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1 Introduction 
The European Environmental Agency (EEA) and the European Topic Centre for Air Quality and Climate 
Change (ETC/ACC) have in the past few years developed methodologies for the spatial assessment of 
air quality on a European wide basis (see Horalék et al., 2005; 2007; 2008 and Denby et al., 2008). The 
work is intended to provide the best quality spatial assessment of a number of directive related 
pollutants, with focus on ozone and PM10, that will provide both policy support as well as information to 
the public. The maps are used to assess European wide exposure and the resulting health effects at a 
resolution that provides ‘background’ pollutant concentrations, i.e. 10 x 10 km grids. 
The main thrust of the development to date has been to establish a robust mapping method that can be 
implemented operationally. As a result a wide range of mapping methodologies have be assessed for 
the years 2003 – 2005. These mapping methods include the use of monitoring data (provided by the 
AirBase and EMEP databases), atmospheric chemistry model calculations (provided by the Unified 
EMEP model and the LOTOS-EUROS model) and other spatially resolved supplementary data such as 
altitude and a selection of meteorological parameters. These are combined using multiple linear 
regression of all the data with the observations to provide a base spatially resolved map. Ordinary 
kriging is applied to the residuals, i.e. differences between the base map and the observations, to obtain 
the final maps. 
The resulting maps provide an assessment for an individual year. The question arises as to whether 
longer term trends (‘trends’ refers in this work exclusively to temporal changes and ‘long term’ over 
periods of 10 years or longer) can be seen in the maps and whether this can provide useful information 
for policy assessment. Though trend analysis has been carried out for individual monitoring, or sets of 
monitoring, stations in the past a spatially resolved trend analysis has not been carried out. This report 
is intended to provide a preliminary assessment of the feasibility of such an assessment using the 
mapping methodologies already developed by ETC/ACC. 

1.1 Aim 
This report will assess the feasibility for assessing the European wide mapping of air quality trends. It 
will identify the requirements, both in data and methodology, and will test some basic applications. It will 
provide evidence, arguments and a work plan for a more detailed assessment to be carried out. 

1.2 Scope 
Since the study is intended as a feasibility study it must be limited in scope and application. On the 
other hand it must also test some methodologies in order to truly assess the feasibility of the approach. 
Two indicators have been chosen for the assessment. The first of these is AOT40, an ozone indicator 
for which target values have been set in the European air quality directive (EC, 2008) for the protection 
of vegetation, and the second of these is the annual mean SO2. AOT40 does not show a clear trend in 
the observations whilst models calculations indicate a negative trend (Solberg et al., 2008). A much 
clearer trend signal is observed and modelled for SO2 where both models and observations show 
significant decreasing trends. 
The following aspects will be addressed in this report 

• Chapter 2: Brief literature review of relevant trend analysis data for Europe and trend 
assessment methods generally. Focus is on EEA, EMEP and ETC reporting. 

• Chapter 3: Review and assessment of data availability for the maps in the period 1996 - 2005 

• Chapter 4: Methodological description of the mapping technique, station selection, trend 
analysis and uncertainty estimates. 

• Chapters 5 and 6: Results of a number of selected tests on the data in regard to interpolation 
method, the trend analysis method and the selection of stations for the two pollutants AOT40 
and SO2. 
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• Chapter 7: Discussion and recommendations resulting from the study. Plans for future work. 

2 Literature review on trend analysis 
Trend analysis is used in a wide range of scientific disciplines including the environment, economy, 
biology, demography, etc. In this literature review we will concentrate on applications from the 
environmental sciences and wherever possible applications within air quality or meteorology. 

2.1 Trend analysis methodologies in environmental applications 
In the environmental literature much work in trend analysis has been carried out in detecting trends in 
climate, e.g. trend analysis of precipitation and temperature, but less focus has been given to air quality 
trends over similar time scales, i.e. decades. This is chiefly due to the shorter time scales of available 
and reliable monitoring data for air compounds compared to traditional weather parameters such as 
wind, temperature and precipitation. 
Several statistical approaches are available for detecting and estimating trends in environmental data, 
such as regression analyses, time-series analyses and methods of non-parametric statistics. A good 
over all text on the use of trend analysis in environmental applications is provided in Gilbert (1987). 
Seven different linear methods have been compared in Hess et al. (2001) and Porter at al. (2002) with 
the use of both simulated and real data. Some useful insight into trend testing and its challenges can be 
found in Schär and Frei (2001), who look for trends in rare events. A brief overview lecture of analytical 
methods and a review of trend analysis is given by Chandler (2002).  
In this study annual data for the period 1996 to 2005 are used. This means that, at the most, 10 data 
points are available for the trend analysis. A common analysis method for such small data sets is the 
Mann Kendall test (Mann, 1945; Kendall, 1975), which is a simple and robust nonparametric method 
intended for detecting monotonic trends. It has been further developed to include seasonality and serial 
correlation (Hirsch and Slack, 1984), but this is not required for the current application. The Sen’s slope 
estimate (Theil ,1950 and Sen ,1968 ) is applied for quantifying the trend. A short and simple resume of 
the method can be found in Salmi et al. (2002) and this is outlined in section 4.2 of this report. The 
method has recently been applied with success for precipitation data in Turkey (Partal and Kahya, 
2006) and Spain (Mosmann et al. 2003). The latter also implements mapping of areas showing 
significant trends.  

2.2 Trend analysis for air quality applications in Europe 
There are a variety of trends analyses carried out on monitoring data, mostly at individual monitoring 
stations or at groups of stations. Some examples include the application of the Mann Kendall test to air 
quality data in Europe in OSPAR (2005), by Salmi et al. (2002) and by De Leeuw (2000). The last of 
these has been applied for detecting trends in ground level ozone concentrations. Baldsano et al. 
(2005) look at trends in EMEP data since 1977 to assess the effectiveness of policy information. 
Solberg et al. (2008) has also recently studied trends in ozone using both modelling and monitoring 
data. Ibarra-Berastegi (2001) has applied the KZ filter to ozone data in Bilbao. Bronnimann et al. (2002) 
apply linear regression to assess trends in ground level ozone in Switzerland.  
An overview of the different trend and uncertainty assessment methods is provided in table 1. 
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Table 1: Overview of trend analysis methods 
Method Key feature Description References 
Linear 
Regression 
 
 

Provides an 
estimate of slope 
(trend) 

Least squares fitting technique for a linear 
regression model. A range of tests and 
confidence and prediction interval assessments 
are available. 

Bronnimann et al. 
(2002) 

Box-Jenkins 
test 

Forecasts near 
future values of a 
time series. 

An auto regressive moving average method. It is 
quite flexible, needs at least moderately long 
time series and regularly spaced data.  

Box and Jenkins 
(1976), Gröger and 
Rumohr (2006), Hu 
et al. (2006)  

Kolmogorov 
–Zurbenko 
method 
 

Removes “noise” 
first to make trend 
appear.  

A low pass (KZ) filter, with iterative moving 
average. The data is smoothed and then 
regressed in time to obtain the trend slope. 
Useful for large datasets.  

Zurbenko (1986), 
Rao and Zurbenko 
(1994), 
Ibarra-Berastegi et 
al. (2001) 

Mann 
Kendall test 

Gives a Yes/No for 
existence of a 
significant trend.  

The test is suitable when the trend can be 
considered monotonic and no cycles are present 
in the data. Missing values are allowed. Can be 
applied to small data sets. Is not sensitive to 
outliers 

Mann (1945) 
Kendall (1975), De 
Leeuw (2000), 
Mosmann et al 
(2003) 

Sen’s 
method 

Estimate the 
magnitude of a 
linear trend.  

A nonparametric method to find the magnitude of 
a linear trend. Not affected by outliers and allows 
missing data. 

