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Erratum 
The study presented in the ETC/ACM Technical Paper 2011/10 investigated the potential of spatio-temporal kriging approaches for daily mean 
PM10 concentrations. The methods used include separate daily variogram estimates, temporally evolving variograms, the metric model, the 
separable covariance model and the product-sum model, and are combined with multiple linear regression. These methods are applied to daily mean 
rural background PM10 concentrations across Europe for the year 2005, and incorporate daily EMEP model data and elevation data as predictors. 
Unfortunately, the EMEP model data that has been incorporated in some of the methods has been distorted in the preparation for the analysis. This 
flaw has now been detected and corrected. An updated table summarizing all new results (as Table 3 in the original report) is presented below. The 
linear model underlying the residual kriging approaches now has a considerable higher explanatory value (an increase of the adjusted R² value from 
approx. 10% to 30%). In general, the cross-validation statistics are of the same order of magnitude as in the published report. However, the strength 
of the spatio-temporal approaches on a daily cross-validation is weakened due to the better regression. Nevertheless, the statistics on the predicted 
number of days exceeding the threshold of 50 µg/m³ improve. The best approaches on a yearly level remain the metric kriging approaches using 100 
and 1000 neighbours. 
Replacement for Table 3: Statistics for the cross-validation of the methods with the corrected EMEP data. Yellow cells score second best, green cells score best  
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ID none none 1-e 2 3 none 2-e 2-a 2-d none 3-a 3-b 3-b 3-b 3-c 3-d 3-e 3-f 3-f 3-g 3-h
Daily
RMSE 10.69 13.62 14.38 9.77 10.34 10.29 9.91 10.29 10.28 10.28 10.34 10.35 10.26 10.27 10.67 10.66 10.14 10.26
BIAS -0.29 0.00 2.76 -0.04 -0.20 -0.32 -0.11 -0.32 -0.31 -0.29 -0.33 -0.34 -0.50 -0.32 -0.47 -0.35 -0.11 -0.44
MAE 6.28 8.68 8.52 5.67 6.14 5.80 5.67 5.80 5.79 5.79 5.83 5.84 5.81 5.79 6.16 6.16 5.96 5.91

adj. R² 0.53
COR 0.73 0.48 0.44 0.78 0.75 0.75 0.77 0.75 0.76 0.75 0.75 0.75 0.76 0.76 0.74 0.74 0.74 0.75

Yearly
RMSE 5.84 5.88 5.96 6.60 7.22 4.77 4.93 4.87 4.95 4.82 4.87 4.88 4.92 4.97 4.97 4.90 4.92 4.66 4.57 5.44 5.26
BIAS -0.13 -0.06 -0.28 0.01 2.76 -0.02 -0.22 -0.34 -0.12 0.20 -0.34 -0.33 -0.31 -0.35 -0.36 -0.52 -0.34 -0.49 -0.37 -0.46 -0.10
MAE 4.09 4.10 4.13 4.92 4.87 3.32 3.43 3.42 3.45 3.40 3.42 3.43 3.45 3.50 3.52 3.45 3.45 3.29 3.28 3.99 3.81

adj. R² 0.38 0.37 0.37
COR 0.62 0.61 0.61 0.46 0.45 0.77 0.75 0.75 0.74 0.77 0.75 0.75 0.75 0.74 0.74 0.75 0.75 0.78 0.79 0.68 0.72

NOE
RMSE 19.09 25.71 24.95 16.78 16.47 15.69 16.96 15.69 15.71 15.84 16.02 16.14 15.49 15.87 14.36 13.84 19.97 18.43
BIAS 4.84 13.02 11.44 4.43 4.87 2.88 4.70 2.88 2.93 2.93 2.88 3.19 2.44 2.88 2.19 2.42 8.06 7.17
MAE 10.03 13.54 12.85 8.63 8.74 8.56 8.84 8.56 8.53 8.60 8.68 8.78 8.58 8.63 7.72 7.30 10.69 10.40

direct kriging
multi linear 
regression

multi linear regression + 
residual Kriging log multi linear regression + residual Kriging
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8 Spatio-temporal analysis and interpolation of PM10 measurements 

Summary 
This study investigates the potential of spatio-temporal kriging approaches for daily mean 
PM10 concentrations. The methods used include separate daily variogram estimates, 
temporally evolving variograms, the metric model, the separable covariance model and the 
product-sum model, and are combined with multiple linear regression. These methods are 
applied to daily mean rural background PM10 concentrations across Europe for the year 2005, 
and incorporate daily EMEP model data and elevation data as predictors. 

The air quality indicators used in this study are the daily and yearly mean PM10 concentrations 
and the number of days exceeding the limit value 50 µg/m³ (NOE). The quality assessment of 
the different techniques relies on a cross-validation. Statistical measures are used to quantify 
the improvement for different indicators. 

It is shown that daily interpolations can improve the statistical performance of the 
interpolation of annual mean PM10 concentrations, by a 7% reduction of RMSE in cross- 
validation. Furthermore, some advantages of daily estimates are described. Besides the 
improvement in annual mean PM10 concentration maps, studying the phenomenon in a wider 
spatio-temporal context becomes possible with daily estimates. Especially the estimation the 
number of days PM10 concentrations exceed certain limits can be done in a more natural way. 
Likewise, the detection of outliers and data inhomogeneity benefits from a daily spatio-
temporal model. 

Interpolation with the simple spatio-temporal variogram models used here exploits the 
temporal correlations present and out performs the purely spatial interpolation methods by a 
5-6% reduction of RMSE in cross-validation. Based on temporal variability of the spatial 
short-distance variation component, a discussion is given on the suitability of this statistic to 
infer measurement errors, and alternative approaches are proposed.  

