
Air Implementation Pilot:

Assessing the modelling activities

ETC/ACM Technical Paper 2013/4 May 2013

Nuria Castell, Bruce Rolstad Denby, Cristina Guerreiro

The European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) is a consortium of European institutes under contract of the European Environment Agency RIVM UBA-V ÖKO AEAT EMISIA CHMI NILU VITO INERIS 4Sfera PBL CSIC Cover page:

Representation of a grid model output for Europe.

Author affiliation:

Núria Castell, Bruce R. Denby, Cristina Guerreiro: Norwegian Institute for Air Research (NILU), Kjeller, Norway

DISCLAIMER

This ETC/ACM Technical Paper has not been subjected to European Environment Agency (EEA) member country review. It does not represent the formal views of the EEA.

© ETC/ACM, 2013. ETC/ACM Technical Paper 2013/4 European Topic Centre on Air Pollution and Climate Change Mitigation PO Box 1 3720 BA Bilthoven The Netherlands Phone +31 30 2748562 Fax +31 30 2744433 Email <u>etcacm@rivm.nl</u> Website <u>http://air-climate.eionet.europa.eu/</u>

Contents

С	Contents1							
A								
A	Air Pilot Description.41Introduction.2Description of the modelling questionnaire3Use of models for air quality activities.4Overview of the models and applications.94.14.1Berlin104.24.3Malmö10							
1	Intro	oduction	5					
2	Des	cription of the modelling questionnaire	5					
3	Use	of models for air quality activities	6					
4	Ove	rview of the models and applications	9					
	4.1	Berlin	. 10					
	4.2	Madrid	. 10					
	4.3	Malmö	. 10					
	4.4	Milan	. 11					
	4.5	Vienna	. 11					
	4.6	Prague	. 11					
	4.7	Ploiesti	. 12					
	4.8	Paris	. 12					
	4.9	Plovdiv	. 12					
	4.10	Antwerp	. 13					
	4.11	Vilnius	. 13					
5	Inte	rcomparison of practices	. 14					
	5.1	Assessment of air quality	. 16					
	5.2	Reporting of air quality compliance assessment	. 19					
	5.3	Assessment of source contributions	. 21					
	5.4	Long term planning and scenario calculations	. 22					
	5.5	Short term action plans	. 23					
	5.6	Air quality forecasting	. 25					
	5.7	Assessment of population exposure	. 26					
	5.8	Supplement measurements	. 27					
6	Sum	mary of models applied for each purpose	. 28					
7	Sum	nmary of input data for AQ modelling	. 33					
	7.1	Emissions	. 33					

Air Implementation Pilot: Assessing the modelling activities

7.2	Meteorology			
7.3	Background concentration 44			
7.4	Model combination with monitoring data45			
8 Val	idation of the model			
9 Use	efulness of the model			
10 Difficulty in model application and need for further guidance				
11 0	Cooperative activities			
11.1	Malmo			
11.2	Prague51			
11.3	Paris			
11.4	Antwerp53			
11.5	Vilnius			
12 A	Available resources for guidance on modelling54			
13 (Conclusions			
14 A	Annex A. Questionnaire sent to the cities57			
14.1	Section 1: Overview			
14.2	Section 2: Use of models			
14.3	Section 3: Modelling activities			
14.4	Section 4: Cooperation activities			
15 A	Annex B: Description of emission inventory in Ploiesti			

Acknowledgements

This report was prepared by the Norwegian Institute for Air Research (NILU) as part of the European Environment Agency's Topic Centre for Air and Climate Change Mitigation (ETC/ACM) work. This work is part of the activities under the Working Group I of the Forum for Air quality Modelling (FAIRMODE) lead by the EEA and the Air Implementation Pilot Project, lead by the European Commission and the EEA.

The authors would like to thank the EEA task managers Alberto González Ortiz and Anke Lükewille for their guidance and discussions on the content of the analysis. A special thank to Alberto González Ortiz for a thorough review of the draft report and all the comments provided.

Special thanks are also due to the pilot cities' contacts for the modelling activities (Berlin: Andreas Kerschbaumer; Dublin: Martin Fitzpatrick; Madrid: Ángeles Cristóbal; Malmö: Mårten Spanne and Lotten J. Johansson; Milan: Guido Lanzani; Ploiesti: Cornelia Mateescu; Prague: Ondrej Vlcek; Vienna: Heinz Tizek; Antwerp: Jan Bel; Paris: Olivier Chretien and Karine Leger ; Plovdiv: Elena Naydenova and Vyara Koleva; and Vilnius: Agne Eigminiene and Sandra Nakciuniene) for their answers to the questionnaire and response for needed clarifications.