Sen (1968), Thiel 
(1950), Partal and 
Kahya (2006) 

Monte Carlo Ensemble technique 
for assessing 
uncertainty based 
on prior distributions 

Calculates uncertainty using an ensemble of 
possible realisations. Can be applied to any 
trend analysis method if uncertainty of the data 
used in the trend is known 

 
 

3 Data availability 
In this scoping study the data availability of ozone, PM10 and SO2 is provided. Though PM10 is not 
assessed in this report, due to its lack of available observational and modelling data, it is included in this 
survey of data availability to assess any further use of PM10 in future trend analysis. This report makes 
use of rural background stations only but includes urban and suburban stations in the data survey as 
these may also be included in further studies. 

3.1 Monitoring data 
Monitoring data is exclusively taken from the AirBase database (AirBase, 2008). Though more air 
quality data, especially for the years prior to 2000, may be available from national or local networks, 
AirBase is currently the most comprehensive database available of air quality monitoring in Europe. In 
figures 3.1 – 3.3 the availability over the period 1995-2005 of regional and (sub)urban stations are 
shown for the compounds of ozone, SO2 and PM10. In appendix III data on the total number of stations 
for the individual countries, is also provided. 
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Figure 3.1. The number of available ozone stations in AirBase with hourly temporal coverage greater 
than 75% for the calculation of AOT40 crops.  

 
Figure 3.2. The number of available SO2 stations in AirBase with daily mean temporal coverage greater 
than 75% for the calculation of annual mean concentrations.  
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Figure 3.3. The number of available PM10 stations in AirBase with daily mean temporal coverage greater 
than 75% for the calculation of annual mean concentrations.  

To indicate the spatial distribution of the available monitoring data, figure 3.4 shows the number of 
countries reporting data to AirBase for the pollutants PM10, SO2 and ozone. Up until 2001 less than 15 
countries have reported PM10 data to AirBase. For SO2 and ozone the proportion is higher, with the 
majority reporting since 1997. Only since 2003 has there been a good country representation for all 
pollutants.  
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Figure 3.4. The number of countries providing data to AirBase for the three pollutants PM10, SO2 and 
ozone. Only countries providing station data (urban, suburban and rural) with a mean coverage > 75% 
are included. 
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3.2 Modelling data 
The unified EMEP Eulerian Photochemistry model is used in this trend assessment. The model has a 
polar stereographic projection with a horizontal resolution of approximately 50×50 km2 and applies 20 
vertical layers below 100 hPa. The model domain is centred over Europe and also includes most of the 
North Atlantic and the polar region. The EMEP model uses 3-hourly resolution meteorological input data 
from a dedicated version of the HIRLAM model. The model is public domain and can be downloaded 
from www.emep.int. A comprehensive description of the model is also available via this site. 
In connection to the long term trend report, ‘Assessment of ground-level ozone within the EEA Member 
Countries with focus on long-term trends’ (Solberg et al., 2008), 10 year runs of the Unified EMEP 
model have been carried out. These runs include all standard compounds including ozone, PM and 
SO2. A complete description of the EMEP model runs can be found in that report. 
In regard to the availability of data, it is worth noting that emission data was not available for the primary 
emissions of PM10 for the years prior to 2000. 

3.3 Supplementary data 
In addition to the EMEP modelling data for the years 1996-2005 other supplementary data is also 
available for the interpolation. For the methodologies applied here altitude is the only supplementary 
data currently used. This has been derived from the GTOPO30 (Global Digital Elevation Model) at a 
resolution of 30 x 30 arcsec. (source: ESRI, Redlands, California, USA, 2005) dataset and averaged for 
the 25 km grids used for the interpolation. 
Meteorological data can also be used in the multiple regression, but this has not been included in the 
current analysis. Such meteorological data, derived from ECMWF reanalysis data, is available form the 
Meteorological Archival and Retrieval System (MARS) of the ECMWF (European Centre for Medium-
range Weather Forecasts; http://www.ecmwf.int). The spatial resolution of the data used is 0.25 x 0.25 
degrees. This data is available for all the assessment period, back to 1990, if required. 
 
Conclusion: As a result of the data availability assessment trend maps of AOT40 and SO2 only will be 
made. The poor coverage of PM10 data in AirBase prior to 2001 and the lack of primary emission data in 
the EMEP model prior to 2000 make trend analysis of the PM10 data unrealistic prior to 2001. 

4 Methodology 
In this paper a selected number of trend assessments and methodologies will be applied and these are 
described in the following sub-sections. Common to all the trend assessments is that trends of annual 
concentration maps will be made. This is in contrast to the other possible method for mapping trends 
when combining model and monitoring data, i.e. by firstly determining the observed and modelled 
trends and then combining the trends to create a map. In all maps rural stations only are applied and 
the maps are made on a 25 x 25 km grid. 
The following aspects will be investigated: 

• Trend maps of two pollutants, annual mean SO2 and AOT40, will be made. The first since it 
has a clearly decreasing trend signal and the second since it is one of the relevant indicators of 
interest and has relatively good data coverage. 

• Four versions of these trend maps will be assessed based on: EMEP modelling, kriging 
interpolation of observations, regression of the EMEP model with observations and residual 
kriging of the regression model (section 4.1). 

• Two trend assessment methods will be applied: the trend (linear change in concentration per 
year) is estimated using linear regression and using Sen’s method (section 4.2). 

http://www.emep.int/
http://www.ecmwf.int/
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• Two methods for ascertaining the uncertainty in the trend will be applied. Standard deviation of 
the trend residuals and Monte Carlo simulation of the trend using the mapped uncertainty 
(section 4.3).  

• Two types of station selection will be made. Using all available stations for every year or using 
only stations with a temporal coverage of at least 8 of the 10 years (section 4.4). 

4.1 Mapping method and spatial uncertainty assessment 
There are a number of interpolation methods available and these have been thoroughly investigated in 
previous ETC/ACC technical reports (Horalék et al., 2005; 2007; 2008). In this report we will present 
results from four of these methods. These are: 

• Pure modelling data 

• Ordinary log-normal kriging of the observations. In this study only rural background station s 
are used 

• Multiple linear regression of the observations with the EMEP model (and in the case of AOT40 
also with altitude) 

• Residual log-normal kriging after multiple linear regression  
These four results are intended to show the trend of the model, the trend of the observations and the 
trend derived from the interpolation and combination of model and observations. A brief description of 
the above methods, and relevant elements of these, is given here. 

4.1.1 Log transformation 
Investigation of the frequency distributions of the observational and model data indicates that the 
concentrations are close to log-normally distributed. To ensure that data used in the interpolations are 
normally distributed for the interpolation, and to avoid the undesirable result of negative concentrations, 
the model and observational concentrations are transformed using the natural logarithm prior to 
interpolation and then back transformed afterwards. The back transformed expectation value is 
determined using 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
exp

2σμCE         (1) 

where μ and σ are the mean and standard deviation of the log-normal distribution and C indicates 
either an observed, interpolated or modelled concentration. σ2 is determined using the log-normal 
kriging variance. The back-transformed variance of a log-normal distribution is similarly given by 

[ ] ( )( ) ( )22 2exp1expvar σμσ +−=C       (2) 

4.1.2 Multiple linear regression 
Regression of the annual mean EMEP model concentrations with the observed annual mean 
concentrations provides one of the simplest methods for correcting bias in the model. Linear regression, 
after logarithmic transformation, is applied each year. The regression coefficients are determined and 
these are applied to adjust the model concentration field. It has been shown (e.g. Horálek et al., 2005) 
that multiple linear regression with other spatially distributed data, such as topography, can improve the 
regression statistics for annual fields. For AOT40 the altitude is also used in the regression. 