As in this study the methods used for modelling spatio-temporal dependencies are very 
simple, we recommend to investigate the value of more comprehensive methods for this.  
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1 Introduction 
The increasing number of sensors and measurement stations with a finer temporal resolution 
call for sophisticated spatio-temporal interpolation methods. Investigating a series of maps 
showing the daily mean concentration of PM10 reveals significant temporal and hence spatio-
temporal dependencies. A purely spatial interpolation approach ignores these dependencies 
and can be seen as a spatio-temporal interpolation where all temporal correlations are set to 
zero. Obviously, investigating this additional source of information has some potential to 
improve the mapping of PM10 and spatio-temporal processes in general. Besides a few simple 
approaches, this report evaluates three full spatio-temporal kriging techniques. 

1.1 Aim and outline of the study 

This study was conducted to further explore the potential of different spatio-temporal kriging 
methods for daily PM10 measurements across Europe. Therefore, a set of different approaches 
has been implemented in R (R Development Core Team, 2011). Daily means from AirBase 
(EEA: AirBase version 5) across Europe for the year 2005 serve as a sample data set. A cross- 
validation study has been conducted and a set of different quality measures has been derived 
for every method. The cross-validations have been exploited at two temporal resolutions:  

• daily, comparing the predicted daily mean concentrations, and  

• yearly, looking at the station-wise annual mean of daily predictions.  
Additionally, the cross-validations compare the number of exceedance days (NOE) on a 
yearly level 

• NOE, i.e. the number of days where the predicted daily mean exceeds  
50 µg/m³ in 2005 have been compared to the observed number of daily exceedances. 

1.2 Spatio-temporal interpolation methods 

Several spatio-temporal interpolation methods have been applied. The approaches are set-up 
similarly to the interpolation methods presented in Denby et al. (2008a), to allow for an easy 
comparison between the ever growing set of new methods. Furthermore, annual interpolation 
methods, similar to those currently operationally implemented by ETC/ACM, are also 
considered for comparison. 

The set of evaluated spatio-temporal kriging methods is applied to differently pre-processed 
daily mean PM10 concentrations as provided by AirBase. We consider: 

1. the unaltered daily means 
2. residuals after multiple linear regression of the observed daily mean concentrations 

with altitude, EMEP model data and a periodic temporal predictor 
3. residuals after multiple linear regression of the logs of observed daily mean 

concentrations with altitude, EMEP model data and a periodic temporal predictor 

The kriging methods we investigate include: 

a. daily estimation of the variogram (see 2.2) 
b. evolving variograms using previous variograms to weight the current one (see 2.3) 
c. the constant pooled variogram over the year (see 2.4) 
d. the constant mean variogram over the year (see 2.4) 
e. moving window variogram estimation (see 2.5) 
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The aforementioned methods only make use of the temporal information through the 
variogram estimation. In additional three fully spatio-temporal methods were applied: 

f. a metric model (3D kriging, see 2.6) 
g. a separable covariance function (see 2.7) 
h. a product-sum covariance function (see 2.8) 

The separable and product-sum covariance functions assume the spatial and temporal 
correlation processes to be disjoint for space and time. The 3D kriging assumes time to be a 
third orthogonal dimension with identical correlation structure for spatial, temporal and 
spatio-temporal distances. Therefore, a rescaling of the temporal domain is necessary to 
reduce anisotropy in 3D kriging. 

Finally, the regression predictions and their residuals are united and back-transformed where 
necessary. The desired yearly averages are calculated per interpolated grid cell throughout the 
year. 

1.3 Assessment methodology 

The quality of all methods is assessed using statistical measures and applicability concerns in 
terms of processing time. The comparison of different interpolation methods takes place on a 
yearly (comparing yearly means for predictions and measurements) and daily (comparing 
daily means for predictions and measurements) level as well as in terms of the NOE. The root 
mean squared error (RMSE), the bias (BIAS), mean absolute error (MAE) and Pearson’s 
correlation coefficient (COR) between predictions and measurements at every location are 
calculated using leave-one-out cross-validation. Furthermore, a linear model for predictions 
and measurements is fitted and the adjusted R² considered as a fifth measure to assess the 
prediction quality. All methods are compared using the above measures where applicable. As 
reference values of the statistical measures, we provide values for different approaches relying 
on simpler models as well. All methods are implemented in R (R Development Core Team, 
2011) and heavily rely on the R packages spacetime (Pebesma, 2011) and gstat (Pebesma, 
2004).  

1.4 Data 

The daily mean PM10 concentrations test data is obtained from EEA’s AirBase (version 5) for 
all European countries. To enhance comparability to former interpolation approaches in 
Denby et al. (2008a), all methods are applied to daily mean values in 2005 of rural 
background stations. Different than in the yearly interpolation approach in Horálek et al. 
(2007), we used all measurement stations and not only those providing a data integrity of at 
least 75% throughout the year. Thus, the number of measurement stations amounts to 194. 
However, when considering the complete space-time lattice, i.e. where every space and time 
combination is available, the data set yields 2568 missing values (3.6%). Some methods 
benefit from the spatio-temporal setting and can correct for these missing values while others 
require a complete spatio-temporal data set. Details will be given in the following section. 
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Daily mean PM10 concentrations derived from model data by the European Monitoring and 
Evaluation Programme (EMEP) serve as additional data in the multiple linear regression. The 
50 km EMEP Polar Stereographic grid is converted and projected to match the 10 km gridded 
interpolation domain in the standard EEA ETRS89-LAEA5210 projection. Additionally, 
altitude data is used from both the AirBase measurement stations and from the EEA 10 km 
grid originating from the 30 arcsec GTOPO altitude grid (WGS84) as applied in Horálek et al. 
(2007).
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2 Details on spatio-temporal interpolation methods 
We consider a range of different spatio-temporal kriging methods varying from simple daily 
interpolations up to a full 3D approach, each highlighted in this chapter. 

