
Measurement artefacts and inhomogeneity detection  1

 

Measurement artefacts and 

inhomogeneity detection 

 

 
 

 
 

 

 

ETC/ACM Technical Paper 2011/8 

November 2011 
 

 

 

 

Lydia Gerharz, Benedikt Gräler, Edzer Pebesma 
 

 

 

 

 

The European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) 
is a consortium of European institutes under contract of the European Environment Agency 

RIVM UBA‐V ÖKO AEAT EMISIA CHMI NILU INERIS PBL CSIC 

 



  ETC/ACM Technical Paper 2011/8 2 

Front page picture: 
 
Top: Example of a Type I outlier: monthly mean CO concentration time series 1997 ‐ 2009 for a station with detected outliers (red dots) of 
type I (peaks, i.e., additive isolated outliers not affecting the time series; the isolated observations exceed a fixed upper and lower threshold 
level. Possibly caused by a measurement error); ‐ This paper, Appendix A.1, Monthly average data, graph I.co.    

Bottom: Example of a Type  II.b outlier: daily mean PM10 concentration  time series  for  Jan. –  Jun. 2007  for Germany  for a station with a 
detected  temporal structure change or  level shift  (between  red dots) classified as outliers of  type  II.b.  (an  innovative outlier  that affects 
subsequent observations and as such the time series (Type II) with a class ‘b’ characteristic, i.e., an innovative outlier showing a transient 
change characteristic and as such a short‐term effect in the time series. Possibly caused by wrong concentration units reported/registered 
or missing correction factors); ‐ This paper, Appendix A.1, Hourly data, graph IIb.pm10.   

 

Author affiliation:  
 
Lydia Gerharz, Benedikt Gräler, Edzer Pebesma:  Institute For Geoinformatics (IfGI), University Of Muenster 
 
 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 
 
 
 
 
 
 
 

 

 

 

 

© ETC/ACM, 2011. 
ETC/ACM Technical Paper 2011/8 
European Topic Centre on Air Pollution and Climate Change Mitigation 
PO Box 1 
3720 BA Bilthoven 
The Netherlands 
Phone +31 30 2748562 
Fax +31 30 2744433 
Email etcacm@rivm.nl  
Website http://acm.eionet.europa.eu/  
 

This ETC/ACM Technical Paper has not been subjected to European Environment 
Agency  (EEA) member country review.  It does not represent  the  formal views of 
the EEA. 

mailto:etcacm@rivm.nl�
http://acm.eionet.europa.eu/�


Measurement artefacts and inhomogeneity detection  3

 

INSTITUTE FOR GEOINFORMATICS, UNIVERSITY OF MUENSTER 

Measurement artefacts and 
inhomogeneity detection 

ETC/ACM Task 1.0.2.2  ­ Subtask 3  

ETC./ACM Technical Paper 2011/8 
 

Lydia Gerharz, Benedikt Gräler, Edzer Pebesma 

lydia.gerharz@uni‐muenster.de 

11.11.2011 

 

 

 

 

 





Measurement artefacts and inhomogeneity detection  5

Content 
 

SUMMARY ........................................................................................................................................................... 7 

1 INTRODUCTION.............................................................................................................................................. 9 

1.1 AIM ............................................................................................................................................................... 9 
1.2 SCOPE............................................................................................................................................................ 9 

2 INHOMOGENEITIES .................................................................................................................................... 11 

2.1 INHOMOGENEITIES IN AIR QUALITY MEASUREMENT TIME SERIES ................................................................ 11 
2.2 EXAMPLES FROM AIRBASE ......................................................................................................................... 12 

3 CURRENT INHOMOGENEITY CHECKS IN AIRBASE ......................................................................... 15 

4 REVIEW OF METHODS FOR DETECTING INHOMOGENEITIES..................................................... 17 

4.1 ARIMA TIME SERIES MODEL....................................................................................................................... 17 
4.1.1 Modelling inhomogeneities................................................................................................................. 18 
4.1.2 Autoregression model (AR2)............................................................................................................... 18 

4.2 DISTRIBUTION-BASED INHOMOGENEITY DETECTION ................................................................................... 18 
4.3 MOVING WINDOW FILTERS .......................................................................................................................... 18 

4.3.1 Whole window – Simple statistics (MW)............................................................................................. 19 
4.3.2 Two-sided window – Simple statistics (MW2) .................................................................................... 19 
4.3.3 Lag-1 differences (LAG1)................................................................................................................... 20 
4.3.4 Moving average filter (MA filter) ....................................................................................................... 20 

4.4 MULTIVARIATE METHODS ........................................................................................................................... 21 
4.4.1 Reference time series .......................................................................................................................... 21 
4.4.2 Spatio-temporal analysis .................................................................................................................... 22 

4.5 OTHER METHODS......................................................................................................................................... 22 

5 METHOD EVALUATION ............................................................................................................................. 23 

5.1 DATA .......................................................................................................................................................... 24 
5.1.1 Synthetic data ..................................................................................................................................... 24 
5.1.2 AirBase data ....................................................................................................................................... 24 

5.2 METHOD IMPLEMENTATION ........................................................................................................................ 25 
5.3 PARAMETER OPTIMISATION......................................................................................................................... 27 

5.3.1 AR2 ..................................................................................................................................................... 28 
5.3.2 MW ..................................................................................................................................................... 28 
5.3.3 MW2 ................................................................................................................................................... 30 
5.3.4 LAG1 .................................................................................................................................................. 31 
5.3.5 MA filter ............................................................................................................................................. 32 

5.4 PERFORMANCE AND ROBUSTNESS TESTS ..................................................................................................... 34 

6 RECOMMENDATION AND CONCLUSIONS ........................................................................................... 37 

6.1 SUMMARY RESULTS PER METHOD ............................................................................................................... 37 
6.2 RECOMMENDED METHODS .......................................................................................................................... 38 
6.3 CONCLUSION AND OUTLOOK ....................................................................................................................... 39 

REFERENCES.................................................................................................................................................... 41 

APPENDIX/SUPPLEMENTARY DATA......................................................................................................... 43 

A.1 TEST DATA PLOTS....................................................................................................................................... 43 
Monthly average data.................................................................................................................................. 43 
Hourly data.................................................................................................................................................. 47 

A.2 PARAMETER OPTIMISATION PLOTS PER TIME SERIES ................................................................................... 49 
Monthly data................................................................................................................................................ 49 
Hourly data.................................................................................................................................................. 52 

 

 





Measurement artefacts and inhomogeneity detection  7

 

Summary 
The aim of the presented study was the review and evaluation of methods for statistical 
detection of inhomogeneities in air quality measurement time series in AirBase. For air 
quality time series, two different types of inhomogeneities were identified (I) outliers and (II) 
structural changes or breaks.  