4.1.3 Ordinary kriging and residual kriging 
Ordinary kriging is a widely used interpolation technique that determines the statistically most likely 
concentration at a point in space by weighting the available observational data so that the interpolated 
spatial variance is minimised. The spatial variance is generally defined using a variance model known 
as the variogram (Cressie, 1993), whose parameters of sill, nugget and range need to be determined. 
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In this report ordinary kriging is applied to the observational data only as well as the residual of the 
linear regression model for each year. The kriging parameters are determined by fitting the variogram 
with a spherical variance function for each year. No optimisation is carried out of the variogram 
parameters, as was done in Denby et al. (2008). A maximum allowable range of 1000 km is specified 
and only the 50 nearest stations to the interpolation point are used for the kriging interpolation.  

4.1.4 Spatial uncertainty assessment 
Spatial uncertainty is estimated from the kriging or residual kriging variance, expressed in terms of the 
standard deviation. When using the logarithmic transformation the uncertainty becomes proportional to 
the concentrations rather than an absolute concentration. This may underestimate the uncertainty in 
areas with low concentrations but it provides more realistic estimates of uncertainty than the use of 
normal kriging. 

4.2 Trend analysis 
Though there is a range of methodologies available for trend analysis (section 2) we have selected two 
common methods for assessing trends. These are linear regression and Sen’s trend analysis. 

4.2.1 Linear regression 
Linear regression is a straight forward and well known methodology that fits a linear model in the form of  

 bxay +=          (3) 

Fitting is achieved by minimising the sum of the square residual errors. The resultant trend in the data, 
given by the slope b, can be determined algebraically. Since it minimises the sum of the squares of the 
errors, regression tends to give higher weighting to larger values. This makes it more sensitive to 
outliers than other methods that do not rely on the squared error for fitting. 
Associated with linear regression are a number of parameters and tests that can be used to indicate the 
uncertainty or test various hypothesise. These have not be applied in the current assessment, see 
section 4.3. 

4.2.2 Sen’s method 
To find the trend one can use Sen’s slope estimate if the trend is linear. First all the slopes of all data 
pairs are calculated 

( ) ( )kjxxQ kji −−= / .       (4) 

where jx is the data measurement at time j, kx is the data measurement at time k. iQ is the slope 
between data points jx  and kx  

With n data points one gets 

( ) 2/1−= nnN          (5) 

values for iQ  and the Sen’s estimator is then the median of these N slope values. Estimates of 
uncertainty can be based on the variance of iQ  but this methodology has not been applied here. 

4.3 Trend significance and uncertainty 
We will present a limited selection of methodologies for assessing the significance and the uncertainty 
of the trends. The methods outlined are the standard error of the regression residual, the Mann Kendall 
significance test and Monte Carlo simulations using data uncertainty. 

4.3.1 Standard error of the regression residual 
This method provides indicative information on the variability of the data around the regression trend. 
The standard deviation of the regression residuals (standard error) is calculated and normalised with the 
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number of years. This gives a simple first impression of the variability of the results. When the 
normalised standard error is larger than the trend, then the trend is not considered to be well defined. 
However, large standard deviations may also exist if the trend is not linear. In addition this method does 
not take into account uncertainty in the individual concentrations for each of the years. 

4.3.2 Mann Kendall 
The Mann Kendall (MK) statistic is used to ascertain the significance of a trend, without specific 
reference to the actual value of the trend 
The Mann Kendall (MK) statistic, S, is defined as follows:  

( )∑ ∑
−

= +=

−=
1

1 1
sgn

n

k

n

kj
kj xxS        (6) 

where x are the data values, n is the length of the dataset and the sgn function is defined as 
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It is assumed that if there is no trend, S is normally distributed with zero mean and with variance  

( ) ( )( ) 18/521 +−= nnnSVAR        (8) 

The Z test statistic of the MK test is given by  
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The p-value, a measure indicating if the trend is likely the result of random processes, is found as the 
integral of the standard normal distribution f(y) for y >Z if Z >0 or y<Z if Z<0 . If the p-value is small it is a 
measure that the trend is quite unlikely to be the result of random sampling. If one chooses a 
significance level of α= 0.05 and find p ≤ 0.05, then the existing trend is considered to be statistically 
significant and not caused by random processes. This then tells us, with a 95 % confidence level, that 
the hypothesis of no trend can be rejected. However, this does not say anything about the size of the 
trend or the uncertainty of the value of the trend.  

4.3.3 Monte Carlo methods 
As a more general method for determining the uncertainty in the trend, Monte Carlo methods can be 
used. For each year and at each grid square an uncertainty is determined using the kriging variance. 
This uncertainty is randomly sampled, assuming a normal distribution, and for each set of samples a 
slope is determined by linear regression. Random sampling is carried out 100 times and the standard 
deviation of the resulting slope is used to indicate the uncertainty in that slope. 
This method requires information concerning the statistical distribution of the data, which is in principle 
available through the kriging variance. However, if this information is not available then it is also 
possible to use the standard error, section 4.3.1, to indicate the general statistical distribution of the data 
and apply Monte Carlo methods to that. This method is not applied here but can be considered for 
further development. Monte Carlo methods can also be applied to Sen’s trend analysis but this was not 
carried out extensively in this study. 
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4.4 Testing the effect of station selection 
As shown in section 3.1 the AirBase database is not homogenously spatially distributed for the 10 year 
period under investigation. There are thus regions of Europe where 10 year observational trends are not 
available. This will lead to a bias in the information for the 10 year trend analysis if only stations with 10 
years of data are used. To test the effect of station selection two selection criteria are used.  

1. No selection criteria are used when making the interpolation. All stations available for each of 
the years are used. 

2. A pre-selection of stations is made where only stations with data for 8 or more years, 
irrespective of timing, are used in the interpolation. 

5 Results of the tests for AOT40 
Given the number of different combinations of possible methodologies, as described in section 4, it is 
not possible to provide results on all permutations. The following results will be presented: 

1. Assessment of annual statistics of the mapping methodologies 
2. Average trends based on modelling and observations 
3. Comparison of the two trend analysis methodologies (i.e. linear regression and Sen’s method) 

when applied to the residual kriging interpolation 
4. Comparison of the trends based on different interpolation mapping methodologies (i.e. kriging 

of the observations and kriging of the residual after regression with the EMEP model) 
5. Comparison of the trends using two different station selection criteria (i.e. all stations and 

stations with ≥ 8 data years) 
6. Comparison of the trend uncertainty methods (i.e. standard deviation of regression residuals, 

Monte Carlo and Mann Kendall) 

5.1 Annual statistics of the interpolation maps 
Before looking at the individual maps, the statistical results of the different interpolation methods will be 
shown for each year. In figure 5.1 the number of available rural stations is shown for the two different 
station selections. The number of ozone stations in AirBase has increased steadily over the past 
decade (see figure 3.1). The spatial distribution of the stations with availability of 8 years or more can be 
seen in the maps provided in section 5.3. 
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Figure 5.1. Number of stations available for the AOT40 trend assessments. Shown are the two station 
selection cases. 1) All available stations are used (dark grey) and 2) where stations with at least 8 years 
of data are used (light grey). Only rural stations are used. 

To provide an overview of the statistical results of the different interpolations for each year the 
normalised cross-validation RMSE and correlation coefficients for AOT40 are shown for the two station 
selections in figures 5.2 and 5.3. The results reflect previous tests where the RMSE has been shown to 
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be lowest and the correlation highest for the residual kriging methods (e.g. Horálek, 2005). However, 
there are exceptions to this rule. In 2002 and 2004 for the stations with a coverage ≥ 8 years the RMSE 
is higher for the residual kriging method than for the ordinary kriging. For 2002 the correlation is also 
lower for the residual kriging. This may be associated with poor performance from the EMEP model, 
and also regression model, in that year or it may be due to outliers in the observational dataset. In either 
case, the regression model is not providing the spatial distribution required for production of ‘improved’ 
residuals.  
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AOT40 normalised RMSE:  selected stations (>= 8years)
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Figure 5.2. The normalised cross-validation RMSE of the different mapping methods used for AOT40. 
All available stations (top) and selected stations (bottom). Shown are the results from the EMEP model 
(red), ordinary kriging (blue), regression with EMEP and altitude (green) and the residual kriging after 
regression with EMEP and altitude (purple). 
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AOT40 correlation: selected stations (>= 8years)
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Figure 5.3. The correlation coefficient of the different mapping methods used for AOT40. All available 
stations (top) and selected stations (bottom). Shown are the results from the EMEP model (red), 
ordinary kriging (blue), regression with EMEP and altitude (green) and the residual kriging after 
regression with EMEP and altitude (purple). 