The interpolation methods consist of using:  

a. separate daily variograms (see 2.2) 
b. daily evolving variograms with different weighting for current and previous day’s 

variogram (see 2.3) 
c. pooled variograms (see 2.4) 
d. mean variograms (see 2.4) 
e. moving window variograms (see 2.5) 
f. complete 3D variogram with either 100 or 1000 nearest neighbours (see 2.6) 
g. separate covariance function (see 2.7) 
h. product-sum covariance function (see 2.8 

 The underlying data are  

1. daily mean PM10 concentrations,  
2. residuals after a multiple linear regression of the concentrations, and  
3. residuals after multiple linear regression of the log-transformed concentrations.  

The spherical variogram model repeatedly appears to be best suited to capture the spatial and 
temporal dependencies and is therefore adopted in all methods. Its parameters are fitted using 
the functions provided by the R package gstat (Pebesma, 2004). The R scripts that were used 
are available from the authors upon request. 

To support the multi-linear regressions the PM10 concentrations and their log-transforms 
undergo some pre-processing (section 2.1). When adding the interpolated residuals again to 
the estimates produced by the multi linear regression some post-processing (section 2.9) is 
needed to compensate for bias in  case of using log-transformed data.  

2.1 Pre-processing 

A multiple linear regression is applied to the daily mean PM10 concentrations from the 
AirBase database and their log-transforms. The predictors include: 

• the daily EMEP grid cell’s prediction value for every station 
• a temporal index to adjust for periodic yearly changes: cos (day

365
⋅ 2π) 

• station altitude 

In contrast to the yearly interpolation approach for rural areas (Horálek et al., 2007), 
meteorological data (wind speed, solar radiation) are not used here as the predictors.  

Variations in the combination of the chosen predictors are also tested. This set-up is used for 
multiple linear regression of the daily mean and the log transformed daily mean PM10 
concentrations. An overview of the estimated regression coefficients for the different 
parameters can be found in Table 1 below. 
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Table 1: Multiple linear regression coefficient estimates and standard errors for daily mean PM10 concentrations and their 
log-transforms. The adjusted R² is given in square brackets. 

multi linear regression coefficients … 

 … for PM10 [0.05] … for log(PM10) [0.10] 

 Estimate Std. Error Estimate Std. Error 

Intercept 23.7929 0.0996 3.0190 0.0042 

EMEP model 0.0800 0.0091 0.0035 0.0004 

Time 3.5697 0.1392 0.1195 0.0058 

altitude -0.0089 0.0002 -0.0006 0.0000 

model:time -0.0848 0.0126 -0.0040 0.0005 

time:altitude -0.0053 0.0002 -0.0004 0.0000 

 

Figure 1 shows the normal quantile-quantile-plots for both linear regression models. These 
plots are well suited to visually judge the underlying assumption of normal distributed 
residuals. Perfectly normal distributed residuals would follow the dotted diagonal line. 

Figure 1: Diagnostic plots showing the normal quantile-quantile-plots for both regression models. 

Referring to the upper plot, the assumption of normal distributed residuals does not hold as 
the dots heavily deviate from the line on the right side. This indicates a right skewed data set. 
However, the residuals of the log-transformed data do seem to fulfil this requirement. 
Therefore and due to the higher adjusted R² value, most of the results presented in this report 
refer to the log-transformed multiple linear regression. For comparison, a few results are 
based on the non-transformed regression as well. 

2.2 Separate daily variograms (a) 

The simplest approach is to interpolate the daily mean PM10 concentrations for every single 
day separately by independently fitted daily variograms. This allows the spatial dependence 
pattern to change on a daily basis. However, large local variability for single days may result 
in singular variogram estimates neglecting any spatial dependence. Kriging is then performed 



ETC/ACM Technical Paper 2011/10 15 

for every time slice separately. The temporal component of this approach is reflected in its 
flexibility allowing for changing spatial dependence structures. This might be advantageous 
compared to the interpolation of yearly mean PM10 concentrations with a single spatial 
variogram. This is the kriging method applied by Denby et al. (2008a). 

2.3 Daily evolving variograms (b) 

Assuming temporal continuity in the spatial dependence patterns that might be partially 
covered by white noise processes raises the idea of daily evolving variograms. The estimation 
of the variogram’s parameters is to a certain degree controlled by the history. In order to allow 
for a flexibly varying sill for every day, it is estimated from the current day only. The 
𝑛𝑢𝑔𝑔𝑒𝑡/𝑠𝑖𝑙𝑙 ratio is then controlled using previous estimates. This method introduces an 
additional parameter that controls the weighting between current and previous estimates as 
follows: 

𝑟𝑎𝑛𝑔𝑒 = 𝜆 ⋅ 𝑟𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟 + (1 − 𝜆) ⋅ 𝑟𝑎𝑛𝑔𝑒𝑝𝑟𝑒𝑣

𝑛𝑢𝑔𝑔𝑒𝑡 = �𝜆 ⋅
𝑛𝑢𝑔𝑔𝑒𝑡𝑐𝑢𝑟𝑟
𝑠𝑖𝑙𝑙𝑐𝑢𝑟𝑟

+ (1 − 𝜆) ⋅
𝑛𝑢𝑔𝑔𝑒𝑡𝑝𝑟𝑒𝑣
𝑠𝑖𝑙𝑙𝑝𝑟𝑒𝑣

� ⋅ 𝑠𝑖𝑙𝑙𝑐𝑢𝑟𝑟

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑖𝑙𝑙 = 𝑠𝑖𝑙𝑙𝑐𝑢𝑟𝑟 − 𝑛𝑢𝑔𝑔𝑒𝑡

 

Where the subscript 𝑐𝑢𝑟𝑟 indicates the estimate of the current day and 𝑝𝑟𝑒𝑣 refers to the 
weighted estimate of the previous day. The recursive structure includes all preceding days but 
with an exponentially decaying influence. As before, kriging is performed time slice wise, but 
the estimation of the variograms to some degree utilizes the temporal information. 