A literature study was carried out to identify existing methods for statistical inhomogeneities 
detection. From the reviewed techniques, five simple stochastic methods were selected and 
implemented in R to be tested with air quality data. The selected methods are  autoregressive 
lag-2 model, moving window (whole window) test, moving window (two-sided window) test, 
lag-1 differences and moving average filter.  

Test time series with labelled inhomogeneities from AirBase for monthly and hourly data 
were prepared to evaluate the implemented methods. The selected methods were tested for 
their performance (number of correct detections) and their robustness (sensitivity of 
parameters for different data sets). The performance was measured using the Jaccard’s 
coefficient  which penalises false positive and false negative detections. Under maximisation 
of  optimal parameters for each method could be estimated. Robustness was estimated by 
applying the methods on a validation data set with the parameters estimated beforehand using 
the test data sets. 

For the outlier (type I) detection the moving window (whole window) test showed very good 
results for the performance as well as for the robustness tests. Results for the structural 
changes (type II) were not as clear as for the outliers. The most promising method was the 
moving average filter with a tendency to over-detection. However, the visual checks of the 
method’s results indicated that the detection method of the extremes in variance of the 
window averages (which is the indicator for a structural change) could be improved which 
might help to reduce the over-detection problem. Therefore, further tests are recommended to 
develop a more robust method which can be used for automatic inhomogeneity detection. 
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1 Introduction 

1.1 Aim 

Inhomogeneities and measurement errors are inherent to air quality measurement time series. 
In the AirBase database, data quality is ensured by several checking procedures. However, 
some outliers may still pass first checks and propagate into the derivative products like daily 
or monthly averages. The aim of this working paper is to provide a categorisation of different 
outlier types occurring in air quality time series, to review existing methods on their 
capability to capture those outliers, and to test a set of pre-selected methods on different types 
of time series from the AirBase database. Finally, a recommendation of simple and robust 
methods for outlier and inhomogeneity detection in air quality time series and an outlook on 
the possibility of implementing an (free, open source) outlier detection tool will be made 
based on the results of the prototypical implementation and tests of these methods. 

 

1.2 Scope 

The data in AirBase comprises a large set of different pollutants, measurement devices, station 
types, temporal resolution and thus various types of possible outliers. We do not aim to give a 
comprehensive analysis of all existing outlier detection methods nor on a solution for all 
different air quality data types existing in AirBase. This report aims at providing an overview 
of different outlier detection methods and focuses on those using local statistics and robust 
parameterisation, which will be used for automatic detection of outliers in single (uni-variate) 
PM10, O3, CO and NO2 measurement time series. Methods were implemented prototypically 
and provided in scripts for the R statistical language (Ihaka & Gentlemen, 1996). R provides 
an open source environment for statistical analysis of data. Parameters will be derived and 
tested for a number of different pollutant time series with varying temporal resolution.  

 





Measurement artefacts and inhomogeneity detection  11

 

2 Inhomogeneities  

2.1 Inhomogeneities in air quality measurement time series 

From the statistical perspective, an inhomogeneity is an observation or a number of 
observations which show deviations from the general pattern of the time series. This does not 
always mean it is a true outlier from the air quality perspective. For example, the PM10 
measurements during New Year’s Eve usually show extremely high values around midnight 
due to the fireworks. As this happens only once a year this is truly an outlier from the time 
series from a modeller’s perspective, but it is not a wrong measurement. Therefore statistical 
outlier detection is only the first step to identify potentially “suspicious” values which has to 
be followed by a thorough analysis of the possible causes. 

Within meteorological and air quality measurement time series, different types of outliers can 
occur. Typically these outliers can have various reasons. Different methods are needed to 
detect the different types of outliers. For example, Tsay (1988) distinguishes between 
additional and innovational outliers. Whereas additional outliers affect a time series only at 
the point in time they occur, innovational outliers change the structure of the time series from 
the time on they occur. In air quality measurement time series the first type can occur due to 
measurement errors whereas the second one can be caused for example by changes in 
instrumentation. 

In this report, based on the analysis of time series from AirBase, we distinguish between these 
two main types as “Outliers” and “Structure changes” whereas the latter one includes different 
definitions of inhomogeneities: 

I. Outliers: 
Additive outlier  only one observation, does not affect rest of the time series (Peak) 

II. Structure changes/Level shifts: 
Innovation outlier  affects time series (subsequent observations) 

a. Persistent change  Break (abrupt change, e.g., change of instrumentation) 

a.1. Change in mean 

a.2. Change in minimum 

b. Transient change  short-term effect on the process 

 

Table 1: Categorisation of inhomogeneities in air quality time series. 

Type Description Possible cause 

I  Outliers measurement error 

IIa1 Break in mean change/replacement in monitors, data transfers, 
change in reporting units (e.g., initially µg/m3 , later 
ppb) 

IIa2 Break in minimum change in treatment of data below detection limit 

IIb Transient change wrong concentration unit, missing correction factor 
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Table 1 gives an overview of the inhomogeneity types identified in air quality time series and 
possible reasons causing these outliers. Of course, these definitions depend on the temporal 
resolution of the data. For example, outliers are more often found in time series with a higher 
temporal resolution, such as hourly data, and are averaged out when moving to coarser 
resolutions. Structural changes on the other hand are more regularly found in coarser resolved 
time series (see next section for examples).  

 

2.2 Examples from AirBase 

Inhomogeneities occur at different temporal resolutions and for different pollutants. Thus 
examples are taken from AirBase for monthly and hourly averages of CO, NO2, SO2 and 
PM10. The data shown here was also part of the test data used in the method evaluation (see 
appendix A.1 Test data plots). 

 
Figure 1: Type I outlier examples for monthly CO and hourly PM10 data. 

 

 
Figure 2: Type IIa1 permanent change (break in mean) examples for monthly SO2 data. 

 

 
Figure 3: Type IIa2 permanent change (break in minimum) examples for monthly O3 and NO2 data. 
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Figure 4: Type IIb transient change examples for monthly CO and hourly PM10 data 
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3 Current inhomogeneity checks in Airbase 
Raw data uploaded annually to AirBase undergoes beforehand the quality control of the 
responsible member state. If the member states use the Data Exchange Module (DEM) for 
submitting the data, additional quality checks are performed: 

Outliers (type I) checks by: 

 Exceedance of fixed upper and lower threshold levels  

Structural changes (type II) checks by: 

 Yearly mean calculated from the submitted data is zero 

 Yearly mean calculated from the submitted is negative 

 Yearly mean is more than three times lower or higher than previous yearly mean 

These checks for just that reporting year qualify all concentrations above or below a threshold 
value as being “questionable”. The upper and lower threshold values are pollutant dependent 
but kept constant over the years and, in general, similar for all countries and station types. 
This simple and unrefined filter is efficient in detecting extreme isolated outliers (type I) and 
some flagrant structural extremes of type II, such as concentrations in wrong units or inserted 
default codes in the concentration field indicating for example ‘missing value’ or ‘value below 
detection limit’. Many inhomogenieties and component specific behaviour in measurement 
patterns will be missed. 

