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Philipp Schneider1, Leonor Tarrasón1, and Christina Guerreiro1

1NILU - Norwegian Institute for Air Research, Kjeller, Norway

Abstract

The potential of future satellite retrievals of NO2 as collected within
the Global Monitoring for Environment and Security (GMES) initative
for purposes of European-scale mapping of air quality is assessed. After
comparing several existing NO2 datasets from different instruments with
respect to their suitability for simulating Sentinel-5 precursor data in the
mapping procedure, the daily 0.1 degree resolution OMNO2e dataset
produced by the National Aeronautics and Space Administration (NASA)
was selected for further processing. Annual mean station data for
2009 was combined with the satellite NO2 data as an auxiliary variable
using geostatistical techniques. More specifically, residual kriging was
used. The results were compared to an equivalent approach using high-
resolution model output as an auxiliary dataset. The results indicate that
satellite data giving NO2 tropospheric columns at a spatial resolution
of approximately 10 km × 10 km provide significant improvements
in mapping accuracy as compared to geostatistical interpolation of
solely station data. While not quite reaching the accuracy level of using
high-resolution model output as an auxiliary dataset, satellite-based
tropospheric column data of NO2 is shown to be a suitable proxy for
obtaining spatial information for mapping purposes, when such highly-
detailed model data is not available as is often the case due to the high
demands on computational resources.
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1 INTRODUCTION

1 Introduction

Mapping air quality in Europe has been a very important focus of the work
carried out by the European Topic Centre for Air Pollution and Climate Change
Mitigation (ETC/ACM) in previous years (Horálek et al., 2007, 2008, 2010;
De Smet et al., 2009, 2010; Denby et al., 2010, 2011a,b). A variety of
mapping approaches and a multitude of input datasets have been utilized
within the ETC/ACM mapping activities and over the years a reliable and
mature methodology has been developed. The maps resulting from applying
this methodology are provided annually by the European Environment Agency
to the end-user on an operational basis (for example at http://www.eea.
europa.eu/data-and-maps/figures/pm10-annual-average-2009).

While Europe-wide station data provides the core information for the map-
ping procedure, auxiliary data is generally needed to provide additional
information about spatial patterns of the parameter in question. The current
mapping approach (Horálek et al., 2010) uses therefore also auxiliary data
in the form of model output generated by the Unified EMEP atmospheric
chemistry model (Simpson et al., 2003; Fagerli et al., 2004), provided at
spatial resolution of 50 km × 50 km, as well as digital elevation models and
data on population density.

One potential source of spatial information on air quality that has so far
not been considered as an input to the ETC/ACM mapping procedure, is
satellite data. Satellite data on air quality is generally considered challenging
to work with as the temporal and spatial domains of the observations differ
substantially from regular station observations. In addition, many satellite
products are still associated with high uncertainties. However, the products
are continuously improving and several revolutionary new spaceborne instru-
ments will be launched in the next decade. These new instruments have a
very high potential for providing crucial information on mapping air quality
at the continental and possibly even at the urban scale.

While a strong focus of the ETC/ACM task 1.0.2.8 (“Urban air pollution
assessment and links to GMES Atmospheric Service”) lies on urban-scale
mapping of air quality, the use of satellite data for urban-scale applications is
still highly challenging. While high-resolution urban-scale satellite mapping
of particulate matter has been shown to be feasible under certain circum-
stances (Glantz et al., 2009), true urban-scale mapping of reactive gases from
spaceborne instruments is currently not possible due to the generally coarse
spatial resolution of the existing instruments. The spatial resolutions of nadir
pixels for current instruments generally range from 13 km × 24 km (OMI)
over 30 km × 60 km (SCIAMACHY) to 40 km × 80 km (GOME-2), which
is not suitable for urban-scale mapping. For this reason, this study focuses
on mapping air quality and in particular NO2 at the European scale and at a
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2 DATA

resolution comparable to what is currently provided within the operational
systems provided by the ETC/ACM (Horálek et al., 2010).

Future satellite instruments such as the TROPOMI instument onboard of the
Sentinel-5 precursor mission (van Weele et al., 2008; Veefkind et al., 2012)
and the Sentinel-5 mission (Ingmann et al., 2012; Berger et al., 2012) to
be launched respectively in ~2015 and ~2020 within the framework of the
Global Initiative for Environment and Security (GMES) (Aschbacher and
Milagro-Pérez, 2012), are designed to allow NO2 mapping at spatial resolu-
tions of up to 7 km × 7 km. As such they will achieve similar levels of spatial
detail as are currently provided by high-resolution air quality calculations
such as those provided by INERIS within the framework of the EC4MACS
project. In addition, a dedicated UV/VIS instrument onboard of the geosta-
tionary Sentinel-4 platform will allow for spatially and temporally continuous
mapping of NO2 and deliver important information on daily concentration
cycles. Furthermore, first airborne missions for mapping NO2 are now offer-
ing sub-meter resolution and promise to be very valuable for true urban-scale
mapping of NO2 hotspots at some point in the future (Popp et al., 2012).