2.4 Pooled variogram (c) and mean variogram (d) 

Assuming a constant spatial structure throughout the year leads to another extreme case where 
every day is interpolated using the same variogram. Averaging the empirical variograms for 
every lag class leads to the pooled variogram. Every day is treated as a copy of the same 
spatial dependence structure by taking the mean of all daily semi-variances within each lag-
class. An alternative approach consists of averaging all variogram parameters (i.e. nugget, 
partial sill and range) of the non-singular daily estimates referred to as mean variogram. The 
estimated parameters of the spherical variograms of both approaches are given in Table 2 for 
comparison.  
Table 2: Estimated variogram parameters for different spherical variogram models for the residuals of the log-transformed 
PM10 concentrations. 

 pooled variogram (c) mean variogram (d) 

Nugget 0.0916 0.0842 

partial sill 0.2538 0.2477 

range [m] 880534 568081 

2.5 Moving window variograms (e) 

This method is a union of using separate daily and constant variograms. The variograms are 
calculated as the mean variogram for a moving window. Beside the current estimate, 
estimates of three preceding and three following days are used to average the variogram 
parameters. This method allows for daily changing variograms without only relying on the 
structure present in a single day. Kriging is again performed for every day separately utilizing 
the temporal information in the estimation process only. Adaption of seasonal or trend 
components in the spatio-temporal dependence structure is the strength of this method.  
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2.6 Time as a 3rd dimension (f) 

Considering time to be the third orthogonal dimension leads to a natural 3-dimensional 
extension of 2-dimensional kriging. In order to allow for meaningful results, the temporal 
dimension has to be rescaled to align with the spatial directions. A reasonable fit (by visual 
comparison of the spatial and temporal variograms) could be achieved assuming one day to 
correspond to a distance of 120 km, which reflects the ratio of the ranges of the spatial 
variogram and the temporal variogram. With this rescaling, the set of the most correlated 
neighbours in space and time will have the strongest influence on the prediction. Otherwise, 
mostly temporal neighbours would be used showing no more dependence after approximately 
6 days. This method relies on a single variogram (nugget: 0.09, partial sill: 0.29, range: 
816859 m; see Figure 2) and predictions can be made for any point in the space-time cube. 
Therefore, this approach enables us to generate transition maps between days. The 
interpolation is no longer restricted to single time slices and every location is estimated based 
on its 100 nearest neighbours in the space-time cube (note that predictions made for early 
January mostly depend on following observations where predictions in late December mostly 
rely on past observations). Additionally, 1000 neighbours were selected to study the influence 
of the neighbourhood. In this approach, missing values in a single time slice are made up for 
by using values from the preceding and following time slices. Thus, all the available data 
across space and time is incorporated. 

 
Figure 2: Variogram of the 3D kriging approach of the residuals of the log-transformed PM10 concentrations. Distance 
corresponds to meters, where a temporal difference of 1 day equals 120 km. 

2.7 Separable covariance function (g) 

Extending the kriging approach from space to space-time alters the covariance function. In 
space and under the assumptions of isotropy and stationarity, the covariance is a function 
𝐶(ℎ) of the separating distance ℎ between two locations. A spatio-temporal covariance 
function is thought of as a function of a spatial and a temporal distance 𝐶(ℎ, 𝑡). In general, 
this function is hard to estimate. A separable covariance function is assumed to fulfil 
𝐶(ℎ, 𝑡) = 𝐶𝑆(ℎ) ⋅ 𝐶𝑇(𝑡) and the distinct spatial and temporal effects can be estimated with 
relative ease. The interpolation is performed based on the complete spatio-temporal data set 
provided for the variogram estimation. This allows predicting values at any location and point 
in time. 

A drawback of this approach potentially affecting the predictions occurs when one has to deal 
with incomplete data sets. The estimation of the kriging weights relies on identical and 
complete time series for every spatial location. In order to adopt for a large number of missing 
values in the AirBase data set, a month wise spatio-temporal interpolation is performed. 
However, the spatial and temporal variograms used in the monthly interpolations are fitted 
once for the full set of observations only. Thus, the predictions are based on a discrete set of 
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temporal neighbourhoods. The spatial variogram is the mean variogram as modelled before, 
and for the temporal variogram we use the spherical model and all available time series were 
taken as representative for the same temporal process (nugget: 0.10, partial sill: 0.48, range: 
5.5 days). 

 

2.8 Product-sum covariance function (h) 

A powerful extension to the above is the introduction of the product-sum covariance function. 
It relies on the assumption that the spatio-temporal covariance function 𝐶(ℎ, 𝑡) can be written 
as 𝐶(ℎ, 𝑡) = 𝑘1𝐶𝑆(ℎ) ⋅ 𝐶𝑇(𝑡) + 𝑘2𝐶𝑆(ℎ) + 𝑘3𝐶𝑇(𝑡) where 𝑘1 > 0 and 𝑘2,𝑘3 ≥ 0 are real 
coefficients. We follow an estimation approach introduced by De Iaco (2001) where the 
coefficients 𝑘1, 𝑘2 and 𝑘3 depend on the spatial, temporal and spatio-temporal sills. Figure 3 
shows the empirical and the estimated spatio-temporal variogram. The extended covariance 
model gains flexibility in modelling the spatio-temporal process. This approach has a similar 
technical drawback as the one before: the estimation can only be based on complete spatio-
temporal datasets. Thus, we follow the same month-wise interpolation work around using 
disjoint temporal neighbourhoods which might as well affect the predictions. Additionally, we 
restrict the method to all locations within a range of 1200 km, otherwise the necessary 
inversion of large matrices in the kriging process would fail due to the very small weights of 
far apart stations.  

