70 0.64 13 45 22 

South 0.56 0.55 0.54 28 19 24 

Total 0.63 0.62 0.54 51 129 85 
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As Horálek et al (2007) discussed, the availability of PM2.5 monitoring data in 2004 is too low to 
produce a European concentration map. Over 2005 the number of stations has been increased but still 
not more than 33 rural stations provide a valid annual mean (data coverage > 75%). Relaxing the data 
coverage criteria to 50% is no solution: it will increase the number to 39 which is still too low for the 
interpolation procedure. It has been suggested to increase this number of stations by introducing 
pseudo-PM2.5 stations. At these stations the PM2.5 concentration has been estimated from a PM2.5/PM10 
ratio and the PM10 concentrations measured at the station.  
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Figure AIII.4 Scatter plot of observed and calculated PM2.5 concentrations. Calculations are based on 
region/station type specific ratios. The two lines correspond to y=1.2x and y=0.8x 

 

This approach was tested here for annual mean concentrations. Using the here derived region/station 
type specific ratio and the observed PM10 concentrations, the pseudo-PM2.5 concentrations have been 
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Figure AIII.3. PM2.5 / PM10 ratios averaged per region and station type. The error bars indicate plus/minus one 
standard deviation. 
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estimated. The calculated values are compared with the observed values in Figure AIII.4 and Table 
A.2. The bias, between observed and calculated values - defined as ( )∑ −= calcobsn CCbias 1 - is 
negligible. However, the root-mean-square error (RMSE) is 3.1 μg/m3 (19% of the grand average of 
16.1 μg/m3). The two lines in the scatter plot corresponds to y=1.2x and y=0.8x, that is, for data points 
within the two lines the error between observed and calculated PM2.5 values is less than 20%. It is 
evident that in the range of 10-20 μg/m3 –the range of the most frequently observed concentrations – a 
large number of data points fall outside this 20%-range.  

 
Table A.2 Comparison between observed and calculated PM2.5 concentrations using region and country specific 
ratios.  

Parameter(1) Region specific Country specific Perfect fit 
RMSE 3.06 2.41 0 

bias 0.01 0.07 0 
MAE 2.17 1.65 0 

a 0.90 0.97 1 
sa 0.03 0.02 0 
b 1.54 0.38 0 
sb 0.46 0.37 0 

MARE (%) 14 11 0 
observed averaged 16.2 16.2 - 

The following parameters are given: 

 RMSE: root mean square error = ( )∑ − 21
calcobsn CC  

 Bias = ( )∑ − calcobsn CC1  

 MAE: Mean absolute error = calcobsn CC −∑1  
 Slope (a) and intercept (b) and their standard error (sa, sb) of the regression:  
 bCaC obscalcs +=  

 MARE: mean absolute relative error = obscalcobsn CCC −⋅ ∑1%100  
 

The estimation of the pseudo PM2.5 concentrations can be improved by applying ratios with a higher 
spatial resolution, that is, averaged at the country level instead of the region level. Although the fit 
between observed and calculated concentrations improves - the RMSE drops to 2.4 μg/m3 (15% of the 
grand average), see figure 5 and Table 2- this improvement is limited considering the increase in the 
number of parameters from 15 region/station type specific ratios to 47 country/station type specific 
ratios.  

 

Considering that in the above applications the same data set is used both for parameterisation and for 
validation, it is to be expected that when the approach is used to estimated PM2.5 concentrations at the 
locations of the more than 2000 PM10 stations available in AirBase, the error in these estimates will 
largely exceed the 15-20% error found here. In combination with the uncertainties in the PM10 
measurements itself, the constructed pseudo PM2.5 data will most likely not fulfil the data quality 
objectives as given in the first daughter directive.  

The application of the country/station type depending ratios is further hampered by the fact that only 
47 of the required 99 ratios (33 countries providing information to AirBase and 3 stations type) can be 
estimated. Gap filling of the missing ratios, e.g. by introducing the median or averaged value from the 
region, will certainly enhance the error. 
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The use of a PM2.5/PM10 ratio to generate “pseudo”PM2.5 data from the widely available PM10 
measurement should be discouraged.  
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Figure AIII.5. Scatter plot of observed and calculated PM2.5 concentrations. Calculations are based on 
country/station type specific ratios. The two lines correspond to y=1.2x and y=0.8 
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