The main goal of ETC/ACM 1.0.2.8 Subtask 2 was to evaluate the use of
satellite observations collected within the framework of the GMES initiative
(Aschbacher and Milagro-Pérez, 2012) for their suitability in improving spatio-
temporal air quality estimates at the European scale. More specifically the
objectives of the work reported here were the following:

1. Identify a suitable satellite product

2. Develop a methodology to combine station observations with satellite
retrievals of NO2 to produce European-scale air quality maps

3. Validate the resulting map using station data

4. Perform a comparison of satellite-based vs. model-based mapping

The work presented here focuses solely on NO2 as this is generally one of the
most mature air quality-related products available from satellite observations
and thus inhibits comparatively low uncertainties. However, future work
could explore the use of satellite-retrieved O3 and other species in European-
scale mapping.

2 Data

A wide variety of data sources were used within this study. This include
station data, satellite data, and output from chemical transport models. The
various primary datasets are described in detail in the following sections.

8
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Figure 1 – Map showing the 2009 average surface NO2 concentration measured
at all Airbase background stations.

2.1 Airbase Data

Raw data from air quality stations located throughout Europe were used
as a basis for spatial mapping using residual kriging. All station data was
obtained from the European Air quality dataBase, AirBase (http://acm.
eionet.europa.eu/databases/airbase/). AirBase is a public database
system operated by the European Environmental Agency (EEA) and provides
air quality monitoring data and associated information submitted by all
participating countries within Europe.

Figure 1 shows a map of the locations of all stations that were used within
this study. Only background stations (urban, suburban, and rural) were used.
The map further indicates the annual average NO2 concentration for 2009 as
measured at the stations.
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As most spatial datasets, the NO2 data at the European station network
exhibits spatial autocorrelation. Figure 2 in Section 3.2 quantifies this effect
by showing the empirical semivariogram and its model of the station datasets
shown in Figure 1. The spatial autocorrelation of this dataset was modeled
with a nugget effect of 74.7 and a spherical model with range 13.9 degrees
and a sill of 40.6.

A total of 3889 stations were considered, however only a subset of 1603
stations provided an annual mean NO2 concentration for the year 2009,
which was chosen as a reference year for this study as both a high-resolution
satellite dataset as well as high-resolution model output was available for this
year. No additional quality control of the data beyond what is being carried
out by the member states and by EEA was undertaken.

2.2 Satellite Data

Operational satellite remote sensing of NO2 has been carried out since 1995
when the Global Ozone Monitoring Experiment (GOME) (Burrows et al.,
1999; Richter and Burrows, 2002) was first launched. Beginning in 2002,
the observations were continued by the SCIAMACHY (SCanning Imaging
Absorption spectroMeter for Atmospheric CartograpHY) sensor onboard of
the Envisat platform (Bovensmann et al., 1999; Gottwald et al., 2006), and
subsequently complemented in 2004 by the Ozone Monitoring Instrument
(OMI) (Levelt et al., 2006) onboard of the Aura satellite operated by the
National Aeronautics and Space Administration (NASA), as well as the Global
Ozone Monitoring Experiment-2 (GOME-2) instrument (Munro et al., 2006)
onboard of the first MetOp satellite launched in 2006. Table 1 gives an
overview of the primary past and current spaceborne sensors used for NO2
monitoring.

For this study data from SCIAMACHY and OMI were compared with respect
to their suitability for mapping European-scale air quality.

SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric
CartograpHY) is a hyperspectral UV/VIS/NIR passive imaging grating spec-
trometer observing the wavelength range of 214–2386 nm (Bovensmann
et al., 1999; Gottwald et al., 2006). Its overpass time is approximately 10:00
local time at the equator. The data acquired by the instrument has been used
for a wide variety of operational and research applications (Gottwald et al.,
2006). Monthly averaged SCIAMACHY NO2 data were obtained from the
Tropospheric Emission Monitoring Internet Service (TEMIS) website.

The Ozone Monitoring Instrument (OMI) is based on the experiences acquired
from both GOME and SCIAMACHY. It combines their advantages, measuring
the complete spectrum in the UV/VIS wavelength range at a comparatively

10
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Table 1 – Overview of the primary past and current sensors used for NO2
monitoring from space.

Sensor GOME SCIAMACHY OMI GOME-2

Platform ERS-1 ENVISAT Aura MetOp
Data availability 1996 to 2003 2002 to 2012 2004 to

present
2006 to
present

Spatial resolution 320 km x 40
km

60 km x 30 km 13 km x 24 km 80 km x 40 km

Daily coverage Near-Global Partial (due
to alternating
nadir/limb
observation)

Near-Global
(significantly
reduced due
to instrument
failure since
2007)

Near-Global

Overpass time 10:20 LST 10:00 LST 13:45 LST 09:30 LST

high spatial resolution of 13 km × 24 km, while providing daily global
coverage. The OMI instrument is flying on the National Aeronautics and
Space Administration’s Earth Observing System Aura platform as part of
the A-train constellation of satellites. In contrast to the other instruments
mentioned here, which have equator crossing times around 10:00 local
time, OMI has an equator crossing time of approximately 13:30 LST in
the afternoon, and therefore probes the Earth’s atmosphere under different
conditions. Aura/OMI was launched in 2004 and has been continuously
providing data. Beginning in June 2007, OMI has suffered from several row
anomalies affecting the quality of the Level 1B and Level 2 data products.
Level-3 product as were used for the purposes of this study are produced
after filtering for the affected anomalies.