When suspicious data is detected via these checks, a report is send back to the member state 
with request for correction. The member state corrects data or accepts identified outliers 
which are then uploaded to AirBase. 
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4 Review of methods for detecting inhomogeneities 
A plethora of different methods for detecting outliers and breaks in time series are available in 
literature. Inhomogeneities and outliers in times series are usually detected by statistical 
models or approximations of the “general” shape of the curve to detect deviations from this 
shape. Those models use statistical properties, for example the autoregression between values 
at different times, to describe the time series. Outliers can be defined as deviation from the 
shape described by the statistical properties. Such statistical outliers do not necessarily have to 
be true outliers as exceptional measurements in air quality can be caused by specific 
conditions, such as extreme emission events. A general way to model time series is to 
decompose the series up into different components (see for example Chatfield, 2004): 

 Trend component, could be linear or non-linear 

 Periodic component, e.g., daily or seasonal patterns usually approximated by sinus or 
cosinus functions 

 Random component, i.e. white noise 

The shape of the curve can be estimated globally by a parametric model (see 4.1/4.2) or 
locally within a window surrounding the value under investigation (4.3). Besides 
investigating a single time series at a time, multivariate methods use time series of nearby 
stations or different parameters at the same station to detect outliers (4.4). However, not all 
methods could be investigated and tested here. As the detection of inhomogeneities should be 
performed unsupervised, i.e. automatic, not every method in literature is equally suited for our 
purposes. In this report we will focus on simple, statistical methods for detecting outliers and 
structural changes. Other methods will be presented and briefly discussed in chapter 4.5.  

 

4.1 ARIMA time series model 

Detecting and removing inhomogeneities is important for robust estimation of parameters for 
time series models used ,e.g., for prediction. One commonly used model type is the 
autoregressive integrated moving average (ARIMA) model (Chatfield, 2004). The ARIMA 
model consists of an autoregressive and a moving average component. The autoregressive 
(AR) component of order p is: 





p

i
ititt yay
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  

The observation y at time t can be estimated by the sum of the previous observations within 
lag p and weighted with ai plus an additional error term εt. The moving average (MA) model 
describes the observation at time t as the sum of errors within lag q weighted by bj: 
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4.1.1 Modelling inhomogeneities 

Numerous studies have dealt with the problem of detecting inhomogeneities using ARIMA 
models. Such approaches use a parametric, deterministic or stochastic, function to model the 
outliers, while the function is independent from the underlying ARIMA model fitted to the 
time series (Tsay, 1988). Thereby additional outliers (type I) as well as innovational outliers 
(structural changes, type II) can be considered and detected by hypothesis tests. 

Methods based on the ARIMA model require parametric fitting of the model to complete 
times series or subsets of time series which requires considerable knowledge and prior 
analysis of the time series. For example, the time series needs to be cleaned from trend and 
seasonal components before the ARIMA model can be fitted (Fox, 1972). Thus the automated, 
unobserved inhomogeneity detection using this type of models remains difficult. 

4.1.2 Autoregression model (AR2) 

A simplified version of the ARIMA model uses only the autoregressive properties of the time 
series. For a small lag in a time series of e.g. air quality measurements the values usually 
show a strong autocorrelation as the changes in air quality parameters are not completely 
random and happen slowly.  

Zhang et al. (2011) used an AR model of order 2 to detect outliers in time series of air 
temperature and relative humidity. They found the detection useful in application of wireless 
sensor networks. As the method only uses retrospective data it can be used in real-time 
settings to detect outliers. 

 

4.2 Distribution­based inhomogeneity detection 

In the distribution based inhomogeneity detection outliers are defined as outliers of a 
parametric distribution function representing the time series observations. Usually these 
methods require a fitting of a distribution to the whole time series. Grubb’s test for outliers 
(Grubbs, 1950) offers a simple way of outlier detection but requires the assumption of a 
normal distribution. An outlier is detected by calculating a test statistic G which is the 
maximum deviation of an observation from the mean of the time series divided by the 
standard deviation of the time series. If G exceeds a certain threshold derived from the 
distribution function, the null hypothesis of no outliers is declined and the respective value is 
identified as outlier in the time series. By repeating this procedure, one outlier at a time can be 
identified until all are removed from the time series.  

Another approach was followed by Van der Loo (2010). He used linear regression of 
Quantile-Quantile-plots of the measurements and the cumulative distribution function. In the 
extreme values package in R he offers two methods to identify outliers: (I) by determining the 
threshold above which only a certain number of observations is expected and (II) by deriving 
a test statistics if the extreme value could be drawn from the designated distribution. 
However, the implementation is not able to deal with data point with invalid or not available 
(NA) values in the time series and was therefore excluded from further analysis. 

 

4.3 Moving window filters 

A widely used group of methods to check for inhomogeneities are based on examining the 
local neighbourhood of each point in time, i.e. all neighbouring values within a certain time 
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window. The advantage of these methods is that no assumptions about stationarity of the time 
series have to be made. For an appropriate window size the influence of a global trend and 
periodic component can be ignored. Besides the window size and threshold values for 
inhomogeneity detection, no additional parameters need to be fitted. The optimal size of the 
window depends on the change rate within the time series and might be constant or adaptive. 
In the case of the AirBase measurement data the window size will likely be different for 
different temporal resolutions, possibly also for different pollutants. 

 

4.3.1 Whole window – Simple statistics (MW) 

Basu & Meckesheimer (2007) demonstrated the use of window statistics on flight data 
recorder measurements on altitude and roll angle. In their method, the deviation of a 
measurement from the median of the surrounding measurements was used as detection 
methods for outliers (type I) in the sensor data. Alternatively to the median, the mean can be 
used although it is more sensitive to outliers. 