5.2 Average trends 
It is useful, before moving onto the spatial trends, to also show the mean trends as determined from the 
observations and the model when using the two different station selections (figure 5.4). Mean trends of 
the regression and kriging are not shown as these follow very closely the mean observed trend. The 
following points can be noted: 

• The model underestimates the observed AOT40 by more than a factor of two. 

• The model trend in AOT40 is decreasing whilst the observational trend in AOT40 is increasing, 
for both station selections. 

• The observed trend is a factor of 3 higher when all the available stations are used, compared 
to the selected 8 year stations. 

• The modelled trend is less negative when all the available stations are used, compared to the 
selected 8 year stations. 

• The inter-annual variability of the observations is larger than the inter-annual variability of the 
EMEP model (attributed to variability in meteorology). 
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AOT40 mean trend: all stations
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AOT40 mean trend:  8 year stations
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Figure 5.4. Trends of the mean observed and modelled AOT40 for the two types of station selection. All 
available stations (top) and selected stations with 8 or more years of coverage (bottom). Mean model 
concentrations are calculated at the same points in space as the available stations used for the 
interpolation. 

5.3 Comparison of two methodologies for determining trend 
We have selected linear regression and Sen’s method as the two methods for determining the trend. 
Maps made of the trend using these two methods are shown in figure 5.5. The annual maps used for 
the trend analysis were created using all available stations and the interpolation methodology was 
residual kriging with regression of the EMEP model and altitude. 
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Figure 5.5. Trend maps showing the determined trend for AOT40 (1996-2005) using linear regression 
(left) and Sen’s (right) methodology. The maps are made using residual kriging after regression with the 
EMEP model and altitude. All available stations are used in the annual interpolations. Also shown for 
comparison are the station trends. Circles with colour indicate stations with at least 8 years of data and 
crosses indicate other stations used for the annual interpolations but with less than 8 years of data. 

Discussion: The two methods for determining trends give very similar results. There is only one area 
where the trend differs significantly. This is in the Balkan region where a single station shows a large 
negative trend. The Sen’s methodology shows more positive trends in this region. This is likely due to 
the fact that the Sen’s method uses the median of the station trend pairs. The influence of outliers on 
the median is less than the effect of outliers when using linear regression. 
Conclusion: Due to the small differences between the two methods we will make use of linear 
regression only to investigate other aspects of the trend analysis. This has been selected since it is a 
more transparent method for assessing trends and is also computationally more efficient. 

5.4 Comparison of trends for different interpolation methods 
In addition to the residual kriging maps, shown in figure 5.5, it is worth comparing these to maps made 
using pure model calculations and maps made using pure observational interpolation. These two are 
shown in figure 5.6 below, using linear regression as the trend analysis technique and using all station 
data. These are directly comparable to figure 5.5 left which uses the same trend assessment method 
and station selection. 

 
Figure 5.6. Trend maps showing the linear regression trend for AOT40 (1996-2005) of the EMEP model 
(left) and ordinary kriging of the observations (right), using all station data. Also shown for comparison in 
the kriging map are the station trends. Circles with colour indicate stations with at least 8 years of data 
and crosses indicate other stations used for the annual interpolations with less than 8 years of data. 
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Discussion: The model trend for AOT40 is slightly negative and reflects the average model trend 
shown in figure 5.4. Only in Turkey is there a slight positive trend in the model. In contrast the pure 
kriging trend map shows both strong positive and negative trends. This is an interesting map because it 
indicates the effect of introducing new stations into the interpolations. In areas such as Greece where 
station data is only available for the last 3 years strong negative trends appear. This is because the 
kriging interpolation overestimated the AOT40 levels in this area for the first 7 year period for which no 
observations were available. This can be seen in the individual maps provided in Annex I. The observed 
AOT40 data in this region for the last 3 years shows lower levels of AOT40 than earlier interpolated. 
This leads to a sudden drop in the interpolation AOT40 and a resulting negative trend. The same can 
occur in other areas but with positive trends as the result of the introduction of new data. A similar 
effect, but not as pronounced, can be seen in the residual kriging maps shown in figure 5.5. 
Conclusions: The trend maps can be very sensitive to the introduction of new stations, particularly 
when the new data differs strongly from the previously interpolated data and when the maps are based 
on observational data only. 

5.5 Comparison of two station selection methods 
To assess the influence of station selection on the results two selection criteria have been used. The 
first includes all available data for all years and the second only stations with 8 or more years of data. 
The results are shown for both residual kriging (figure 5.7) and ordinary kriging of the observations only 
(figure 5.8). 

 
Figure 5.7. Trend maps showing the linear regression trend for AOT40 (1996-2005) all stations (left) 
and 8 year stations (right). The maps are made using residual kriging after regression of the EMEP 
model and altitude. Also shown for comparison are the station trends. Circles with colour indicate 
stations with at least 8 years of data (left and right) and crosses indicate other stations used for the 
annual interpolations with less than 8 years of data (left only). 
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Figure 5.8. Trend maps showing the linear regression trend for AOT40 (1996-2005) all stations (left) 
and 8 year stations (right). The maps are made using ordinary kriging of the observation data only. Also 
shown for comparison are the station trends. Circles with colour indicate stations with at least 8 years of 
data (left and right) and crosses indicate other stations used for the annual interpolations with less than 
8 years of data (left only). 

Discussion: There are distinct differences between the maps in figures 5.7 and 5.8 for the two station 
selection methods and these differences exist mostly in the areas where observational data is not 
available for the required 8 years. When residual kriging is used then areas where stations are not 
available depend mainly on the model regression to interpolate the concentrations. The regression 
tends to correct the bias of the model and so the model is essentially rescaled according to the mean of 
the observations after regression. The result is that in areas far from stations the trend tends towards 
the average observational trend. When using all stations this trend is around 560 μg.m-3.h.year-1, 
whereas this trend is around 180 μg.m-3.h.year-1 when only 8 year stations are used (figure 5.4). This is 
reflected in figure 5.7 where similar, but lower, spatial distributions of the trend are found far from 
stations when using the two station selection methods. The absolute value of the trend is less for the 8 
year stations than for all the stations. 
When kriging of observations is used (figure 5.8) then the interpolated trend reflects the trends in the 
nearest 50 stations, the number of nearest stations used for the kriging interpolation. Since the range 
value used in the interpolations is less than 1000 km this means that when the interpolation is more 
than 1000 km away from any station then the interpolation weights the 50 nearest stations evenly, 
producing the average of the 50 nearest stations. In South-western Europe positive observational trends 
dominate whilst in Eastern Europe negative trends tend to dominate. This effect would not be present if 
all the stations were used for the kriging interpolation. 
Conclusion: The interpolations are sensitive to the station selection, particularly when only kriging of 
the observations is used. For this reason it is not recommended to use pure kriging for trend analysis. 
When residual kriging is applied the spatial distribution of the trends is similar but the absolute value of 
the trends far from stations reflects the mean observational trends. In areas where the station coverage 
is good for the at least 8 years there is little difference between the two station selection methods. 