The new OMNO2e v3 product was obtained directly from contacts at NASA’s
Goddard Space Flight Center, as the product was not officially publicly avail-
able yet. Two versions of the product were acquired: One gridded at a 0.25°
× 0.25° spatial resolution was obtained for the entire lifetime of the OMI
instrument from 2004 to present and one gridded at 0.1° × 0.1° spatial reso-
lution was obtained for the year 2009 only. Figure 7 provides a comparison
of the two products for a highly polluted area in Northern Italy.

2.3 Model data

Model output produced by INERIS for the EC4MACS project was used in this
study. The EC4MACS project uses the CHIMERE model (Vautard et al., 2001;
Bessagnet et al., 2004), which is a three-dimensional chemistry transport
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3 METHODOLOGY

model (CTM) that is widely used within the air quality scientific community
for a variety of applications.

3 Methodology

3.1 Satellite Retrieval Methodology

Two satellite NO2 products were further investigated for their use within this
study. The first product tested was acquired by the SCIAMACHY instrument
onboard of the Envisat platform. The product used is based on the TEMIS
retrieval algorithm (Boersma et al., 2011).

In short, the TEMIS NO2 retrieval is based on three steps: The first step of the
algorithm consists of a Differential Optical Absorption Spectroscopy (DOAS)
retrieval of the total slant column of NO2 from the measured spectrum,
where absorption cross sections of NO2, ozone, H2O as well as a synthetic
ring spectrum are taken into account, and a fifth order polynomial is included
in the fit to account for scattering effects. The second step consists of the
separation of the stratospheric and tropospheric NO2 contributions to the total
NO2 column, where the stratospheric NO2 column is estimated by assimilating
total slant columns in the TM4 chemistry transport model (Dentener et al.,
2003; Boersma et al., 2007). The third and final step of the retrieval is the
conversion of the tropospheric NO2 slant columns into vertical columns using
a calculated Air-Mass Factor (AMF). Further details on the specific retrieval
methodology can be found in Boersma et al. (2004), Boersma et al. (2007),
and Boersma et al. (2011), as well as on the TEMIS website (www.temis.nl).

Solely data reprocessed with version 2.0 of the retrieval algorithm was used.
Improvements in version 2.0 over previous versions of the retrieval algorithm
include an updated albedo database, a modified calculation of the air mass
factor, a correction of the surface height calculation, a correction of the weekly
cycle in NOx emissions, as well as an increased number of NOx tracers in the
applied chemical transport model (Boersma et al., 2011). The NO2 dataset
used here only considered cloud radiance fractions of less than 50%. It was
also resampled from the original SCIAMACHY spatial resolution to a 0.25
degree × 0.25 degree grid.

Although the TEMIS-based NO2 dataset used in this study is based to some
extent on data assimilation using the TM4 model (Dentener et al., 2003;
Boersma et al., 2007), it is almost independent of the used emission inventory
due to the retrieval set-up. The data assimilation results are mainly used to
provide the stratospheric NO2 column in the second step. This stratospheric
column is virtually independent of the used emission database. For the

12
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3.2 Geostatistical framework 3 METHODOLOGY

calculation of the AMF in the third step knowledge of the profile shape of the
vertical NO2 distribution is needed. This profile shape is also taken from the
data assimilation. However, the profile shape is independent of the emissions,
since the data assimilation is scaling the NO2 column with conservation of
the shape. In conclusion, the NO2 data are considered as retrieval results
independent of emission data.

The second satellite NO2 product tested here was acquired by the Ozone
Mapping Instrument onboard the Aura satellite. The OMI product used within
the framework of this study is based on a retrieval algorithm developed at
NASA (Chance, 2002). The original, version 1 retrieval algorithm is described
in Bucsela et al. (2006). The new version 3.0 retrieval algorithm is greatly
improved over the previous versions (Bucsela, 2012).

The retrieval algorithm for the OMI NO2 product consists of a total of four
major steps: A Differential Optical Absorption Spectroscopy, a calculation of
the air mass factor, destriping, and a troposphere-stratosphere separation.
The DOAS first divides earthshine radiances by the reference solar irradiance
spectrum. The normalized spectra are then fitted to trace gas spectra observed
in the laboratory using a reference Ring spectrum and a polynomial function.
The DOAS fitting is applied in the spectral range of 405 nm to 465 nm. In
a next step, the air mass factor is calculated using scattering weights and a
monthly mean climatology of NO2 profile shapes, which were derived from
a chemical transport model. The AMF is subsequently computed using the
cloud radiance fraction f as

AM F = (1− f ) · AM Fclear + f · AM Fcloud (1)

where AM Fclear and AM Fcloud are the model-derived air mass factors for
clear and cloudy conditions, respectively. Following the AMF calculation, the
NO2 slant column densities observed by OMI are then “destriped” in order
to correct for an instrument artifact. Finally, as a fourth step, a troposphere-
stratosphere separation is performed using an a priori estimate of the tropo-
spheric contribution based on a monthly model climatology.

More information about the OMI NASA retrieval algorithm can be found in
Bucsela et al. (2006), Bucsela (2012), and OMI Team (2012). The OMINO2
product (Chance, 2002) is estimated to have a fitting error in the slant column
of approximately 0.3 - 1 × 1015 molecules cm-2 (OMI Team, 2012).