2.9 Post-processing 

After the residuals have been interpolated, they are added again to the estimates produced by 
the multiple linear regression. In general, the kriging predictor is asymptotically unbiased and 
will give the correct estimate. In our case, the estimates are correct for the log-transformed 

Figure 3: Empirical and fitted spatio-temporal variogram (gamma) of the residuals of log-transformed PM10 
concentrations used in the product-sum covariance method. 
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concentrations. The non-linear back-transformation using 𝑒𝑥𝑝 alters the weights of the linear 
prediction on the non-log scale resulting in biased predictions. Unfortunately, a full correction 
for this bias of the joint linear regression and kriging predictor cannot be derived and we are 
restricted to use the kriging variance 𝜎²(𝑠) of the residuals at each prediction location 𝑠 as an 
estimate. Predictions that have been log-transformed in the pre-processing step are back-
transformed using 𝑌(𝑠) = exp (𝑍(𝑠) + 𝜎(𝑠)²/2) including the correction factor to lower the 
effect of the unbiased estimator (Denby et al., 2008b). Here, 𝑍(𝑠) denotes the estimate at 
some location 𝑠 combining the multiple linear regression model with the kriged residuals. The 
kriging variances are back-transformed by 𝑉(𝑠) ≔ (exp (𝜎2(𝑠)) − 1) ⋅ exp(2 𝑌(𝑠) + 𝜎2) 
(Equation 2, Denby et al., 2008b). The annual PM10 averages are given by the means per grid 
cell of all daily interpolated values and the annual variance is roughly approximated by the 
formula given by Denby et al. (2008b, Appendix A). The number of exceedance days is 
calculated by checking for exceedances at a daily prediction level. 
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3 Results 
In general, most of the spatio-temporal interpolation techniques perform reasonably well. 
None of the cross-validation scatterplots shows a completely different structure than the 
others. However, a method in favour can be selected based on the statistical analysis.  

3.1 Statistical measures 

The sequential cross-validation leaving each station out once and predicting the measurements 
from the remaining ones is the key to compare the different interpolation approaches. For 
every cross-validation a set of statistical measures is calculated: the root mean square error 
(RMSE) providing the standard deviation of the errors, the bias (BIAS) and mean absolute 
error (MAE) indicating the mean and mean absolute deviation of the prediction. Furthermore, 
Pearson’s correlation coefficient and the adjusted R² of a linear model for predictions vs. 
measurements are calculated. The full set of all cross validation results is given in Table 3 
which compares the listed methods on a daily and yearly basis. The row denoted with ‘ID’ 
refers to numbers and letters assigned to the methods introduced in Section 1.2. Table 3 
provides the set of benchmarks for:  

• direct kriging  
• multiple linear regression only  
• results for different kriging approaches using the residuals after multiple linear 

regression of PM10 concentrations  
• results for different kriging approaches using residuals of the multiple linear 

regression of log-transformed PM10 concentrations.  

Each interpolation approach is a composition of the pre-processing strategy (indicated by 1 – 
3) and the kriging method (indicated by a – h), and indicated in the blue header cells. Thus, 
some kriging techniques appear several times in Table 3, but under different pre-processing 
strategies. Every column defines a unique interpolation approach. 

The three direct kriging methods (first three columns) do not use residuals of a multi linear 
regression and are applied directly to the measurements. The direct methods “yearly means” 
and “yearly log means” interpolate the measurement stations’ yearly (log) mean values across 
Europe. Hence, they cannot be compared on a daily basis and do not predict days exceeding 
the limit concentration and are thus mainly given as reference values. 

The second set of columns entitled “multi linear regression” describes pure regression models 
predicting the PM10 concentrations in Europe. The residuals of these approaches provide 
ultimately the data for our kriging approaches of which their statistical results are presented in 
the third and fourth set of methods. The multiple linear regression used at the method “TP 
2007/8 (3a)” differs from all regressions introduced earlier in this report and is therefore not 
represented in the table at this second set of methods. The approach “TP 2007/8 (3a)” uses 
residuals from daily multiple linear regression models of the EMEP model data and altitude.  

We re-implemented the method described by Denby et al. (2008a) and re-performed their 
analysis with all available data as in our approaches to increase comparability. The third and 
fourth set of methods represents their statistical results. 
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Table 3: Statistics for the cross-validation of the benchmarking of the methods. Yellow cells score second best, green cells score best. The red 
numbers in the NOE rows indicate the worst under-prediction of 0 exceedance days. (NA = not applicable). 

Erroneous values in this table. See Erratum at front of paper with corrected values in the replacement table. 

2005
yrl. 

means
yrl. log 
means

3D 
[100] once

log, 
once

TP 
2007/8 

(3a)
3D 

[100]
sep. 
days mean

yrl. 
means

sep. 
days

evo: 
λ=0.9

evo: 
λ=0.5

evo: 
λ=0.1 pooled mean mow

3D 
[100]

3D 
[1000]

sep. 
COV

p-s. 
COV

ID none none 1-e 2 3 none 2-e 2-a 2-d none 3-a 3-b 3-b 3-b 3-c 3-d 3-e 3-f 3-f 3-g 3-h
Daily