5.6 Comparison of two methodologies for determining trend uncertainty 
Determining the uncertainty or significance of a trend is essential information whenever a trend is 
presented. For the application here we concentrate on the uncertainty, rather than the significance, of 
the trend. This is because we are interested in knowing the possible range of the trend, rather than 
simply ascertaining if the calculated trend is due to random processes or not.  
Two methods are applied here, see section 4.2, for determining the uncertainty in the trend. Firstly the 
standard deviation of the regression residuals is calculated and divided by the number of years over 
which the trend is determined, providing an estimate of the sample variability over the trend period. 
Secondly, use is made of the estimated uncertainty for each of the concentration estimates (based on 
the kriging or residual kriging variance) and Monte Carlo methods are applied, see section 4.3.3, to 
determine the uncertainty of the regression slope. 
The second of these is demonstrated in figure 5.9 for a randomly selected point in space. In this figure 
the black squares and error bars represent the annual AOT40 value and its standard deviation based on 
the residual kriging interpolation and its variance. The pink lines represent 100 realisations of the 
regression trend, where each realisation is achieved by randomly sampling from the normal distribution 
associated with each of the years. The thick blue line shows the mean of the 100 realisations. The 
standard deviation of the regression slope from all the realisations is used to determine the uncertainty 
of the calculated trend.  
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Figure 5.9. Example of a Monte Carlo simulation for deriving the uncertainty in trends given an 
uncertainty in the input data. 

In figure 5.10 and 5.11 the two trend uncertainties are presented for the two station selection cases. 
These represent the standard deviation of 1) the Monte Carlo ensemble and 2) of the regression 
residual standard deviation. 

 
Figure 5.10. Trend uncertainty maps showing the uncertainty (standard deviation) in the linear 
regression trend for AOT40 (1996-2005) using the Monte Carlo method (left) and the residual standard 
deviation method (right). The maps are made using all available station data. Residual kriging after 
regression with the EMEP model and altitude is the interpolation method. Also shown for comparison 
are the station trend uncertainties. Circles with colour indicate stations with at least 8 years of data and 
crosses indicate other stations used for the interpolations but with less than 8 years of data. 
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Figure 5.11. Trend uncertainty maps showing the uncertainty (standard deviation) in the linear 
regression trend for AOT40 (1996-2005) using the Monte Carlo methods (left) and the residual standard 
deviation method (right). The maps are made using stations with at least 8 years of data. Residual 
kriging after regression with the EMEP model and altitude is the interpolation method. Also shown for 
comparison are the station trend uncertainties, indicated by circles. 

Discussion: The uncertainty calculated using the residual of the regression trend does not directly 
indicate the full uncertainty in the trend itself. It is intended more to provide information on the variability 
of the data with the expectation that where the variability is low then the trend is also better defined. It 
does not take into account the uncertainty in the data caused by interpolation. As previously mentioned 
this method can also give high values when the trend is non-linear. The Monte Carlo method is 
expected to provide more realistic uncertainties of the trend itself as it is based on the statistical 
distributions of the data used, in this case the residual kriging variance. Though not shown here, trend 
analysis using Sen’s method shows a similar uncertainty when the Monte Carlo method is applied. 
The magnitude of the uncertainty is, in many regions of the maps shown in figures 5.10 and 5.11, larger 
than the estimated trend, shown in figure 5.7. This is demonstrated in figure 5.12 where the ratio of the 
magnitude of the trend to the standard deviation of the trend is presented for the two uncertainty 
methods. Areas where the trend is larger than the standard deviations have a ratio larger than unity. In 
the case of the regression residual standard deviation, figure 5.12 right, there are large areas where the 
trend is larger than the standard deviation of the trend itself. For the Monte Carlo analysis (figure 5.12 
left) the only region with a trend significantly larger than the estimated uncertainty is the United Kingdom 
and Ireland. This is a region with a reasonable coverage of stations that shows a negative trend in 
AOT40. 

 
Figure 5.12. Maps showing the ratio of the absolute trend to the standard deviation of the trend for 
AOT40 (1996-2005) using the Monte Carlo methods (left) and the residual error method (right). The 
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maps are made using all station data. Residual kriging after regression with the EMEP model and 
altitude is the interpolation method. 

It is possible to compare the results presented in figure 5.12 with the Mann Kendall significance test, 
section 4.3.2. In this case the alpha parameter is set at 0.05, meaning that there is at maximum a 5% 
chance that the trend is the result of a random process. Figure 5.13 shows this result for the same case 
as in figure 5.12. The significance map is very similar to the residual error ratio map, figure 5.12 right, at 
the contour level value of 2, but covering a slightly reduced area. This is not surprising since they both 
represent a 95% percentile based on the same available data distribution.  

 
Figure 5.13. Map showing the Mann Kendall significance test for AOT40 (1996-2005). Significance is 
based on the assumption of a maximum 5% chance that the trend is the result of random processes. 
Areas in dark purple are considered significant, i.e. the trend is considered not to be the result of 
random sampling processes. The map is made using all station data. Residual kriging after regression 
with the EMEP model and altitude is the interpolation method. 

Conclusion: Monte Carlo is not the only method for determining uncertainty in the trends but it provides 
a more realistic expression of the uncertainty than just using the regression residual standard deviation 
as it includes more information concerning the statistical distribution of the data used for the trend. The 
usefulness and application of significance tests needs to be further considered, specifically in regard to 
the information conveyed in such presentations. 

6 Results of the tests for annual mean SO2 
In this section the results of the trend analysis of annual mean SO2 are presented. This follows a similar 
structure to the AOT40 assessment but the analysis is reduced so as not to duplicate general aspects 
highlighted in the AOT40 analysis. SO2 has been chosen as it has a clearly observed negative trend in 
Europe, in contrast to AOT40 where the trend is not so well defined. The following results will be 
presented: 

1. Assessment statistics of the mapping methodologies 
2. Average trends based on modelling and observations 
3. Comparison of the two trend analysis methodologies when applied to the residual kriging 

interpolation 
4. Comparison of the trends based on different mapping methodologies 
5. Comparison of the trends using two different station selection criteria 
6. Comparison of the trend uncertainty methods 
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6.1 Annual statistics of the interpolation maps 
In figure 6.1 the number of available rural stations is shown for the two different station selections. The 
number of SO2 stations in AirBase has not increased over the past 6 years (see figure 3.2). The spatial 
distribution of the stations with availability of 8 years or more can be seen in the maps provided in 
section 6.3. 
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Figure 6.1. Number of stations available for the annual mean SO2 trend assessments. Shown are the 
two station selection cases. 1) All available stations are used (dark grey) and 2) where stations with at 
least 8 years of data are used (light grey). Only rural stations are used. 

To provide an overview of the statistical results of the different interpolations for each year the 
normalised RMSE and correlation coefficients for annual mean SO2 are shown for the two station 
selections in figures 6.2 and 6.3. The results reflect previous tests where the RMSE has been shown to 
be lowest and the correlation highest for the residual kriging methods.  
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SO2 annual mean normalised RMSE:  selected stations (>= 8years)

0
10
20
30
40
50
60
70
80
90

100

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Year

N
or

m
al

is
ed

 R
M

S
E

 (%
) Model Kriging Regression Residual kriging

 
Figure 6.2. The normalised cross-validation RMSE of the different mapping methods used for annual 
mean SO2. All available stations (top) and selected stations (bottom). Shown are the results from the 
EMEP model (red), ordinary kriging (blue), regression with EMEP (green) and the residual kriging after 
regression with EMEP (purple). 
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SO2 annual mean correlation: selected stations (>= 8years)
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Figure 6.3. The correlation coefficient of the different mapping methods used for annual mean SO2. All 
available stations (top) and selected stations (bottom). Shown are the results from the EMEP model 
(red), ordinary kriging (blue), regression with EMEP (green) and the residual kriging after regression 
with EMEP (purple). 