For the whole window statistics thresholds for the deviation of a measurement from the 
window mean/median t,µ need to be estimated. In Basu & Meckesheimer (2007) absolute 
values depending on the phenomenon were chosen. Ideally, the thresholds are derived from 
the time series itself, e.g., by its variability. This can be done by using either the local standard 
deviation within the window or the global standard deviation estimated for the whole time 
series. Thereby values are classified as thresholds if they fall outside the range of +/- the 
standard deviation y times a factor f of ,e.g., 3. The standard deviation can be estimated 
locally within the window or globally for the whole time series. An outlier test would then 
look like: 

trueffif yµtyµt  )|( ,, 
 

 

4.3.2 Two­sided window – Simple statistics (MW2) 

A method to detect structural changes is to compare statistics between the lower, i.e. 
containing previous measurements, and the upper, i.e. containing future measurements, half of 
a window surrounding the value. Depending on the type of structural change, different 
statistics might be useful, e.g., a change in mean (type IIa1) could be assessed by comparing 
the means in both window halves. Potential test statistics are: 

 T-Test on significant differences of means in both window halves 

 Testing against thresholds of differences between both window halves in 

o Means  

o Medians  

o Minima  

o Maxima  

o Quantiles  

o Variance  

While for the T-Test a level  of significance is required, the thresholds for the other methods 
can be derived in a similar way as for the whole window approach but using a factor for the 
global standard deviation of the values as threshold.  
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4.3.3 Lag­1 differences (LAG1) 

Instead of looking at the measurements, the first derivative (lag 1 differences) can be used to 
allow conclusions about outliers. Horálek et al. (2004) presented a methodology using the 
distribution of lag-1 differences t,t-1 = yt - yt-1 between the measurements within a window to 
detect inhomogeneities. Therefore a double exponential (Laplace) distribution is fitted to the 
lag-1 differences per window and upper and lower quantiles derived from this distribution are 
tested against thresholds. Three error types can be distinguished: 

 

Type a 

One difference falls outside the quantiles of probability  or 1-This corresponds to an 
extreme growth or decline within the window (structural change, type II). 

trueqqif tttt   )|( 11,1,   

 

Type b 

Two subsequent differences fall outside the same quantiles of probability  or 1- This 
corresponds to an ongoing increase or decline in values (structural change, type II). 

trueqqif tttttttt   )&|&( 1,11,,11,   

 

Type c 

Two subsequent observations fall outside different quantiles of probability  and 1- This 
corresponds to an increase and decrease or decrease and increase of values, i.e. negative or 
positive peak, within one interval (outlier, type I). 

trueqqqqif tttttttt   )&(|)&(( ,111,1,11,   

 

4.3.4 Moving average filter (MA filter) 

Rao & Zurbenko (1994) used a moving average filter as a low pass filter to smooth upper-air 
measurement time series. Applying the moving average filter iteratively separates seasonal 
pattern and the trend from the short term variations that are averaged out. Thus, structural 
changes are preserved and cleaned from random components. For the smoothed time series 
the variance per window is calculated. At break (type II) locations local maxima for the 
variance remain. Detecting these maxima can be tricky, as the variance varies continuously 
with peaks of different size. It is critical to determine which peak size allows the conclusion 
of a true structural change. This can be done by, e.g., first separating the highest percentage of 
variance values and then detecting in each region the peaks in variance (see Figure 5 for 
illustration). 
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Figure 5: Raw and, filtered time series with the variance of the filtered value. Local maxima in variance are detected by 
cutting of the upper percentage (red line) and estimate the maximum within each region. 

 

In Zurbenko et al. (1996) the moving average filter approach was extended to an adaptive 
version. The adaptive filter dynamically adjusts length of the window depending on the rate of 
change (the more change, the smaller the window size). Therefore the data first needs to be 
smoothed by the non-adaptive moving average filter. Then the values can be used to calculate 
the rate of change (as differences between smoothed data points) to estimate the size of the 
adapted filter. If the differences are decreasing the half window size behind the data point is 
reduced, if differences are increasing, the half before the data point is reduced. This adaptive 
version requires additional computing time but possibly yield better results if the rate of 
change is highly variable within the time series. 

 

4.4 Multivariate methods 

Instead of taking only the actual time series into account, using additional data from the same 
or neighbouring stations can be helpful to separate true inhomogeneities due to, e.g., 
measurement errors from regional effects. Although these techniques were not implemented 
for this report, a review of methods is presented here for consideration in future work. 

4.4.1 Reference time series 

For climate data, i.e. annual averages, a common method is building reference time series 
from nearby stations. The aim is thereby to determine which stations will have least 
inhomogeneities and are comparable to the time series of interest. Alternatively to using 
neighbouring measurements of the parameter, covariate time series of other parameters or 
pollutants from the same station can be used for similar analyses if they are correlated. 

Potter (1981) tested each time series against a mean series created from the nearby stations. 
By repeating this for each station he could determine which stations had inhomogeneities 
compared to the majority of the other stations. In the double mass curve analysis (Kohler, 
1949) cumulative sums of candidate and reference time series (mean of several stations) are 
plotted together. Breaks in the line indicate structure change. Alternatively the residuals 
between candidate and reference time series can be tested for randomness in the residuals. 
The standard normal homogeneity test (SNHT, Alexandersson, 1986) detects non-randomness 
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which is an indicator for outliers or breaks. As another simple approach, multiple linear 
regression can be performed on the candidate series using nearby reference series as 
independent variables to predict the candidate series (Vincent, 1998). If the regression 
residuals are still auto-correlated, the time series is divided into segments. Thus, the time 
series is divided into homogeneous segments, separated by structural changes.  

4.4.2 Spatio­temporal analysis 

Spatio-temporal analysis of measurement time series takes neighbouring time series together 
with their distance to the candidate time series into account. Spatial or spatio-temporal 
interpolation can help to identify outliers (type I). As shown by Gräler et al. (2011) cross-
validation of interpolations leaving one station out can reveal outliers.  

 

4.5 Other methods 

Numerous other methods for inhomogeneities exist but were excluded from further analysis 
as they are not well suited for simple, automated application. Peterson et al. (1998) gives a 
comprehensive overview of further inhomogeneity detection methods for climate data.  

One group that should be mentioned here is imputation methods. Imputation aims to 
substitute missing values removed as outliers and can therefore also be applied to detect 
inhomogeneities by leaving out suspicious values. One commonly used method is 
interpolation of the missing value using nearby valid measurements. To detect outliers, each 
value can be interpolated and the deviation between the interpolated and  measured value be 
compared to a defined threshold. Junninen et al. (2004) summarise a number of imputation 
methods from simple ones like Nearest Neighbour and regression-based imputation to more 
complex ones like self-organising maps and neural network multi-layer perceptron 
techniques.  
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5 Method evaluation  
From the methods identified in the literature review a set of simple methods was selected for 
implementation and evaluation with AirBase data. The focus during this initial selection was 
on methods which require few parameterisation and can be run automatically. The further 
evaluation tests focused on 

 Performance, i.e., correctly detected outliers 

 Computing time, especially for large amounts of data, like hourly measurement time 
series 

 Robustness, to allow prior parameterisation and application on new data sets without 
new calibration 

 

Performance can be measured in numbers of correctly detected outliers (true positive and true 
negatives), over-detected outliers (false positives) and under-detected outliers (false 
negatives) as shown in Table 2. A higher performance requires minimisation of false 
negatives and false positives. A simple parameter to measure for the performance is the 
Jaccard’s coefficient as used by Basu and Meckesheimer (2007): 








 




tp

fnfp
1

1  

Thus, the coefficient will always be positive with a maximum of 1. Very small values for  (~ 
0) indicate bad performance of the method while the perfect detection of outliers would lead 
to  = 1. Note that in the coefficient the number of true negatives is not included as this 
number is usually much higher than the other counts and would dilute the influence of these. 
In this version of the coefficient fp and fn get the same weight, which can be adapted if either 
under- or over-prediction is considered more important. 