RMSE NA NA 10.69 15.16 15.68 10.04 10.10 9.86 9.80 NA 9.86 9.85 9.87 9.91 9.92 9.87 9.84 9.84 9.86 9.63 9.37
BIAS NA NA -0.29 0.00 3.70 -0.07 -0.25 -0.14 -0.15 NA -0.14 -0.14 -0.14 -0.21 -0.12 -0.36 -0.15 -0.24 -0.21 0.59 0.49
MAE NA NA 6.28 10.17 9.68 5.91 5.84 5.65 5.61 NA 5.57 5.57 5.57 5.60 5.60 5.59 5.56 5.66 5.71 5.61 5.50

adj. R² NA NA 0.53 0.05 0.04 0.58 0.58 0.60 0.60 NA 0.60 0.60 0.60 0.59 0.59 0.60 0.61 0.60 0.60 0.59 0.61
COR NA NA 0.73 0.22 0.20 0.76 0.76 0.77 0.77 NA 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.78

Yearly
RMSE 5.84 5.88 5.96 6.77 7.78 4.87 4.97 4.96 4.98 5.04 4.93 4.94 4.98 5.01 5.03 4.98 4.97 4.66 4.76 5.31 5.14
BIAS -0.13 -0.06 -0.28 0.03 3.72 -0.05 -0.24 -0.12 -0.14 -0.20 -0.12 -0.12 -0.12 -0.19 -0.10 -0.34 -0.13 -0.22 -0.19 0.34 0.19
MAE 4.09 4.10 4.13 4.95 5.25 3.35 3.46 3.40 3.43 3.49 3.31 3.32 3.34 3.38 3.41 3.35 3.33 3.24 3.34 3.71 3.67

adj. R² 0.38 0.37 0.37 0.16 0.15 0.58 0.55 0.55 0.55 0.54 0.55 0.55 0.54 0.53 0.53 0.54 0.58 0.61 0.59 0.49 0.52
COR 0.62 0.61 0.61 0.41 0.40 0.76 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.73 0.74 0.74 0.78 0.77 0.70 0.72

NOE
RMSE NA NA 19.09 27.30 27.30 17.23 17.37 17.39 17.54 NA 16.25 16.26 16.44 16.44 17.10 16.09 16.56 14.85 15.18 20.62 20.91
BIAS NA NA 4.84 15.43 15.43 4.84 4.85 5.06 5.08 NA 4.12 4.11 3.99 3.75 4.66 3.38 4.04 3.95 4.10 10.12 9.98
MAE NA NA 10.03 15.43 15.43 8.66 9.08 8.86 8.90 NA 8.21 8.28 8.39 8.36 8.72 8.39 8.41 7.88 7.94 10.84 11.10

log multi linear regression + residual Krigingdirect kriging
multi lin. 

regression
multi lin. regression + 

residual Kriging
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Comparing the results on a yearly level, the two 3D kriging approaches using residuals of a 
multiple linear regression on log-transformed measurements (with 100 and 1000 neighbours 
in space and time) perform best. Especially the prediction of Number of Exceedance days 
(NOE) shows a clear gain. Even if both methods have a considerable bias, they seem to 
capture the exceedance structure better than the competitive approaches. It is interesting to 
notice that the approach relying on fewer neighbours performs better.  

The ranking on a daily level is not as straight forward as on a yearly level. In terms of adj. R² 
and COR, most approaches are hard to distinguish from each other. The lowest bias was 
found for the method following the one by Denby et al. (2008a), “TP 2007/08 (3a)”. 
However, RMSE and MAE are within the range of the larger ones. Using the spatio-temporal 
product-sum covariance model, “p-s. COV (3-g)”, results in the smallest RMSE and MAE. 
Unfortunately, its bias is one of the highest. 

It is interesting to notice that the multiple linear regression presented in this report performs 
worse than regressions presented earlier (Denby et al., 2008a) although the overall prediction 
improves. Thus, the residuals seem to provide a stronger spatial dependence structure. 

Two cross-validation scatter plots on a daily and yearly level are given in Figure 4. They are 
based on the multiple linear regression of the log-transformed PM10 daily mean values and 3D 
kriging over 100 neighbours (see Section 2.6). The plots show a reasonable fit on the yearly 
level where the daily cross-validations still have pretty large deviations. Extreme outliers 
observed in the daily comparison are discussed in more detail in chapter 4.  

 

 
Figure 4: Two cross-validation plots of the best performing method for yearly and daily mean PM10 concentrations. 
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3.2 Maps 

We chose the best performing procedure according to the statistical measures on a yearly 
level (3D with 100 neighbours, 3-f) to produce a map of rural background concentrations over 
Europe in Figure 5. The standard deviation shown in Figure 5 (right) approximates the 
standard deviation of the predicted annual means. It is derived as described by Denby et al. 
(2008b, Appendix A) using a temporal correlation coefficient of 0.3. However, block kriging 
(Cressie and Wikle, 2011) where the blocks are years would provide more correct values than 
the approximate approach suggested by Denby et al. (2008b).  

 

Figure 5: Interpolated map of yearly mean PM10 concentrations in Europe 2005 (left) and the  approximate annual standard 
deviation of the predictions calculated as by Denby et al. (2008b) using a temporal correlation coefficient of 0.3 (right). The 
method adopted is the 3D interpolation using 100 neighbours. 
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Figure 6 shows the observed and estimated number of exceedance days. Some of the very 
high values in Eastern Europe have to be read with care. The high kriging variances in these 
areas cause higher predictions due to the aforementioned back-transformation function. Thus, 
one should consider the map of residual kriging variances as well (Figure 5, right). 
Unfortunately, the values for France are probably not as low as the maps suggest. The data 
provided by France for the year 2005 were not corrected for a different measurement 
technique. The measurements are known to be roughly 30% below their official European 
reference measurement equivalent (MEEDDAT 2008). A time series of interpolated maps is 
shown in Figure 7 and illustrate the day to day evolution of the interpolated mean PM10 
concentration levels that may occur. 