3.2 Geostatistical framework

The European background maps are created using a geostatistical technique,
namely residual kriging with auxiliary variables. Kriging is an interpolation
technique that makes use of a model of spatial autocorrelation (usually in
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3.2 Geostatistical framework 3 METHODOLOGY

the form of a variogram model) to infer optimal estimates of a variable at a
given set of locations (Isaaks and Srivastava, 1989; Cressie, 1993; Goovaerts,
1997; Wackernagel, 2003).

The mapping procedure applied in this study is based on the previous work
by Horálek et al. (2007), Horálek et al. (2010), and Denby et al. (2011a)
and involves a linear regression analysis against an auxiliary variable in
conjunction with kriging of the residuals. It should be noted that the cited
work incorporates a procedure for separately mapping urban and rural areas
and then combining the interpolated maps using a merging technique. This
part of the algorithm was not implemented in the mapping procedure for this
project.

The concentration Ẑ(s0) is mapped at a given location s0 using the model

Ẑ(s0) = c + a1X1(s0) + a2X2(s0) + . . .+ anXn(s0) +η(s0) (2)

where c, a1, a2 . . . an are parameters of the multiple linear regression and
X1(s0) . . . Xn(s0) are the values of the auxiliary variables used at location s0.
Finally, η(s0) represents the results of the ordinary kriging of the residuals at
location s0. While equation 2 provides a general methodology for incorporat-
ing multiple auxiliary variables, only single auxiliary variables were tested
here in order to evaluate the impact of each auxiliary variable individually
(with one exception mentioned later on). The first step in the process was
therefore to establish a linear relationship between the annual average NO2
concentration at each station and the respective auxiliary variable at each sta-
tion. This task was performed throughout all background stations in Europe
available within AirBase (with exception of those stations used for validation)
in order to obtain a representative relationship.

Kriging makes use of a model describing the spatial autocorrelation. Most
often, the semivariogram γ(h) at a certain lag distance h is used to describe
this. Different types of models are then fitted to the empirical semivariogram,
with a spherical and Gaussian models probably being the most common.
Figure 2 shows an example of the empirical semivariogram and the fitted
spherical model used for residual kriging of NO2 over Europe.

For kriging of residuals, a model was fitted to the empirical semivariogram
of the residuals with a combination of a nugget effect model and a spherical
or Gaussian model of range a0 degrees and sill c0 µg m-3 such that the
semivariance γ̂ at lag h is given as either

γ̂(h) =







c0 ·
�

3
2

h
a0
− 1

2

�

h
a0

�3�

for h ≤ a0

c0 for h > a0

(3)
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Figure 2 – Example of an empirical semivariogram γ̂(h) and its model, describing
the autocorrelation of a European NO2 station dataset. The model in this case
is a combination of a nugget effect of 74.7 and a spherical model with sill 40.6
and a range of 14 degrees.

for the spherical model or
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(4)

for the Gaussian model. Many other semivariogram models exist, however
these two are generally the most common and were the only ones used for
the purposes of this study.

The fitted semivariogram model is then used in the kriging process to de-
termine appropriate weighting factors for each data point. More detailed
information about the kriging process can be found in the literature, e.g.
in Isaaks and Srivastava (1989), Cressie (1993), or Goovaerts (1997). The
kriged residuals are then added to the results from the multiple linear regres-
sion as indicated in Equation 2 and through this process the final results are
obtained.

3.3 Cross-Validation

Cross-validation was used to evaluate the quality of the results. Based on
this validation technique, the original Airbase dataset was randomly split
up in two parts. The first part, encompassing 90% of the stations, was used
within the kriging procedure. The second part, consisting of approximately
10% of the Airbase stations was used solely for validation purposes. This
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4 RESULTS AND DISCUSSION

Figure 3 – Annual mean tropospheric column of NO2 for the year 2009 derived
from the OMNO2e daily 0.25° × 0.25° product. Note that the overpass time of
the Aura platform on which OMI is flying, is at approximately 13:30 local time.

procedure ensures that the stations used for validation had absolutely no
impact on the quality of the result as they were not used as part of the algo-
rithm. This resulted in a total number of 198 randomly selected stations that
were separated from the main Airbase dataset and only used for validation
purposes.

4 Results and Discussion

4.1 Choice of most suitable satellite product

Two satellite-based NO2 products were chosen for further investigation: The
SCIAMACHY product based on the algorithm by TEMIS (Boersma et al., 2011),
and the OMNO2e product (Bucsela et al., 2006; Bucsela, 2012). Figures

16



4.1 Choice of satellite product 4 RESULTS AND DISCUSSION

Figure 4 – Annual mean tropospheric column of NO2 for the year 2009 derived
from the SCIAMACHY/TEMIS monthly 0.25° × 0.25° product. Note that the
overpass time of the Envisat platform on which SCIAMACHY is flying, is at
approximately 10:00 local time.

3 and 4 show the 2009 annual mean tropospheric NO2 columns derived
from the OMI and SCIAMACHY products using different retrieval algorithms.
Note that the color scale on both figures is identical, so both qualitative and
quantitative comparisons can be carried out. Overall, the spatial patterns
shown by the two products agree quite well. All the major regions of generally
high NO2 concentrations, such as the region of Belgium and the Netherlands,
southern and Eastern England, as well as the Po valley region in Northern
Italy, are captured adequately by both products. Furthermore, individual
NO2 hotspots over more isolated cities such as Moscow, Madrid, and Istanbul
are easily identifiable from both data products. The map produced from
OMI data appears to be slightly smoother whereas the SCIAMACHY-based
maps shows a bit more “noise”. This is due to the fact that the OMI-based
annual mean map was computed by averaging over daily images, whereas

17
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the SCIAMACHY-based annual mean was calculated from monthly average
datasets, which in turn were derived from the original swath data by TEMIS.