 

Table 2: Overview of performance measures for outlier detection. 

 Method – not outlier Method – outlier 

Ground truth – not 
outlier 

Clean data points – true 
negatives (tn) 

Overdetected outliers – 
false positives (fp) 

Ground truth – outlier Underpredicted outliers – 
false negatives (fn) 

Outliers – true positives 
(tp) 

 

In this chapter first the data used for evaluation is introduced. Then the initial implementation 
of the methods with the necessary parameters will be described. Next, selected time series 
from AirBase with identified outliers were used to estimate the optimal parameters for the 
implemented methods under maximisation of Jaccard’s coefficient. Finally, the robustness and 
the computation time per method are estimated for validation data sets using the optimised 
parameters. 
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5.1 Data  

5.1.1 Synthetic data 

Following the approach of Zurbenko et al. (1996) synthetic data produced under controlled 
conditions was used to initially test the method implementations. The data was created from a 
linear trend, seasonal pattern (sinus function) and random noise sampled from a Gaussian 
distribution. Type I inhomogeneities were added by randomly selecting values to which the 
mean of the trend was added or substracted  (see Figure 6). Type II inhomogeneities were 
added with size 0.1-0.5 of the white noise component (see Figure 7). 

 
Figure 6: Synthetic data with type I inhomogeneities. 

 

 
Figure 7: Synthetic data with type II inhomogeneities. 

 

5.1.2 AirBase data 

As test data sets time series of different pollutants and temporal resolution were selected from 
AirBase to estimate the optimal parameters per method. Specifically data available was: 

 Monthly data of CO, NO2, O3, SO2 (1990/97-2009) for Europe 

 Hourly data of PM10 (2007) for Germany 
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From these data sets, time series with inhomogeneities of type I, IIa1, IIa2, IIb and clean time 
series as reference, depicted as type III, were selected as shown in Table 3. For each time 
series the locations of the inhomogeneities was recorded to allow the calculation of . Plots of 
the time series are in appendix A.1 Test data plots.  

For each time series or part of a time series (e.g. within a window) the number of missing 
values was estimated. Only if > 75 % of the data was available, the respective statistics were 
calculated. Therefore, outliers in regions with many missing values might be missed by some 
of the methods, depending also on the size of the window used for the analysis. 

Table 3: Time series from AirBase selected as test data. 

Time series ID Outlier type Pollutant Temporal 
resolution 

I.co Outlier CO Monthly 

I.so2 Outlier SO2 Monthly 

I.pm10.1 Outlier PM10 Hourly 

I.pm10.2 Outlier PM10 Hourly 

IIa1.so2.1 Permanent change in mean SO2 Monthly 

IIa1.so2.2 Permanent change in mean SO2 Monthly 

IIa1.so2.3 Permanent change in mean SO2 Monthly 

IIa2.o3.1 Permanent change in minimum O3 Monthly 

IIa2.o3.2 Permanent change in minimum O3 Monthly 

IIa2.no2 Permanent change in minimum NO2 Monthly 

IIb.co Transient change in mean CO Monthly 

IIb.pm10 Transient change in mean PM10 Hourly 

III.co Clean data series CO Monthly 

III.o3 Clean data series O3 Monthly 

III.no2 Clean data series NO2 Monthly 

III.pm10.1 Clean data series PM10 Hourly 

III.pm10.2 Clean data series PM10 Hourly 

 

Additionally, for the tests on performance and robustness a different collection of validation 
data sets was selected. Therefore for each type I, II and III one monthly and one hourly time 
series was chosen, resulting in 6 validation time series. 

 

5.2 Method implementation 

Each selected method was implemented as a function in the R statistical environment (Ihaka 
& Gentlemen, 1996). The functions take the time series and additional parameters like 
window size and threshold values and return the IDs of detected outliers. Furthermore a 
number of helper functions were implemented to, e.g., get the values within a moving window 
filter which could be reused by a number of methods. The implemented outlier detection 
methods were: 
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AR2 (AR lag-2 model) 

o Name: ar.outliers 

o Parameters: raw time series, lag, sd_factor (for threshold) 

MW (Moving window – whole window) 

o Name: mw.outliers.sd 

o Parameters: raw time series, half window size, difference function (mean, median), 
sd_factor (for threshold), differences per window (alternatively if moving window 
differences have been calculated beforehand) 

o Name: mw.outliers.sd.local  

o Parameters: raw time series, half window size, difference function (mean, median), 
sd_factor (for threshold), differences per window (alternatively if moving window 
difference have been calculated beforehand) 

MW2 (Moving window – two-sided window) 

o Name: mw2.outliers.sd 

o Parameters: raw time series, half window size, difference function (mean, median, 
variance, minimum, maximum, quantiles), sd_factor (for threshold), values per 
window (alternatively if moving window values have been calculated beforehand) 

o Name: mw2.outliers.t.test  

o Parameters: raw time series, half window size, p-threshold (test probability), 
values per window (alternatively if moving window values have been calculated 
beforehand) 

LAG1 (Lag-1 differences) 

o Name: lag1.outliers.all 

o Parameters: raw time series, half window size, distribution type (normal, Laplace), 
probabilities (for type a, b and c errors), type of error (a, b, c), moving window 
lags (pre-processed, alternatively) 

o Requirements: package VGAM (for the Laplace distribution) 

MA filter (Moving average filter) 

o Name: kz.outlier 
o Parameters: raw time series, half window size, number of iterations, adaptive 

(Boolean if filter should be adaptive), quantile (for selecting upper values and 
detect extremes), plot (boolean if results should be plotted) 

Jaccard’s coefficient 

To evaluate the performance of the method the calculation of the Jaccard’s coefficient was 
implemented as well: 

o Name: jaccard 
o Parameters: raw time series, detected outliers (by method), true outliers (as 

labelled), tolerance (number of ids the detected outliers might be shifted compared 
to the true outliers), plot (boolean if results should be plotted) 
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All implementations were tested with the synthetic data for their performance. Pre-test results 
showed rather poor results for the AR2 method in correctly detecting outliers. Furthermore the 
MA filter in the adaptive setting showed long calculation times. Therefore, the adaptive 
version of the moving average filter was excluded from the performance tests on the AirBase 
data sets.  