6.2 Average trends 
It is useful, before moving onto the spatial trends, to also show the mean trends as determined from the 
observations and the model when using the two different station selections (figure 6.4). Mean trends of 
the regression and kriging are not shown as these follow very closely the mean observed trend. The 
following points can be noted: 

• The model underestimates the observed SO2 by1/3. This in agreement with EMEP reports, e.g. 
Simpson et al. (2005) which reports a bias of 32% (2003) and 24% (2002). 

• The model and observational trends for both station selections have a similar character but 
differ in magnitude by a factor of two, when regression is used to estimate a linear trend. 

• The trend over the 10 year period is non-linear. Before 2000 the trend was large but after this 
period the trend reduces significantly in magnitude 
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SO2 annual mean trend: 8 year stations
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Figure 6.4. Trends of the mean observed and modelled annual mean SO2 for the two types of station 
selection. All available stations (top) and selected stations with 8 or more years of coverage (bottom). 
Mean model concentrations are calculated at the same points in space as the available stations used 
for the interpolation. 

6.3 Comparison of two methodologies for determining trend 
Maps made of the trend using the two trend assessment methods, linear regression and Sen’s method, 
are shown in figure 6.5 below. The annual maps used for the trend analysis were created using all 
available stations and the interpolation methodology used was residual kriging with regression of the 
EMEP model. 
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Figure 6.5. Trend maps showing the determined trend for annual mean SO2 (1996-2005) using linear 
regression (left) and Sen’s (right) methodologies. The maps are made using residual kriging after 
regression with the EMEP model. All available stations are used in the annual interpolations. Also 
shown for comparison are the station trends. Circles with colour indicate stations with at least 8 years of 
data and crosses indicate other stations used for the annual interpolations but with less than 8 years of 
data. 

Discussion: The two methods for determining trends give very similar results, with a negative trend 
over almost all of Europe. The exceptions are the countries of Greece and Turkey where a slight 
positive trend is seen. Note that no monitoring data for Turkey is available in AirBase. The magnitude of 
the negative trend is slightly less when using Sen’s method. This may be due, once again, to the use of 
the median of the station trend pairs in Sen’s method, which tends to reduce the influence of outliers in 
the dataset, in comparison to the use of the mean in the linear regression. For this reason the initial 
strong trend in SO2 has less of an influence on the Sen trend analysis compared to linear regression. 
Conclusion: In this case the Sen trend analysis provides an overall reduced magnitude in the negative 
trend. This is likely due to the non-linear nature of the trend. More attention should be given to these 
differences in any further assessment. However, the differences are not large so we will make use of 
linear regression to investigate other aspects of the trend analysis here.  

6.4 Comparison of trends for different interpolation methods 
In addition to the residual kriging maps, shown in figure 6.5, it is worth comparing these to maps made 
using pure model calculations and maps made using pure observational interpolation to assess any 
differences that result with the use of different data sources, i.e. model or observations. These are 
shown in figure 6.6 below, using linear regression as the trend analysis technique and using all station 
data. 
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Figure 6.6. Trend maps showing the linear regression trend for annual mean SO2 (1996-2005) of the 
EMEP model (left) and ordinary kriging of observations (right). The right map is made using all station 
data. Also shown for comparison in the kriging map are the station trends. Circles with colour indicate 
stations with at least 8 years of data and crosses indicate other stations used for the annual 
interpolations with less than 8 years of data. 

Discussion: The model trend for annual mean SO2 is everywhere very small or negative and reflects 
the average model trend of -0.44 μg.m-3.year-1, shown in figure 6.4. The pure observationally based 
kriging trend map also shows negative trends but these are higher, reflecting the average trend of -0.84 
μg.m-3.year-1 also shown in figure 6.4. As previously described in section 5.4 the kriging map will tend to 
show the mean trend of the 50 nearest stations when the interpolation is far from stations. 
Conclusions: The kriging trend maps do not provide good spatial information on the trend in areas 
where there are few stations for a good interpolation. 

6.5 Comparison of two station selection methods 
To assess the influence of station selection on the results two selection criteria have been used. The 
first includes all available data for all years and the second only stations with 8 or more years of data. 
The results are shown for the residual kriging (figure 6.7).  

 
Figure 6.7. Trend maps showing the linear regression trend for annual mean SO2 (1996-2005) all 
stations (left) and 8 year stations (right). The maps are made using residual kriging after regression of 
the EMEP model. Also shown for comparison are the station trends. Circles with colour indicate stations 
with at least 8 years of data (left and right) and crosses indicate other stations used for the annual 
interpolations with less than 8 years of data (left only). 

Discussion: In contrast to the results found for AOT40 trend, section 5.5, there is little difference 
between the two station selection methods for annual mean SO2. This reflects the average trends using 
the two selection criteria, figure 6.4, and also reflects on the general agreement between observations 
and model in regard to the trends. 
Conclusion: The inference here is that the results will be similar if the selected stations are 
representative of the general trends found at all stations. This was not the case for the AOT40 
calculations where the trend was smaller than the inter-annual variability, and varied substantially 
spatially. 

6.6 Comparison of two methodologies for determining trend uncertainty 
Two methods are applied here, see section 4.3, for determining the uncertainty in the trend. Firstly the 
standard deviation of the regression residuals is calculated and divided by the number of years over 
which the trend is determined, providing an estimate of the sample variability. Secondly use is made of 
the estimated uncertainty for each of the concentration estimates (based on the kriging or residual 
kriging variance) and Monte Carlo methods are applied to determine the uncertainty of the regression 
slope. 
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The second of these is demonstrated below (figure 6.8) for a randomly selected point in space. This 
figure, in the same way as in figure 5.9, shows 100 realisations of the Monte Carlo runs. The thick blue 
line shows the mean of the 100 realisations. The standard deviation of the regression slope from all the 
realisations is used to determine the uncertainty of the calculated trend. 
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Figure 6.8. Example Monte Carlo simulation for deriving the uncertainty in trends given an uncertainty in 
the input data. 

Due to the similarities in the two station selection trend maps, figure 6.7, we demonstrate the different 
uncertainty methods for the case where all station data is used, figure 6.9. These represent the 
standard deviation of 1) the Monte Carlo ensemble and 2) of the regression residual standard deviation. 

 
Figure 6.9. Trend uncertainty maps showing the uncertainty (standard deviation) in the linear regression 
trend for annual mean SO2 (1996-2005) using the Monte Carlo methods (left) and the residual standard 
deviation method (right). The maps are made using all available station data. Residual kriging after 
regression with the EMEP model is the interpolation method. Also shown for comparison are the station 
trend uncertainties. Circles with colour indicate stations with at least 8 years of data and crosses 
indicate other stations used for the interpolations but with less than 8 years of data. 

Discussion: The results presented here are similar to those found for AOT40, presented in section 5.6. 
The major difference here is that the uncertainty in the trend is significantly lower in comparison to the 
magnitude of the trend. This is shown, as in section 5.6, by comparing the ration of the trend to the 
standard deviations of the trends for the two methodologies (figure 6.10). For the Monte Carlo method a 
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large area of Europe shows trends in annual mean SO2 that are significantly larger than the calculated 
standard deviation.  

 
Figure 6.10. Maps showing the ratio of the absolute trend to the standard deviation of the trend for 
annual mean SO2 (1996-2005) using the Monte Carlo methods (left) and the residual error method 
(right). The maps are made using all station data. Residual kriging after regression with the EMEP 
model is the interpolation method. 

It is possible to compare the results presented in figure 6.10 with the Mann Kendall significance test. In 
this case the alpha parameter is set at 0.05, meaning that there is at a maximum a 5% chance that the 
trend is the result of a random process. Figure 6.11 shows this result for the same case as in figure 
6.10. As in the case with AOT40, the significance map is very similar to the residual error ratio map 
above at the contour value of 2, but covering a slightly reduced area. This is not surprising since they 
both represent a 90% percentile based on the same available data distribution.  