Air Implementation Pilot Description

In his address to the European Environment Agency (EEA) Management Board on 23 June 2011, Commissioner Potočnik stated the following:

... [W]hile I don't think the EEA is equipped for such a role [in inspections], we do need to strengthen our knowledge base on implementation. We cannot continue to have a situation on implementation where the Commission and Member States are looking at different data. We both need a body we trust to provide us with accurate data and state of the art, science-based assessments. We need an independent assessor if needed. This neutral and common information base for compliance monitoring should in my view be provided by the Agency. I suggest we develop a joint analysis of what such a reinforced role would imply, on the basis of one or two pilot cases e.g. on waste and on air. We need to start this process as soon as possible and I will be looking forward to develop it together with you.

The Commissioner subsequently invited the European Commission's Directorate General for Environment (DG ENV) and the EEA to explore an enhanced EEA role in support of EU environment policy implementation, by way of pilots on air and waste.

To provide a public profile for the air implementation pilot and to prepare for the Integrated Projects proposed for air under the new LIFE+ regulation, EEA and DG ENV has mobilised a sample of cities (12) across the EU to take part in the pilot actions. Through 2012/2013 the air pilot actions have be taken forward with close involvement of these "sample" cities for the purpose of sharing both "successful" and "unsuccessful" experiences and to develop proposals for improved implementation that can be shared with a wider set of cities potentially via the LIFE+ mechanism.

The work has involved EEA, DG ENV, the European Thematic Centre for Air pollution and Climate change Mitigation (ETC/ACM), and the cities themselves, under the coordination of Alberto González Ortiz, EEA project manager for air quality data and policies assessments.

The present report refers exclusively to one of the tasks that were conducted under the Air Pilot. The complete list of key actions agreed upon by DG ENV and EEA and that were presented to the cities are described below:

- 1. Selection and engagement of cities
- 2. Assessing the emission inventories at the local level
- 3. Assessing modelling activities
- 4. Assessing monitoring station density and location
- 5. Assessing air quality trends
- 6. Assessing management practices
- 7. Assessing public information practices
- 8. Coordination, overall management and follow up

1 Introduction

The aim of this document is to examine the model practices (if models have been applied at all) in the twelve cities in Europe taking part in the Air Implementation Pilot, to assess the strengths and weaknesses of such applications and to further to identify needs for guidance in the use of air quality models.

The European Air Quality Directive (2008/50/EC) states that "where possible modelling techniques should be applied to enable point data to be interpreted in terms of geographical distribution of concentration. This could serve as a basis for calculating the collective exposure of the population living in the area". Moreover, the Air Quality Directive sets limit and target values for the concentration of several pollutants, including NO₂ and PM₁₀. It is a requirement that all air quality zones and agglomerations assess the levels of these pollutants and report these to the European Commission. If concentrations are found to exceed these limit values then the Member States are obliged to take appropriate steps to reduce these concentrations. In order to do this effectively, air quality management plans must be developed and possible measures assessed. Air quality modelling then becomes an essential tool for local and national authorities to manage their air quality¹.

The document provides a description of the model applications addressed by twelve cities across Europe, illustrating the type of models applied, the input data employed and the strong and weak points encountered in the application of air quality models. This document does not provide precise recommendations on the application of models but focuses on the experiences of these cities when applying these models.

2 Description of the modelling questionnaire

In order to examine model practices in the 12 cities a questionnaire was prepared addressing the modelling activities in the cities (see Annex A). The questionnaire was sent to the contact persons in each city (see Table 2 in Annex A). In the year 2012 the questionnaire was sent to eight cities and in 2013 four new cities joined the Air Implementation Pilot project. The document compiles the answers of the twelve cities.

The questionnaire aimed to give answers to the following main questions:

- a. What types of models have been used?
- b. Which particular models?
- c. Which input and other data (e.g. emissions, meteorology, monitored concentrations, boundary conditions, etc.) have been used or considered?
- d. For what purposes are models used?
- e. How are models validated?
- f. Are the model results considered to be 'fit for purpose'?

¹ Denby, R.B. 2011. Guide on modelling Nitrogen Dioxide (NO2) for air quality assessment and planning relevant to the European Air Quality Directive. ETC/ACM Technical Paper 2011/15.

The questionnaire was structured in four sections:

- 1. Overview and Contacts
- 2. Use of models
- 3. Modelling activities
- 4. Cooperation activities

The first section 'Overview and Contacts' presents a brief aim of the task and lists the responsible persons in each city, as well as the contact persons at EEA and ETC/ACM for this task.

The second section 'Use of models' tries to obtain an overview of the applications for which models are used and the responsible institution for running the models, if models have been applied. If models are not used then the reasons why they have not been applied should be indicated.

Section 3 of the questionnaire goes into more detail about how the model has been applied for each of the purposes. It requests a model description (setting configuration, input data, validation method, etc.) for each of the applications that have been outlined in the second section. This section also contains a subsection dedicated to get feedback from the cities about their particular experience in the application of models.

Finally, section 4 asks for other cooperative activities in the application of air quality models that have been undertaken by or in cooperation with other institutions (regional or national administrations, scientific institutions, etc.). The questions asked in this section are the same as in section 3.