In terms of actual NO2 concentrations, it is obvious from the two Figures that
SCIAMACHY overall measures significantly higher columns in the polluted
areas than OMI. Figure 4 clearly shows this effect as significantly larger
areas exceeding 10 × 1015 molecules cm-2 as compared to 3. This effect
is particularly obvious in the Po valley region in Northern Italy, for which
the OMI annual mean only shows very few grid cells exceeding 10 × 1015

molecules cm-2, whereas most of the region of Northern Italy exceeds this
value in the SCIAMACHY-based map.

The reason for this behavior can be found in the combination of the strong
diurnal cycle of NO2 in heavily polluted areas and the different overpass times
of the two instruments. While the Envisat satellite, on which the SCIAMACHY
instrument is mounted, has a local overpass time at the equator of around
10:00 LST, and thus samples the tail end of the morning rush hour, the OMI
instrument on the Aura platform has a local overpass time at the equator of
approximately 13:45 LST and as such samples the atmosphere in the middle
between the morning and evening rush hours. As such, its observations of
tropospheric NO2 columns are expected to be lower than those obtained from
SCIAMACHY.

In order to explore the quantitative difference between the two products
in more detail and with a particular focus on spatial patterns, a difference
image between the products from the two instruments was produced. The
difference in NO2 column ∆C given in × 1015 molecules cm-2 was calculated
as

∆C = CSC IAMACHY − COM I (5)

where CSC IAMACHY and COM I are the annual mean NO2 columns for SCIA-
MACHY and OMI, respectively. As such, positive values in the difference
image indicate that the SCIAMACHY retrieval is higher than the OMI retrieval,
and negative values indicate the opposite. This methodology assumes that
the tropospheric NO2 columns derived by both retrieval algorithms extend
over approximately the same height and are thus comparable.

Figure 5 shows the resulting difference map. As expected, the highest absolute
differences can be found over the most highly polluted areas. In Northern Italy,
which exhibits the largest area of substantial differences, the values easily
reach and exceed 5 × 1015 molecules cm-2. Several regions in Germany,
Belgium, the Netherlands, and the United Kingdom also reach such high
values, albeit only in areas of considerably smaller spatial extent. SCIAMACHY
generally shows higher tropospheric columns by approximately 1 × 1015

molecules cm-2 on average over large areas of Eastern Europe, particularly in
the Ukraine.
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In areas of generally low tropospheric NO2 concentrations such as over
the oceans, Scandinavia, and Africa, OMI exhibits slightly higher values by
approximately 0.5 × 1015 molecules cm-2. However, this magnitude is easily
within the error range specified for the products and thus probably is not of
too much significance.

Note that, while such a inter-comparison between two satellite products is not
a substitute for validation with in situ data as it can not provide an absolute
error estimate, it can provide valuable information on spatial patterns in
differences.

Despite differences in absolute values, it is critical to point out that the spatial
patterns indicated by both instruments are very consistent. This is important
because when using such satellite-based maps for supporting kriging of station
data as an auxiliary datasets, it is primarily the spatial patterns that affect
the results, whereas the absolute values are based on the station data.

While for the previous Figures and analysis the 0.25 degree resolution OMI
product was used to provide as much consistency as possible with the SCIA-
MACHY product, a high-resolution 0.1 degree OMNO2e product exists for the
OMI instrument. Given the similarity in spatial scale between the 0.1 degree
OMNO2e product and the 10 km spatial resolution at which air quality is
being mapped operationally in Europe by the ETC/ACM, this product is a
natural choice for this study. Figure 7 shows a direct comparison of the two
OMI products. The high resolution product clearly can resolve more detail
and provides higher values in some hotspots which do not appear in the 0.25
degree resolution product due to spatial averaging.

Based on these results and further based on the fact that a 0.1 degree product
was available from OMI while only 0.25 degree resolution was available from
SCIAMACHY, it was decided to use the OMNO2e product for the remainder
of this study. The relatively high resolution of the OMNO2e product allows
for mapping at the 10 km grid cell level for all of Europe. It should further be
noted that, in contrast to for example SCIAMACHY data, OMI observations
are available at present and further will be continued at a higher spatial
resolutionn in 2014 with the launch of the TROPOMI instrument onboard
the Sentinel-5 precursor platform.
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Figure 5 – Difference image of the mean annual NO2 column retrieved from
SCIAMACHY and OMI. The difference is calculated based on Equation 5. Note
that both satellite instruments have significantly different overpass times (10:00
vs. 13:30 local time), which together with the diurnal cycle of NO2 explain the
majority of the inter-sensor biases.
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Figure 6 – The 0.1°× 0.1°resolution OMINO2e product over Europe. Shown
here is the 2009 annual mean tropospheric NO2 concentration as computed
from daily datasets.
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Figure 7 – Comparison of the 0.25 degree resolution OMNO2e product (top)
with the 0.1 degree resolution OMNO2e product (bottom), shown for the Po
valley region in Northern Italy. The higher resolution product clearly shows
details not visible in the image of the 0.25 degree resolution product. The
figures show the annual mean tropospheric NO2 column in 2009.
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Figure 8 – Ordinary kriging of Airbase station data only. No auxiliary data was
used in this approach.