 

5.3 Parameter optimisation  

Each method was tested with the selected type I or type II time series depending on the error 
types the method could detect. The type III time series without outliers were used in each 
method as reference check for over-detection, i.e. the methods should detect here no outliers. 
For the parameters per method, ranges and a step size within these ranges were defined. Each 
time series was tested for each combination of parameters in the method by running the 
functions in loops. For each run the used parameters and the resulting value for  were stored 
to evaluate the optimal combination of parameters afterwards. 

The evaluation took place for monthly and daily data separately. For methods where different 
versions of the methods were available, e.g., using different statistics, distribution types, 
threshold methods or number of iterations, the version with the highest number of the overall 
maximum for  was selected. It was desirable to select only one version of the method to be 
used for further tests. For the selected version the average  values over all window sizes 
(except for AR2) and threshold values were calculated respectively. Those parameters leading 
to the upper 5 % of the averages were considered as optimal.  

Using the averages of the Jaccard’s coefficient  allowed the identification of an optimal range 
of window size and threshold values instead of a single value. Optimal parameters were given 
per time series, for all time series and for all inhomogeneities (type I/II) time series together. 

In this section, for each method the used parameter ranges for the tests are given first. The 
resulting optimal values per time series and combined analysis using average  from all time 
series (or grouped by outlier type I and II) are listed in the Tables 4 to 8. For well performing 
methods level plots of  per window size and threshold value are shown for the combined 
analysis. In these plots the threshold values (thr) are given on the x-axis and the window sizes 
(q) are given on the y-axis. For each combination of threshold and window size the resulting 
value for is given as grey shade. Areas with high values for  are depicted darker than areas 
with low  indicating bad performance. Averages of  over rows and columns were used to 
identify the optimal values for threshold and window size, respectively as given in the tables. 
In contrast to the table values, the plots give an idea of the robustness of the results for 
neighbouring values. For instance, if the areas in the plot change slowly it means that slight 
changes in the parameters do not change the performance considerably. In contrast, random 
distributions of lighter and darker areas with immediate changes lead to the conclusion of 
non-robust parameters where small differences can lead to large changes in the performance. 
Plots per time series are given in appendix A.2 Parameter optimisation plots per time series. 

For the robustness tests the combined results of the time series containing inhomogeneities 
(excluding the clean data series) per method were used. This was necessary as the results for 
the clean data series showed often a larger range and thus larger insensitivity especially if the 
method performed bad and detected no outliers at all. This lead to a large number of high  
values for clean data series which influenced the combined analysis negatively.  
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5.3.1 AR2 

Parameter range 

Threshold values 

Standard deviation factor: Min 1.5, Max 20, Step Size 0.5 

 

Results 

Table 4: Parameter optimisation for AR2 method. 

Data set Maximum  Threshold value 

I.co 0.17 5-6 

I.so2 0.5 8-11 

III.co 1 13.5-20 

III.o3 0 - 

III.no2 1 13.5-20 

All monthly 1 14.5-17.5 

I.pm10.1 0.005 4.5 

I.pm10.2 0.02 13 

III.pm10.1 0 - 

III.pm10.2 0 - 

All hourly 0.02 13 

 

Plots were omitted here as only one parameter was left and the results were rather poor for all 
time series. 

 

5.3.2 MW 

Method versions 

Statistics used: mean, median 

Threshold method: Standard deviation global (Sd global) , standard deviation local (Sd local) 

 

Parameter range 

Window size: Min 1, Max 50, Step size 1 

Threshold values 

Sd factor local: Min 1.5, Max 6, Step size 0.5 

Sd factor global: Min 1.5, Max 6, Step size 0.5 
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Results 

Table 5: Parameter optimisation for the MW method. 

Data set Maximum  Statistic Threshold 
method 

Threshold 
value 

Window size 

I.co 0.75 Median Sd global 1.5 31, 32, 41-50 

I.so2 1 Median Sd global 3.5, 4 8-20 

III.co 1 Mean Sd global 3.5-6 1-3 (all) 

III.o3 1 Mean Sd global 2.5-6 5-50 (all) 

III.no2 1 Mean Sd global 3-6 1-3 (all) 

I monthly 0.7 Mean Sd global 3 9-15 

All monthly 0.9 Mean Sd global 4 1-4, 13-15 

I.pm10.1 1 Mean Sd global 5.5-6 6,7 

I.pm10.2 0.6 Mean Sd global 3.5-6 1-14 

III.pm10.1 1 Mean Sd global 5-6 all 

III.pm10.2 1 Mean Sd global 5-6 all 

I hourly 0.7 Mean Sd global 5.5, 6 6,7 

All hourly 0.8 Mean Sd global 6 2-6 

Differences between mean and median results are very small. As mean is calculated slightly 
faster, this is proposed as optimal parameter. 

 

Plots 
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5.3.3 MW2 

Method versions 

Statistics used: mean, median, minimum (Min), maximum (Max), variance (Var), quantiles 
0.05, 0.25, 0.75 and 0.95 (Q05, Q25, Q75, Q95) 

Threshold method: Standard deviation global (Sd global), T-Test probability 

 

Parameter range 

Window size: Min 10, Max 50, Step size 1 

Threshold values 

Sd factor global: Min 0.2, Max 1.1, Step size 0.1 

T-Test probabilities: Min 0.001, Max 0.01, Step size 0.001  

 

Results 

Table 6: Parameter optimisation for the MW2 method. 

Data set Maximum  Statistic Threshold 
method 

Threshold 
value 

Window size 

IIa1.so2.1 0.5 Q75 Sd global 0.7 35, 39, 40 

IIa1.so2.2 1 Q75 Sd global 0.9 10, 13, 22 

IIa1.so2.3 1 Q75 Sd global 0.9 27-29 

IIa2.o3.1 1 Q05 Sd global 1 12, 19, 22 

IIa2.no2 1 Q25 Sd global 0.8 28-30 

IIa2.o3.2 1 Min Sd global 1.1 28-30 

IIb.co 0.5 Mean Sd global 1.1 11-12, 26-27 

III.co 1 Q05 Sd global 0.7-1.1 45-50 

III.o3 1 Var Sd global 0.7-1.1 21-50 

III.no2 1 T-Test T-Test 0.001-
0.002 

10-15, 21-26, 33-37, 
45-50 

IIa1/IIb 
monthly 

0.3 Q75 Sd global 0.9 22, 26-29 

IIa2 monthly 0.4 Min Sd global 0.8 20, 27-30 

All monthly 0.3 Var Sd global 1.1 36, 41, 46-48 

IIb.pm10 1 Var Sd global 1 12,14 

III.pm10.1 0 - - - - 

III.pm10.2 0 - - - - 
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Plots 

 

 

 

5.3.4 LAG1 

Method versions 

Distributions used: Normal, Laplace 

Threshold method: a, b, c 

 

Parameter range 

Window size: Min 2 (for hourly data 10), Max 50, Step size 1 

Threshold values 

a: for monthly data - Min 0.00005, Max 0.00015, Step size 0.00001, for hourly data - Min 
0.001, Max 0.01, Step size 0.001 

b: Min 0.001, Max 0.01, Step size 0.001 

c: Min 0.001, Max 0.01, Step size 0.001 
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Results 

Table 7: Parameter optimisation for the LAG1 method. 