 

 

Figure 6: Observed (left) and modelled (right) NOE of daily PM10 in 2005. 
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Figure 7: Interpolated maps for daily PM10 concentration from May 1 to 9, 2005. 
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4 Detecting extremes 
Investigating the very prominent outliers in the daily and yearly cross-validation plots (Figure 
4) reveals a set of stations that typically have several mismatches. Additionally, the 
mismatches tend to occur at the same day for different stations or temporally and spatially 
close. Those cases might indeed be extreme observations compared to the overall European 
daily mean PM10 concentrations. However, locations and days showing only a single 
mismatch might yield candidates for further investigation. 

Figure 8 shows that very strong under-predictions typically occur during the summer and 
winter months. Over-prediction of values seems to be rather rare. Interestingly, a single 
station is responsible for five of the very strong deviations during winter (red dots). The time 
series of this station, CZ0TVER, is given in Figure 9. During the summer months, the most 
extreme values are due to four stations in Portugal (red dots). Their time series for the 
corresponding months are given in Figure 10. As for any smoothing method, under-prediction 
of extremes is a property of the kriging method used here as well. 

 
Figure 8: Cross-validation plot of daily mean PM10 concentrations by season of 2005. 
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Figure 9: Time series for 2005 of predicted and measured daily mean PM10 concentrations for the Czech station CZ0TVER. 

 

 

 

Figure 10: Subsets of four time series for 2005 of stations in Portugal. 
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5 Discussion 

5.1 Is inclusion of spatio-temporal correlation worth the effort? 

This report shows that for the spatial interpolation of air quality parameters, it pays off to 
include temporal correlation to extend spatial-only correlation. This is not surprising, as it 
could be expected that these correlations would be present, and ignoring (correlated) 
information is in principle to some extent a loss. Including temporal correlations comes at a 
cost of a more complex modelling effort, and the statistical gains need to be weighed against 
the costs of processing.  

The comparison of interpolation methods was done based on cross-validation of rural 
background stations, and was done for one year (2005). The choice of this year was made to 
allow comparison to earlier method comparison studies (Denby et al., 2008a). Evaluating a 
method comparison over several years, or from year to year, might yield different results but 
was out of scope for this report. Thus, further studies are needed to evaluate the robustness of 
the presented statistical spatio-temporal models that were qualified as best performers in this 
report based on the 2005 data only. Once deemed robust, these alternative spatio-temporal 
interpolations or recommendations based on proposed evaluations of asymmetric spatio-
temporal covariance models could be applied routinely in mapping and assessment activities 
that are primarily based on measurement data. The cross-validation study carried out here was 
done by leaving out, one-by-one, full station time series. As the number of stations is 
relatively small and the spacing between pairs of stations is relatively large, there is a 
possibility that this causes another source of variability to the evaluation results. In addition, 
lack of short-distance station pairs means that cross-validation statistics concern interpolations 
to distant locations, whereas the use of interpolation for mapping involves to a large extent the 
interpolation to nearby locations. These two limitations (variability, lack of short distances) 
are inherent to the data availability and cannot be circumvented without having additional 
measurement sites. 

The symmetric spatio-temporal covariance models evaluated in this study (3D metric (3-f), 
separable (3-g), product-sum (3-h)) are the most simple methods available. More 
comprehensive models could for instance address asymmetry in spatio-temporal covariance. 
In particular for hourly or daily air quality values, it may be expected that the interplay of 
emissions and weather cause air quality patterns that move over Europe. Seen as a stochastic 
process, such movement can only be captured by a transport model or by an asymmetric 
spatio-temporal covariance model. Capturing spatio-temporal dependence by covariances 
implies that, possibly after transformation, a multivariate Gaussian model is capable of 
capturing the dependence structure. 

Copulas may serve as a useful tool to model asymmetric spatio-temporal data (Gräler et al., 
2010). They capture the dependence structures of multivariate distributions independent of the 
distributions’ margins and allow to change continuously over the range of the observations. 
Thus, pairs of low, high or mixed observations may exhibit a different strength of 
dependence. Additionally, dependencies may be asymmetric such that tomorrow’s 
measurement may depend differently on today’s value than vice versa. The fact that 
dependencies may change for different magnitudes of the observations allows to model rural 
and urban concentrations in a single process considerably improving the resolution of the 
measurement network. Spatial copulas as presented by Gräler et al. (2011) can be used to 
model spatial and similarly spatio-temporal data and serve as a probabilistic tool to interpolate 
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spatial and spatio-temporal data. Thus, copulas might also be a useful tool to model PM10 
concentrations and similar data contained and commonly interpolated in AirBase.  

When computing yearly means from daily estimates (Section 3.2, Figure 5), the correct 
kriging variances were not computed for these mean values. We followed the approximation 
given by Denby et al. (2008b), but the better, direct approach would be to use block kriging 
with blocks reflecting a year (i.e., with blocks aggregating over time, as opposed to space). 
However, before implementing block kriging in the routinely annual mapping exercise 
research is needed to select the appropriate models and proof its robustness across a series of 
different years. Given a sufficient robustness, block kriging could be implemented as default 
method. 

 

5.2 Uncertainty and nugget effects 

Measurement uncertainty, the quantitative expression of measurement errors, is hard to obtain 
from in situ sensors when no simple replicates are taken under controlled circumstances. 
Every difference between two simultaneous measurements is the result of the combination of 
measurement error and variability (in space, in time) of the measured PM10. 

Gerboles and Reuter (2010) suggest using the spatial variability to inform about measurement 
errors: they argue that the nugget variance is an upper limit to the measurement error. Figure 
11 shows time series of variogram parameters (including nugget variances) of residuals of log 
transformed PM10 for daily variograms over 2005. It shows large variability over time. 

 
Figure 11: Development of daily variogram parameters of residuals of log transformed daily mean PM10 concentrations 
during 2005. “jsill” indicates the sill (nugget + partial sill, or the variance of the process); “ratio” indicates the ratio of nugget 
over sill. 