4.2 Mapping using only station data

In order to establish a baseline indicating what type of map can be extracted
from the Airbase station data alone and to thus be able to assess any additional
potential of auxiliary datasets, ordinary kriging without any auxiliary data
was carried out on the 2009 annual mean NO2 concentrations observed at
the stations. As mentioned before, only 90% of Airbase background stations
selected for mapping were used for this purpose, while the remaining 10% of
stations were considered exclusively for validation purposes. A combination
of nugget effect and spherical semivariogram model was used to model the
spatial autocorrelation of the data set.

Figure 8 shows the result. Due to not using a spatially distributed auxiliary
dataset the spatial features displayed by the map are very smooth and lack
detail. Significant hotspots in annual NO2 concentration are visible of the
Northern Italy area as well as Belgium and Northern France. However, the size
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of the hotspots is significantly larger than would be expected and their shape
is too smooth considering the generally rapid spatial gradients associated
with NO2 maps. The root mean squared error as calculated over the 10% of
stations used for validation was found to be RMSE = 9.1 µg m-3.

Obviously, this type of mapping without using any auxiliary data is not too
helpful for mapping European-scale air quality as it can not deliver more
detailed spatial patterns. However it can serve as a baseline against which to
judge the mapping methods using additional auxiliary data, such as satellite
observations or model output.

4.3 Mapping using station and satellite data

In order to provide an indication as to what extent satellite data of NO2 can
help improve European-scale mapping of air quality, OMI-based tropospheric
column NO2 data was subsequently used in the next step to complement the
station measurements from Airbase as an auxiliary dataset. As described in
detail in the methodology section, this was accomplished by establishing a
correlation between the station-based NO2 means and the mean satellite-
based tropospheric columns as observed over each station.

Figure 9 shows a scatter plot indicating this correlation between the 2009
annual average NO2 concentration at all background airbase stations and
the 2009 annual average tropospheric column extracted at each station
location from the high-resolution annual average OMI dataset. A linear
model was fitted to this dataset as COM I = 1.89+ 0.12× CSt , where COM I
is the tropospheric column observed by the OMI instrument and CSt is the
annual mean NO2 concentration observed at each Airbase station. The R2

value of the model was found to be close to 0.3.

At first glance this correlation might appear to be quite weak, however it
needs to be considered that this analysis compares two parameters which
have very different spatial and temporal scales. While the station observations
provide an annual mean NO2 value at the ground level and which is repre-
sentative of only a very small area, the satellite provides the total number of
NO2 molecules at 14:00 local time, averaged not only over a 100 km2 area
but also integrated over the entire troposphere. Given these fundamental
differences in spatial and temporal scales, the correlation seen in Figure 9 is
quite remarkable.

The residuals resulting from the fitted linear regression were then subse-
quently plotted as an empirical semivariogram, which was then in turn
modeled using a combined nugget effect of 64.3 and a Gaussian model with
range 5.9 degrees and a sill of 18.9 (see Figure 10).
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Figure 9 – Scatterplot of Airbase-derived annual mean 2009 station NO2 con-
centration against the 2009 annual mean tropospheric NO2 columns derived
from the OMNO2e high-resolution product.

This semivariogram model was then used to krige the residuals from the
previously discussed linear regression over the entire study domain. This
domain ranged from 20° N to 73° N and from 20° W to 40° E. A spatial
resolution of 0.1° was used for the final grid.

Figure 11 shows the result of using station data together with OMI satellite
data for mapping. The map indicates the annual mean NO2 concentration
in Europe with a spatial resolution of 0.1 degrees. In addition, regions of
special interest in the map are highlighted in more detail in Figure 12.

Compared to Figure 8, Figure 11 shows significantly more detail. All major
NO2 hotspot over the Po valley in Northern Italy, the area of Belgium/Netherlands
and western Germany, as well as the southern United Kingdom clearly show
areas of high NO2 concentration with the highest values found near the lo-
cation of the major metropolitan areas. It should be noted that the areas
over the oceans should be considered invalid in this map as they indicate
low to moderate concentration when they should be close to zero. This
erroneous behavior is due to the kriging approach used here which assigns a
default variance (the nugget) to all areas without any station observations.
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Figure 10 – Empirical and modeled semivariogram of the residuals. The model
is a combination of a nugget effect of 64.3 and a gaussian model with range 5.9
and a sill of 18.9.

For this reason, only the land areas shown in this map should be considered
as providing valid data.

Figure 12 shows the same map based on residual kriging of both station obser-
vations and OMI satellite data, however it provides more detail in several par-
ticular regions of interest. These regions are a) Belgium/Netherlands/Western
Germany, b) the Po valley in Italy with the main hotspot north of Milan, c)
the southeastern United Kingdom with the hotspot of London, and d) central
Spain with the hotspot of Madrid.

The validation for this map resulted in an RMSE of 8.5 µg m-3, which is lower
than the mapping carried out using solely station data. As expected, this
indicates that the satellite dataset provides additional valuable information
on spatial patterns.