Data set Maximum  Distribution Threshold 
method 

Threshold 
value 

Window size 

I.co 0.25 Normal a all all 

I.so2 0 - - - - 

IIa1.so2.1 0 - - - - 

IIa1.so2.2 0 - - - - 

IIa1.so2.3 0 - - - - 

IIa2.o3.1 0 - - - - 

IIa2.o3.2 0 - - - - 

IIa2.no2 0 - - - - 

IIb.co.1 0 - - - - 

III.co 1 Normal/Laplace a all all 

III.o3 1 Laplace a all all 

III.no2 1 Normal/Laplace a all all 

All monthly - Normal/Laplace a all all 

I.pm10.1 0 Normal/Laplace a all all 

I.pm10.2 0.02 Normal/Laplace a all all 

IIb.pm10 0.25 Normal/Laplace a all all 

III.pm10.1 0.02 Normal/Laplace a all all 

III.pm10.2 0.00 Normal/Laplace a all all 

All hourly - Normal/Laplace a all all 

 

Plots were omitted here as the results were poor for all time series. 

 

5.3.5 MA filter 

Method versions 

Number of iterations: 1-4 

 

Parameter range 

Window size: Min 2 (hourly data: 10), Max 50, Step size 1 (hourly data: 2) 

Threshold values 

Maximum quantiles: Min 0.005, Max 0.1 (hourly data: 0.05), Step Size 0.005 
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Results 

Table 8: Parameter optimisation for MA filter method. 

Data set Maximum  Iterations Threshold value Window size 

IIa1.so2.1 1 4 0.005 7 

IIa1.so2.2 1 1 0.045 15 

IIa1.so2.3 1 1 0.005 4 

IIa2.o3.1 1 3 0.005 3 

IIa2.no2 1 1 0.005 32 

IIa2.o3.2 1 1 0.005 22 

IIb.co 0.67 3 0.005 3, 7-8 

III.co 1 4 0.05-0.065 25-50 

III.o3 1 4 0.045-0.05 43-50 

III.no2 1 4 0.01-0.07 28-50 

II monthly 0.63 1 0.005 1-20 

All monthly 0.3 4 0.01 43-50 

IIb.pm10 0.5 1 0.025 18, 24 

III.pm10.1 1 4 0.015, 0.04 40 

III.pm10.2 1 4 0.015 36, 40, 44, 46 

All hourly 0.7 4 0.015 22, 36-42 

 

Plots 
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5.4 Performance and robustness tests 

Based on the optimal parameters evaluated in section 5.3, performance tests for each method 
were carried out on validation data sets for type I, II and III for monthly and hourly resolution 
(i.e., one time series per type). Therefore the optimal parameters for each method as 
determined in the previous sections was tested with parameter values taken from estimated 
optimal ranges (see Table 4-8). The parameter combinations with the best results are shown in 
Table 9 and Table 10. The resulting values for  serve as indicators how robust the methods 
worked with the same parameters for different data sets. The computation time was measured 
to compare which methods are better suited to process large data sets in a considerable time 
frame. These values are only for a first orientation as the method implementations in R were 
not optimised on computation time and might be improved for this purpose. Running time 
was estimated with the R 64bit version running on a Windows 7 system installed on an Intel® 
Core™ 2 Duo P9600 (2.53GHz, 1066MHz, 6MB L2 Cache) processing unit with 4 GB main 
memory. 

 

 

Table 9: Computing time and results for  per method with optimised parameters for monthly data. 

Parameter AR MW 
mean, sd global 

MW2 IIa1/b
Q75, sd global 

MW2 IIa2
min, sd global 

LAG1 
Laplace 

MA filter
1 iteration 

Window 
size 

- 14 28 28 25 15 

Threshold 
value 

15.5 3 0.9 0.8 0.0001, 
0.0005, 
0.0025 

0.005 

Average 
computatio
n time [s] 

0.34 0.01 0.22 0.22 0.05 0.01, 0.03 

 (I) 0.33 1 0 1 0 0 

 (II) 1  1 0.036 0.037 0 1 

 (III) 0 1 0 1 1 0 
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Table 10: Computing time and results for  per method with optimised parameters for hourly data. 

Parameter AR2 MW 
mean, sd global 

MW2  
Var, sd global 

LAG1 
Laplace 

MA filter
4 iterations 

Window size - 6 12 25 24 

Threshold 
value 

13 6 1 0.0001, 0.0005, 
0.0025 

0.0015 

Average 
computation 
time [s] 

14.07 0.55 1.30 1.83 1.66 

 (I) 0 1 0 0 0 

 (II) 0 1 0 0 0.5 

 (III) 0 1 0 1 0 
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6 Recommendation and conclusions 

6.1 Summary results per method 

AR2 

The autoregressive model showed very poor results. One reason might be that an order of 2 is 
too small, and only short-term variations are identified as outliers, whereas outliers persisting 
over larger periods were missed. As the computation took relatively long and probably would 
slow down with increasing lag size, this method is not recommended for the aim of this study. 

MW 

The Moving window method yielded very good results for all data sets with a minimum of 
0.6 for the maximum Jaccard’s coefficient  (Table 5). The results were generally better for 
larger thresholds and for the hourly data for small window sizes (<10). With a very short 
running time and very good results on the validation data sets the moving window method 
using the deviation from the window mean seems to be a robust and useful method for outlier 
detection. 

MW2 

The two-sided moving window method showed good results for the monthly data sets but 
failed for the hourly raw data. As both clean data sets got  values of zero there is a clear 
over-prediction in outliers by the method. Furthermore, the plots in appendix A.2 Parameter 
optimisation plots per time series indicate that the parameters are not very robust and yield 
only good results for very specific combinations in threshold values and window size. The 
application of the optimised parameters (Table 9) showed mixed results, with better 
performance of the minimum comparison. Results on hourly validation data sets were very 
poor with a strong over-prediction. 