 
Figure 6.11. Map showing the Mann Kendall significance test for annual mean SO2 (1996-2005). 
Significance is based on the assumption of a maximum 5% chance that the trend is the result of random 
processes. Areas in dark purple are considered significant, i.e. the trend is considered not to be the 
result of random sampling processes. The map is made using all station data. Residual kriging after 
regression with the EMEP model is the interpolation method. 

 

Conclusion: The Monte Carlo method for uncertainty assessment indicates higher levels of uncertainty 
than does the residual error or Mann Kendall methods. This is the direct result of the inclusion of the 
interpolation uncertainty in the data used for the trend, rather than just the use of the data variability to 
indicate uncertainty. However, in all cases the trend in SO2 is shown to be significant for most of 
Europe. Further development and comparison of the uncertainty and significance methodologies would 
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be necessary to determine the best methodology for representing and communicating trend 
uncertainties.  

7 Conclusions and recommendations 
In this section we present specific conclusions from the study, some general conclusions concerning the 
methodology and trend assessment in general. We then provide a list of recommendations on further 
application and development necessary for improving the spatial assessment of trends. 

7.1 Conclusions concerning AOT40 and the spatial assessment of 
trends 
The following conclusions concerning the methodological application of trend assessment to AOT40 are 
reiterated from the various sections in this report. 

• A comparison of modelled and observed average trends provides the following conclusions 
(Section 5.2): 

o The EMEP model underestimates the observed AOT40 by more than a factor of two. 
o The model trend in AOT40 is decreasing whilst the observational trend in AOT40 is 

increasing, for both station selections. 
o The observed trend is a factor of three higher when all the available stations are used, 

compared to the 8 year station selection. 
o The modelled trend is less negative when all the available stations are used, 

compared to the 8 year station selection. 
o The inter-annual variability of the observations is larger than the inter-annual 

variability of the EMEP model. This is attributed to variability in meteorological 
conditions. 

• Linear regression and Sen’s method give very similar estimates for the trend. However, Sen’s 
method appears to be less sensitive to outliers and may be the preferred method of trend 
assessment in future studies (Section 5.3) 

• The trend maps can be very sensitive to the introduction of new stations, particularly when the 
new data differs strongly from the previously interpolated data and when the maps are based 
on observational data only (Section 5.4). 

• In this study two station selections were used; all available monitoring data and all stations with 
monitoring data available for at least 8 years. The interpolated trend maps are sensitive to the 
station selection, particularly when only kriging of observations is used. For this reason it is not 
recommended to use pure kriging of observations for trend analysis. When residual kriging is 
applied the spatial distribution of the trends is less sensitive to station selection. In areas where 
the station coverage is good for at least 8 years there is little difference between the two 
station selection methods tested here (Section 5.5). 

• Monte Carlo is not the only method for determining uncertainty in the trends but it provides a 
more realistic expression of the uncertainty than just using the regression residual standard 
deviation as it includes more information concerning the uncertainty of the data used for the 
trend. The usefulness and application of significance tests needs to be further considered, 
specifically in regard to the information conveyed in presentation maps (Section 5.6) 

7.2 Conclusions concerning SO2 and the spatial assessment of trends 
The following conclusions concerning the methodological application of trend assessment to SO2 are 
reiterated from the various sections in this report. 
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• A comparison of modelled and observed average trends provides the following conclusions 
(Section 6.2): 

o The EMEP model underestimates the observed annual mean concentration of SO2 by 
1/3.  

o There is a significant negative trend in SO2, for both model and observations. 
However, the model trends underestimate the magnitude of the observed trends in 
SO2 by a factor of two. 

o Both station selection methods applied (all available stations and only stations with 8 
years or more of data) give very similar average trends. 

o The trend over the 10 year period is non-linear. Before 2000 the trend was large but 
after this period the trend reduces significantly in magnitude 

• In the case of SO2, Sen’s methodology provides lower values for the magnitude of the negative 
trend. This is likely due to the non-linear nature of the trend. More attention should be given to 
these differences in any further assessment (Section 6.3).  

• The kriging of observations trend maps do not provide good spatial information on the trend in 
areas where there are few stations for a good interpolation (Section 6.4) 

• The Monte Carlo method for uncertainty assessment indicates higher levels of uncertainty than 
does the residual error or Mann Kendall methods. This is the direct result of the inclusion of 
uncertainty in the data used for the trend, rather than just the use of the data variability to 
indicate uncertainty. Further development and comparison of the uncertainty and significance 
methodologies would be necessary to determine the best methodology for representing and 
communicating trend uncertainties (Section 6.5). 

7.3 General conclusions concerning the spatial assessment of trends  
The following conclusions are more general in nature and present an interpretation of both the results of 
this scoping study and other comments and input. 

• The methodology applied here for spatially mapping trends of AOT40 and annual mean SO2 
concentrations makes use of both models, with good spatial distribution, and observations, 
with realistic measurements. There is a significant difference between the modelled and 
observed trends when viewed separately. Any spatial assessment of trend cannot be based on 
modelling alone and the interpolation methodology applied here for producing combined 
concentration maps is considered to be suitable for providing both spatial coverage and 
observed trends.  

• AOT40 is very sensitive to model bias and may also not be a good indicator for ozone trends. 
Use of other ozone indicators for trends may be more appropriate, as discussed in Solberg et 
al. (2008). The 26th highest daily 8 hour running mean, included in the air quality directive, may 
be a more appropriate indicator for trend assessment. 

• There is a need for better quality control of the monitoring data applied in the trend 
assessment. Solberg et al. (2008) carry out visual inspection of the data as a quality control. 
The results of that study, and other methods, can be used to help improve the quality of the 
maps presented here.  

• Two methodologies for calculating trends were presented here. These were linear regression 
and Sen’s method. Both methods gave similar results but Sen’s method was seen to be less 
sensitive to outliers. Though linear regression was applied more extensively in this study, 
Sen’s method may be more appropriate for further assessment. 

• The trend in SO2 was found to be non-linear in nature. Division of the period before and after 
2000 would give more information concerning the development of the trend in more recent 
years, compared to pre 2000 levels. 
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• The spatial mapping of the trends was found to be sensitive to the inclusion or selection of 
observational data. This is particularly the case when a monitoring site is introduced in an area 
where little monitoring is available and this new data differs from the interpolated value at that 
site. This was found to be most sensitive when the interpolation was based on kriging of the 
observations alone but less sensitive when interpolation also made use of the model results. 

7.4 Improvements for the spatial assessment of trends 
The current study was considered from the outset to be a feasibility study. Within the scope of this 
report it could not deal with the complete range of methodological or assessment possibilities. The 
following points discuss further improvements or questions that need to be addressed if the 
methodology is to be further developed and implemented. 

• How to deal with non-linear trends? Can these be assessed using the currently employed trend 
analysis methods? Are other analysis methods required? 

• How to best calculate and to represent the uncertainty, or significance, of the trends? In the 
current study two methods for determining uncertainty have been applied. From this the Monte 
Carlo method, which includes the interpolation uncertainty of each of the maps, gives larger 
uncertainty levels than methods based on the trend analysis alone. Are there other methods 
for determining the uncertainty and what is the best method for presenting the results? Is the 
calculated uncertainty appropriate for regions far from available observations?  

• How best to select the stations? What is the minimum level or requirements concerning the 
spatial distribution of stations in such a selection? Station selection has been shown in this 
study to influence the results. Though in an ideal world the use of stations with continuous 
monitoring is the most appropriate for trend analysis it would be a mistake to reduce the 
analysis to just these stations when added information is available from stations with shorter 
monitoring histories. How best to optimise this combination is not clear.  

• How many years are required for trend analysis? No tests were carried out concerning this 
aspect in the current study. PM10 was not assessed due to the shorter period of available data. 
PM10 could be assessed for a 6 year period but is this sufficient? 