4.4 Comparison of mapping techniques

The result of mapping NO2 using station observations and satellite data as
an auxiliary dataset was subsequently compared to the more traditional
approach of using model output as an auxiliary variable, as it is currently
applied for example by the operational ETC/ACM mapping routines described
by Horálek et al. (2010). For this purpose, three more mapping approaches,
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Figure 11 – Map of the 2009 annual average NO2 concentration computed as
the result from kriging station data from Airbase using the OMNO2e satellite
product as an auxiliary dataset. The spatial resolution of the kriged product is
0.1 degrees or approximately 10 km.

all involving output from the CHIMERE chemical transport model as produced
for the EC4MACS project, were tested. The first and simplest methodology
consisted of using only the model output and to study how well the modeled
concentrations were able to reproduce the concentrations observed at the set
of validation stations. Secondly, the model output provided by EC4MACS was
used as an auxiliary variable applying the same methodology as was described
previously for using OMI satellite data. Thirdly, both model output and
satellite data were used as two separate auxiliary datasets in a geostatistical
framework involving residual kriging, thus testing if a combined use of these
two auxiliary dataset can further improve the mapping accuracy.

Figure 13 shows the result of mapping European annual average NO2 concen-
trations for 2009 using station data from Airbase and high-resolution model
output form the CHIMERE model as an auxiliary variable. Overall, in terms of
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Figure 12 – As Figure 11 but showing more detail in the spatial patterns, for
the regions of a) Belgium/Netherlands, b) Northern Italy, c) London, and d)
Central Spain.

qualitative analysis of spatial patterns this approach produces a fairly similar
map to the one obtained from using satellite data as an auxiliary variable
(Figures 11 and 12). The very large NO2 hotspots in the Po valley region of
Northern Italy and in the region of the Netherlands are very well replicated
by both approaches. A stark difference, however, is visible in terms of the
number hotspots detected around smaller cities. While large metropolitan
areas with very high NOx emissions appear equally well in the maps derived
from both approaches, only the map generated by the model-based approach
also shows NO2 hotspots for smaller cities.

This is for example visible in Germany, where the model-based map picks
up several smaller cities which do not appear in the satellite-based map.
This behavior is likely due to the still insufficient spatial resolution of the
satellite instruments, which can not resolve small hotspots with a reasonable
accuracy. In contrast, models can often make user of 1 km gridded emission
inventories and information on point emissions sources and as such are able
to more easily identify such small urban areas. Nonetheless, upcoming GMES
satellite instruments will increase the available spatial resolution and are
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Figure 13 – Annual mean NO2 concentration at ground level for the year 2009
as as calculated from Airbase station data and EC4MACS project results using
residual kriging.

thus bound to improve the capability of detecting smaller emission sources.
One additional detail which is visible in the model-based map but not in
the satellite-based map are shipping lanes. These appear very clearly in the
model-based map in the Mediterranean, the North Sea, and, to some extent,
in the Atlantic Ocean. Their existence is also based on the gridded emission
inventory used for the model, whereas these features are not picked up by the
satellite product. It should be noted, however, that the NO2 signal of shipping
lanes can be picked up by satellites as previous studies have shown (Richter,
2004; De Ruyter de Wildt et al., 2012), however this is mostly limited to
extremely well defined lanes with extremely high traffic and thus emissions,
such as in the Middle East and in Asia.

As a quantitative comparison, the root mean squared error (RMSE) statistics
was used. It was calculated between the annual average NO2 concentration
at the entire set of validation stations and the NO2 concentration indicated
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Table 2 – Root mean squared error statistics for the different mapping ap-
proaches. The RMSE was computed over the randomly selected set of stations
used only for validation, which were therefore not part of the kriging. This set
of stations consisted of a total of 198 background stations throughout Europe.

Mapping method RMSE [µg m-3 ]

EC4MACS 10.9
AIRBASE only 9.1
AIRBASE and OMI 8.5
AIRBASE and EC4MACS 7.3
AIRBASE and OMI and EC4MACS 7.3

by the respective mapping approach, extracted from the grid exactly at the
location of all stations. The set of randomly selected validation stations
included approximately 10% of the original stations, which is equivalent to
198 stations in total.

Table 2 gives a quantitative comparison of the various mapping techniques
and products tested here. Unsurprisingly, using only model output produces
the highest error with a value of 10.9 µg m-3. This is due to the fact that no
actual observations from stations are incorporated in the modelling. When a
geostatistical approach (ordinary kriging) is applied to only Airbase station
observations without using any auxiliary dataset, the RMSE of the predictions
is reduced to 9.1 µg m-3.

When satellite data from the OMI-based high-resolution OMNO2e product is
used as an auxiliary dataset in the kriging process, the RMSE between the
annual NO2 means at the set of validation stations and the corresponding
prediction, decreases even further to a value of 8.5 µg m-3. This clearly
demonstrates that, despite fundamentally different spatial and temporal
measurement scales, satellite data on tropospheric column can improve the
prediction accuracy of a geostatistical mapping process.