Interestingly, the comparison between minimum of the upper and lower window half showed 
the best results whereas the T-Test was less efficient. This might be due to the relative large 
number of observations the T-Test needs in each window half. Due to many invalid values 
(NAs) in the time series it was probably not always possible to reach the required count. 

LAG1 

The lag-1 difference method failed completely in our tests. For the data sets  was larger than 
0, the optimal threshold and window values covered the whole range. Therefore a sensible 
application of this method was not possible. A correct detection only occurred for clean data 
sets as the method under-predicted all types of inhomogeneities. However in pre-tests using 
the synthetic data, the method worked quite well for type I outliers with a probability c=0.02. 

One reason might be the problem of how to deal with NAs. If an NA occurred during a 
temporal break, no lag-1 differences were available and thus no inhomogeneity could be 
detected. Using the last value before the break could be a solution, but might be error prone as 
well. Another reason might be that the probability values which were chosen accordingly to 
Horálek et al. (2004) are too small.  

MA filter 

The Moving Average Filter showed reasonable results in the separate time series analysis 
(Table 8) but weak performance for the validation data. The large differences in results for 
outliers and clean data sets especially for hourly data (see plots in appendix A.2 Parameter 
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optimisation plots per time series) indicate an over-detection of outliers. This over-detection 
shows the sensitivity of the method to very small breaks. Zurbenko et al. (1996) were able to 
detect breaks much smaller and thus less visible than the ones we assigned as outliers in our 
AirBase data sets. The method might be able to detect very small changes in the structure 
which are not assigned as inhomogeneities by us. When looking at the plots of variance it gets 
clear that the efficiency of the filter could be better if the detection of extremes would be 
improved. So far, the risk of over-detection in clean data sets is high, as also very small 
changes in the variance could be assigned as maxima. Iterating the filter more often helps as 
the results in Table 8 show. However, iterating too often could dilute the results for true 
structural changes. 

 

6.2 Recommended methods 

For type I outliers the Moving Window approach calculating the deviation of single values 
from the average of the surrounding values seems to be a fast, effective and robust method. As 
the results for mean and median were very similar, the use of the mean might be 
recommended as the calculation is slightly faster. As threshold value a multiplicative factor of 
the standard deviation for the whole time series seems to be most suitable. This factor is about 
3 to 6 depending on the temporal resolution. The window size also needs to be adapted for 
different temporal resolutions. However, the values are probably stable enough between 
different pollutant types that they do not need to be adapted. However, these parameter values 
should be validated by further tests. 

The Moving Average Filter is the most suitable method for detecting type II structural 
changes. Results were less robust than for the MW detection method as shown in section 5.3. 
Compared to the MW2 approach the MA filter showed a better potential to be used for data 
sets with different temporal resolution. The main reason for poor performances seemed to be a 
clear over-prediction due to the detection method for extremes in the variance. As the method 
is sensitive to very small breaks, for clean data set an over-prediction occurred. In Figure 8 
the MA filter analysis of the type III (clean) validation data set used for the raw hourly data is 
shown. It is clear that even small breaks which are considered to be negligible get variance 
peaks even after several iterations. 

To make use of the MA filter, more analyses have to take place. First, the definition and 
assignment of breaks in test data has to be reconsidered thoroughly. The detection of local 
extremes in the variance could be improved which would prevent false predictions for clean 
data sets as it occurred here. 
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Figure 8: Moving average filter results for four iterations and the variance of the fourth iteration for clean raw data validation 
data set. 

 

6.3 Conclusion and outlook 

The aim of the presented work was the review, testing and evaluation of suitable methods for 
detecting inhomogeneities in air quality measurement time series. The focus was on simple 
methods (purely statistical approach) to allow simple, automatic detection with the long term 
aim of implementing a tool allowing such outlier analysis automatically. For each of the two 
identified groups of inhomogeneities, i.e. outliers and structural changes, a useful method 
could be identified. Both methods show reasonable to very good results for the limited 
number of data sets used for the presented study. For final tuning of the parameters and 
evaluation of the methods, a larger number of time series than considered in this report should 
be included.  

The interpretation of the Jaccard’s coefficient  is limited. For example, for clean data sets a 
detection of even one outlier leads to a value of 0. For outliers, the performance depended 
strongly on the correct assignment of outliers manually which was not always easily possible 
as some changes could be small and therefore overseen. Looking at the MA filter results, for 
example, revealed much better results as when looking only at the  values. Furthermore, the 
Jaccard’s coefficient could be adapted by changing the weights for either over- or under-
prediction. In the current form both are weighted equally. 

For the future implementation of a free and open source tool, the implemented R functions 
used for this report could form the basis; they are available upon request from the authors. An 
open issue is how to integrate such a tool with the existing or future infrastructure of reporting 
and processing of data that feed into AirBase. One aspect of this work was on computation 
time to allow relatively fast checks on outliers. It is possible that too complicated methods 
with long run time would prevent users from applying the tool on their data. On the other 
hand, when outlier detection is needed for validating data, it is carried out relatively 
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infrequently and only the best methods should be considered, even when they are 
computationally expensive.  

In this report we only consider single time series at a station, whereas in principle time series 
of nearby stations in similar conditions or time series of other pollutants at the same station 
should be informative and could help to establish whether measurements are outliers or not. 
The further integration of spatio-temporal methods for outlier detection requires additional 
information about the spatial location of the stations providing the time series. Thus, a 
detailed requirement analysis on the intended use cases and user groups and the technical 
infrastructure would be necessary to develop such a tool. 
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Appendix/Supplementary data 
 

A.1 Test data plots 

Plots of time series of the different pollutants and temporal resolution selected from AirBase 
used in the tests: monthly data of CO, NO2, O3, SO2 (1990/97-2009) for Europe, and hourly 
data of PM10 (2007) for Germany.  

The plots represent the time series with inhomogeneities of type I, IIa1, IIa2, IIb and clean 
time series as reference, depicted as type III. For each time series the locations of the 
inhomogeneities was recorded: the red dots in the plots. 

 

Monthly average data 
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Hourly data 
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A.2 Parameter optimisation plots per time series 

For well performing methods level plots of  per window size and threshold value are shown 
for the combined analysis. In these plots the threshold values (thr) are given on the x-axis and 
the window sizes (q) are given on the y-axis. For each combination of threshold and window 
size the resulting value for is given as grey shade. Areas with high values for  are depicted 
darker than areas with low  indicating bad performance. 

Plots for AR2 and LAG1 are omitted because of the poor results over the whole parameter 
range. 

 

Monthly data 

Moving Window – Whole window (MW) 
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Moving Window – Two-sided window (MW2) 
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Moving Average filter (MA filter) 
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Hourly data 

Moving Window – Whole window (MW) 
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Moving Window – Two-sided window (MW2) 

 

 

Moving Average filter (MA filter) 
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