The high temporal variability in nugget variances can be attributed to both natural (temporal) 
variability of the spatial correlation and variability attributable to the problem of fitting a 
variogram from limited measurement information. The problem of fitting a variogram from 
measurement information tends to be further augmented by a lack of short spatial distances 
between observation locations, which is typical for in situ sensor monitoring networks. The 
assumption here is that nearby monitors yield redundant information, and inter-monitor 
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distances are rather maximized to obtain a spatially regular distribution against the least 
monitoring costs.  

A potentially more stable procedure as an alternative to using (spatial) nugget variances to 
estimate an upper limit to the measurement errors would be to use temporal variability, 
possibly in combination with spatial variability. A first attempt could be to use (half of) the 
variance of the lag-one differences, in time series of (hourly) measurements series, as a 
potentially much smaller upper limit to measurement error. This could also reveal station-
specific difference that could be worth investigating, or location-specific temporal changes in 
(upper limits to) measurement errors. A better and more comprehensive attempt would be to 
use spatio-temporal hierarchical modelling (Cressie and Wikle, 2011) where at the first level 
the data model essentially isolates the measurement error as an explicit term. 
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6 Conclusions 
In this study we have investigated a set of different approaches to utilize the spatio-temporal 
dependence when interpolating daily and annual mean PM10 concentrations of rural 
background stations across Europe. Beside rather simple methods, three full spatio-temporal 
kriging approaches have been presented. A cross-validation has been conducted in order to 
evaluate the different interpolation methods. For comparability to the interpolation approaches 
in Denby et al. (2008a), all methods are applied to observational data of the year 2005.  

We have shown how a daily, instead of an annual interpolation method, improves the 
prediction of yearly mean PM10 concentrations. The MAE and the RMSE decreased by 7% 
(see Table 3: improvement of “3D [100] (3-f)” relative to the single annual interpolation using 
residuals of log-transformed annual mean concentrations “yrl. means”) and the adjusted R² of 
the linear model for predictions and measurements increased by 12%. We found that the 3D 
kriging approach (3-f, with 100 neighbours) provided the best statistical results for almost all 
statistical indicators for the 2005 data assessed. In particular it was found to improve the 
prediction of the number of days exceeding the limit of 50 µg/m³ by reducing the RMSE for 
NOE by 10% and the MAE by 5% compared to the simpler approaches 3-a to 3-e (see Table 
3). However, these improvements are relatively modest. It is likely that the exploited temporal 
dependencies are responsible for this improvement but further studies are needed to evaluate 
the robustness of the presented procedures for a number of different years. 

Furthermore, asymmetric dependence structures, as they are likely to be found in spatio-
temporal data where transport in a particular direction takes place, are not captured by the 
simple symmetric methods evaluated in this report. More flexible methods for modelling 
spatio-temporal dependence that can deal with asymmetries, for instance spatio-temporal 
copulas (Gräler et al., 2010) may be used to better reflect spatio-temporal variability in 
(observational) air quality variables. Beside additional evaluation of the robustness the 3D 
kriging approach for a series of years, we recommend to investigate in addition the potential 
of the copulas approach in further studies. However, before implementing one of such spatio-
temporal interpolation methods as improved default in the routinely applied mapping 
exercise, they should have proven their robustness over several data years and for a set of 
statistical indicators. 

Beside the improvement of the statistical measures, daily interpolations provide additional 
advantages. As briefly demonstrated in Chapter 5, daily predictions allow for a spatio-
temporal assessment of outliers incorporating model results. Furthermore, mismatching 
stations or seasons can be identified. Routinely checking measurements against their 
predictions will detect deviations from the model. The performance of this outlier detection 
method has to be compared with other approaches integrating spatial information from several 
time series. Outliers identified this way by no means need to indicate errors; they indicate 
merely extremes in the context of the statistical models entertained. Nevertheless, identifying 
such extremes may be a useful first step leading to careful re-examination of particular sites. 
Several promising test methods identifying ‘questionable’ extremes are provided in Gerharz et 
al. (2011). Looking into NOE of daily mean PM10 concentrations, one can identify and study 
the spatio-temporal distribution of the exceedances using daily predictions in a more natural 
way. It is questionable whether the interpolation of the yearly number of exceedance days 
registered at every measurement station is a sensible measure. The temporal aggregation of 
exceedance days to a single yearly number neglects the temporal dependence and distorts the 
spatial dependence structure.  

A full uncertainty investigation needs to take the uncertainty associated with the multiple 
linear regression into account as well. Here, we only considered the kriging variance, which 
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reflects the configuration of measurement locations. Beside the inclusion of measurement 
stations reporting less than 75% of their data coverage potential for a whole year, no structural 
differences could be detected on the log-scale. Further probabilistic measures should be 
evaluated to communicate uncertainties within the policy field. The advances made so far are 
not yet sufficient in this regard. One way of improving the uncertainty measure would be to 
encapsulate the full interpolation procedure in a Monte Carlo sampling routine. Thus, multiple 
predictions would be generated and the variability of these realisations would provide a 
measure of uncertainty. As outlined in the last paragraph of section 5.1, block kriging would 
improve the uncertainty measure provided for the yearly means. In order to reduce the sub-
grid variability, we recommend to further investigate non-stationary covariance models and 
anisotropic kriging approaches. The methods developed and discussed in this report can easily 
be applied to other measures of air quality as well. However, the findings in terms of the best 
method might be different. The results are strongly related to the spatio-temporal dependence 
structure of the phenomenon and their robustness should be evaluated for multiple years, 
preferably in a combined capture of asymmetry in the expected dependence structures. Once 
deemed acceptable, alternative spatio-temporal interpolation methods could be applied 
routinely in future mapping and assessment activities that are based on measurement data 
primarily. 
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