Finally, when high-resolution model output from a chemical transport model
such as CHIMERE was used as an auxiliary dataset, the RMSE decreased even
further to a value of 7.3 µg m-3, indicating that the high-resolution model
output is best suited to provide information about the spatial patterns of
NO2 distribution in Europe. When both satellite data and model output are
used at the same time as auxiliary variables, the RMSE does not improve
any further, indicating that the satellite can not provide additional spatial
information on NO2 distributions beyond that which the model output can
offer.
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5 Conclusions

5.1 Summary

A multitude of data products on air quality are currently available from
various satellite instruments. Both the amount of data and its quality is even
bound to increase in future with the launch of the series of Sentinel satellite
within the framework of the Global Monitoring of Environment and Security
(GMES) initiative.

Based on this growing importance of spaceborne data for air quality related
applications it is highly desirable to study the impact of satellite data on cur-
rently existing air quality mapping techniques. In this report, the potential of
using satellite-based NO2 data as an auxiliary variable for mapping air quality
at the European scale using geostatistical techniques was investigated. In a
first step, an inter-comparison between tropospheric NO2 column products
from two different satellite instruments was carried out and the characteris-
tics of the different data products were evaluated in order to select the most
suitable candidate. Based on various criteria a 0.1 degree spatial resolution
NO2 product based on the Ozone Mapping Instrument (OMI) was selected
here for further analysis.

In order to establish a baseline, ordinary kriging using only station data was
carried out at the European scale. This allowed for an estimate of what type
of mapping accuracy can be achieved using solely station data. Subsequently,
a linear regression model was established between the annual average NO2
station observations and the satellite-based tropospheric columns extracted
over the located of all stations. The residuals found in this model were then
kriged using the OMI satellite product as an auxiliary variable. This mapping
technique was then subsequently compared to a similar mapping approach
using the output of a high-resolution chemical transport model as an auxiliary
variable.

The results of the study indicate that satellite data can be very useful as
an auxiliary variable in mapping European air quality. Using tropospheric
column NO2 data acquired by the OMI instrument provided significantly
better mapping results (both qualitatively as well as quantitatively) than
geostatistical interpolation of station data alone.

However, while the satellite data investigated here had a positive impact on
the mapping procedure, it was not able to achieve the same level of impact as
using the output of a high-resolution chemical transport model as an auxiliary
variable. The latter was able to produce lower root mean squared errors when
validated against a subset of the stations. To some extent this behavior is to
be expected. The model provides ground-level concentrations and is based
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on highly detailed emission inventories, thus capturing the spatial detail and
sharp gradients in NOx emissions. In contrast, the satellite dataset provides
the annual average total number of molecules in the entire tropospheric
column at about 14:00 in the afternoon over an area of approximately 100
km2. As such, the satellite dataset is obviously not expected to completely
replicate the spatial detail that can be provided by the model.

Nonetheless, the satellite data provides very useful information. The model
data used here represents a best case scenario, as it was available at a com-
paratively high spatial resolution. Due to the extremely high demands on
computational resources, such high resolution model data is at the present
time not produced operationally and is therefore only available for individual
years or certain periods. Satellites on the other hand provide an operational
system for monitoring the Earth’s atmosphere and have now been providing
continuous air quality information since the mid 1990s and are expected to
provide even further improved, operational products over the next several
decades.

In such cases, when high-resolution model output is not available or can not
feasibly be used for air quality mapping purposes, satellite data of the NO2
tropospheric column can provide a readily available proxy for spatially dis-
tributed auxiliary data, thus supporting the mapping process and decreasing
the mapping uncertainty compared to geostatistically interpolating station
data alone.

While running atmospheric chemistry models at high spatial and temporal
resolutions is currently challenging due to the computational cost associated
with such activities, this situation is likely to improve in the future as comput-
ing power increases and high-performance computing becomes ubiquitous.
With this situation in mind it will become critical to further investigate the
potential of assimilating satellite data in models.

5.2 Recommendations

The 0.1 degree resolution OMNO2e product acquired by the OMI instrument
and produced by NASA is recommended as the currently most suitable NO2
satellite product for European-scale air quality mapping. The spatial resolu-
tion of the product is very similar to the 10 km spatial resolution currently
applied in the ETC/ACM operational mapping procedure. Furthermore, in
contrast to for example SCIAMACHY, the OMI sensor is still operational and
delivers a continuous data stream.

While it was shown that satellite estimates of NO2 can be helpful for mapping
European-scale air quality, the methodology used for this study was quite
simplified compared to the operational mapping system being used by the
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ETC/ACM (Horálek et al., 2007, 2008, 2010; De Smet et al., 2009, 2010;
Denby et al., 2010, 2011a,b). Future work could investigate the use of the
0.1 degree resolution OMNO2e dataset within the operational ETC/ACM air
quality mapping methodology. This could allow for rigorous testing of the
satellite dataset within the existing comprehensive approach which has been
refined over many years.

Future satellite instruments designed for providing information on atmo-
spheric composition will allow for the acquisition of data at significantly
improved spatial and temporal resolution. Within the framework of the
GMES initiative, this includes primarily the Sentinel-5 precursor (TROPOMI)
(van Weele et al., 2008; Veefkind et al., 2012) which will be launched in
March 2015, the geostationary Sentinel-4 mission to be launched in 2019
and the Sentinel-5 mission to be launched in the 2020 time frame (Ingmann
et al., 2012; Berger et al., 2012). It is recommended to study the potential
of these new missions with respect to further improving air quality mapping
and potentially even their use for more urban-scale mapping than can be
achieved at present.
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