• In regard to the spatial assessment of trends, what is the minimum required quality of each of 
the spatial maps to be included in the trend analysis?  

• What are the differences in trends resulting from subtle changes in the interpolation method, 
e.g. log-normal versus normal residual kriging or the inclusion of other supplementary data 
such as meteorology in the interpolations? 

• To enhance the assessment of uncertainty in the trends use can be made of cross-validation 
methods to assess the predicted trends at sites with available observations, thus allowing a 
comparison of ‘predicted’ and ‘observed’ trends. 

• Improved station selection. In this report all stations were used without question. There are 
large discrepancies between the cross-validation RMSE values obtained here and those 
obtained in Horálek et al. (2005; 2007; 2008) where more extensive station selection was 
carried out. In addition the ozone report from Solberg et al. (2008) has provided a list of ozone 
stations that should be excluded from the analysis. 

• The current study has been applied to rural stations only. The same methodology can also 
include urban and suburban stations in the analysis at a 10 km resolution. What will be the 
impact of this on the maps generated? Do trends differ spatially for the (sub)urban and rural 
stations? 
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Annex I: Yearly maps of AOT40 
To aid visualisation each individual map produced when using the residual kriging method for AOT40 
are presented. These maps show the effect of including all (left) or a selection of the stations (right). 

All stations    Selected stations >= 8 years 
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All stations    Selected stations >= 8 years 

 

 

 



Preliminary assessment report on the spatial mapping of air quality trends for Europe 

ETC/ACC Technical Paper 2008/3 37 

All stations    Selected stations >= 8 years 
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All stations    Selected stations >= 8 years 
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Annex II: Yearly maps of annual mean SO2 
To aid visualisation each individual map produced when using the residual kriging method for SO2 are 
presented. These maps show the effect of including all (left) or a selection of the stations (right). 

All stations    Selected stations >= 8 years 
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All stations    Selected stations >= 8 years 
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All stations    Selected stations >= 8 years 
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All stations    Selected stations >= 8 years 
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Annex III: Tables of monitoring data availability 
 
 

C ountry 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

FR 0 0 0 242 284 313 332 362 365 368

DE 273 274 267 248 281 280 284 261 248 237

E S 0 16 17 30 35 53 71 81 91 114

IT 0 0 0 50 39 57 59 72 91 105

AT 80 84 78 87 91 93 93 91 83 90

GB 37 53 63 64 62 63 68 69 74 75

C Z 21 26 28 29 29 30 29 35 39 53

P L 0 13 17 18 21 20 20 20 27 45

P T 0 2 1 6 7 11 14 20 28 31

NL 13 28 29 29 28 29 26 26 27 29

BE 14 17 18 18 22 22 23 24 25 27

S K 0 12 11 0 16 11 16 19 18 21

C H 19 19 18 18 18 17 17 16 17 17

F I 9 8 10 11 11 11 10 14 14 14

HU 0 5 1 1 1 1 1 3 6 14

S E 0 0 2 6 7 7 7 7 12 12

GR 0 2 0 1 3 12 11 11 9 9

NO 0 0 10 10 10 10 10 9 9 9

S I 0 3 4 4 4 3 7 7 8 8

BG 0 0 2 3 3 2 0 3 6 8

DK 0 2 7 6 0 6 6 6 6 7

RO 0 0 0 0 0 0 0 0 7 7

IE 0 0 0 5 5 5 6 6 5 6

LV 0 1 1 2 7 3 2 4 4 4

E E 0 1 1 2 3 4 4 4 4 4

LT 0 4 1 1 3 2 3 3 4 3

IS 0 0 0 0 0 0 0 1 1 1

R S 0 0 0 0 0 0 0 0 1 1

C Y 0 0 0 0 0 0 0 1 1 1

MK 0 0 0 0 0 0 0 0 1 1

MT 0 0 0 0 0 0 1 1 1 0

L I 0 0 0 0 0 0 0 0 1 0  
 

Ozone: Total of all rural, suburban and urban stations available for the calculation of AOT40 crops with 
an hourly average coverage > 75%. 
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C ountry 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

FR 0 0 0 216 236 246 242 235 209 207

DE 326 301 289 274 292 279 221 197 184 178

E S 0 14 16 27 29 56 55 68 67 111

P L 0 10 11 23 30 44 41 32 40 94

IT 0 0 32 26 27 35 31 48 58 90

AT 67 87 83 90 95 89 83 77 72 76

C Z 46 46 47 47 46 45 45 47 49 70

GB 30 37 48 49 49 59 58 57 57 59

NL 12 34 34 32 32 32 27 28 26 44

P T 0 5 5 8 8 13 14 20 27 35

BE 33 36 35 33 36 37 37 38 33 34

S K 3 18 6 5 5 5 5 18 18 18

HU 0 7 1 1 1 1 1 5 6 16

RO 0 0 0 13 14 13 16 15 18 16

S E 0 6 8 7 8 7 8 8 8 14

S I 0 1 2 0 2 1 6 6 6 13

R S 0 0 0 0 0 0 0 5 12 13

F I 1 2 8 7 7 7 7 5 6 12

NO 0 0 8 8 8 8 8 7 7 12

C H 15 15 14 14 11 11 10 8 10 10

BG 0 0 3 4 0 4 0 4 6 10

MK 0 11 10 4 7 6 8 9 7 9

LV 0 2 2 4 6 4 3 5 6 8

E E 0 1 2 2 3 4 4 4 4 4

LT 0 0 1 1 1 1 1 3 3 4

IE 0 0 0 0 0 0 1 2 3 3

DK 0 1 3 3 1 3 2 5 2 3

GR 0 2 0 2 1 8 6 7 3 2

BA 0 0 0 0 0 0 1 1 1 0

LV 0 0 0 0 0 0 0 1 1 0

L I 0 0 0 0 0 0 0 0 1 0  
 

SO2: Total of all rural, suburban and urban stations available for annual mean concentrations with a 
daily mean coverage > 75%. 
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C ountry 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

FR 0 0 0 0 0 108 182 207 213 222
DE 0 0 44 16 76 166 166 223 228 217

P L 0 4 3 13 18 24 28 27 54 98

C Z 46 46 47 47 46 45 41 43 44 82
E S 0 2 1 9 12 21 38 50 53 72

IT 0 0 0 0 2 12 12 33 45 54

AT 0 0 0 0 3 16 33 40 49 49
GB 18 31 38 40 41 50 46 45 49 46

P T 0 0 0 3 3 7 9 15 19 28

BE 1 4 4 6 10 13 13 17 23 23
NL 14 14 14 14 13 14 13 14 21 23

S K 0 0 0 2 2 3 5 18 18 18

C H 0 6 12 11 13 12 13 14 14 14
BG 0 0 1 0 1 1 0 5 4 13

HU 0 0 0 0 0 0 0 2 4 10

NO 1 0 0 0 0 1 1 2 4 9
S E 0 0 3 2 4 3 3 5 7 8

S I 0 0 0 0 0 1 5 5 5 7

F I 0 0 0 1 2 6 7 8 7 6
DK 0 0 0 0 0 1 4 3 2 5

RO 0 0 0 0 0 0 0 3 4 4

LT 0 0 0 1 0 0 0 1 2 3
IE 0 0 0 1 0 2 1 2 6 3

GR 0 0 0 0 0 4 4 5 5 3

E E 0 0 0 0 0 1 1 1 1 1
IS 0 0 0 0 0 0 0 1 1 1

R S 0 0 0 0 0 0 0 0 1 1

C Y 0 0 0 0 0 0 0 1 1 1
MK 0 0 0 0 0 0 0 0 0 1

LV 0 0 0 0 0 0 0 1 1 0

L I 0 0 0 0 0 0 0 0 1 0  
 

PM10: Total of all rural, suburban and urban stations available for annual mean and percentile 
concentrations with a daily mean coverage > 75%. 
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