3 Use of models for air quality activities

As mentioned before the questionnaire was sent to 12 cities, which have different sizes and population. For example Ploiesti is the smallest city with 229.258 inhabitants and an area of 58 km², whereas Berlin is the largest city, with 3.442.675 inhabitants and a surface of 892 km², followed by Madrid with more than 3 million inhabitants in a area of 604 km² (Table 1).

City name	AQZ name	AQZ code	City population	City Surface
Berlin (Germany)	Ballungsraum Berlin	DEZBXX001A	3.442.675	892 km ²
Dublin (Ireland)	Zone A	IE001	527.612	115 km ²
Madrid (Spain)	Madrid	ES1301	3.237.937	604 km ²
Malmö (Sweden)	Malmö	SW6	302.000	155km ²
Milan (Italy)	Milan Agglomerate	IT0306	1.307.495	182 km ²
Ploiesti (Romania)	Ploiesti	RO0302	229.258	58 km ²
Prague (Czech R.)	Praha	CZ010	1.257.158	496 km ²
Vienna (Austria)	Wien	AT_09	1.731.444	415 km ²
Paris (France)	Ile-de-France	FR04A01	2.234.105	105 km ²
Plovdiv (Bulgaria)	Agglomeration Plovdiv	BG0002	338.153	102 km ²
Antwerp (Belgium)	Port of Antwerp +	BEF01A +	565.000	205 km ²
	Antwerp + Hoboken	BEF02A +		
		BEF07S		
Vilnius (Lithuania)	Vilnius	LT0100	534.000	400 km ²

Table 1: Summary of the inhabitants and area of the cities in the Air Pilot project.

All the cities with the exception of Dublin have applied models for air quality assessment or management. The city of Dublin despite its wish to use air quality models has encountered several problems of a different kind. Some of the problems pointed out in their reply to the questionnaire are at the administrative level, for instance the effort to bring together the various stakeholders to develop an air quality model and cooperate has not been successful. Another problem is the current economical situation. Finally, they have the perception that this is an area where there is a lack of the required skills and experience to develop a robust model. Despite this, the air quality management plan for the city of Dublin includes, as one of the actions, to build an air quality model for the region, however this action remains unfulfilled. The city of Dublin would benefit from guidance in this area, as well as from the communication and experiences from other cities, particularly from the difficulties they encountered and how they managed to overcome them. The city also highlights that it will also be important to learn about the economic aspects and budgeting from the other cities.

The other 11 cities that have employed air quality models have used them for different purposes. In the survey they were asked about 8 specific applications and a description of other applications where they had used models (see list of applications in Table 2). None of the cities have used models for other applications than the ones suggested in the survey. The applications of the models differ from city to city. Table 2 shows the summary of the purposes the cities have used models for. All the cities except Antwerp and Ploiesti have used models for assessment of source contributions. Vilnius has not employed models for long term planning and scenario calculations, and Madrid is the only city that has not used models for assessing air quality in general (see chapter 5 for further details).

	Model application	Cities	Total number of cities
1	Assessment of air quality in general (including evaluating the environmental (AQ) impact of new infrastructure like highways, airport, etc.)	Malmo, Milan, Vienna, Prague, Berlin, Paris, Plovdiv, Antwerp, Vilnius	9
2	Reporting of air quality compliance assessment	Malmo, Milan, Vienna, Madrid, Prague, Paris, Vilnius	7
3	Assessment of source contributions	Malmo, Milan, Vienna, Madrid, Prague, Berlin, Paris, Plovdiv, Vilnius	9
4	Long term planning and scenario calculations	Malmo, Milan, Vienna, Madrid, Prague, Berlin, Paris, Plovdiv, Antwerp	9
5	Short action plans	Malmo, Milan, Vienna, Madrid, Prague, Plovdiv, Vilnius	7
6	Air quality forecasting	Milan, Vienna, Madrid, Paris, Vilnius	5
7	Assessment of population exposure	Malmo, Milan, Vienna, Prague, Berlin, Paris, Plovdiv, Antwerp, Vilnius	9
8	Supplement measurements	Milan, Vienna, Berlin, Plovdiv, Antwerp, Vilnius	6

 Table 2: Summary of the purposes the cities have used air quality models for.

Table 3 summarizes the different models that have been used by the cities, the purposes for which the models have been used, which cities have used them, and (when available) a link to the Model

Documentation System² (MDS). The city of Ploiesti has not provided information about the air quality model employed. Almost all the models employed are documented, with the exception of STREET (Paris) and POLTRAN (Plovdiv) and the majority of them (all but six) are in the Model Documentation System. The types of models employed are Gaussian, Lagrangian, Eulerian, Street canyon, Box model and Statistical model.

The cities of Malmö and Milan run the models themselves, while in the other cities the models are run by other institutions as research institutes, universities or independent consultants. The cities are aware of other specific and independent modelling studies, although only Malmö, Prague, Paris, Antwerp and Vilnius give a detailed description about their cooperation with other institutes. Malmö cooperates at regional level with Lund University, Prague cooperates at the national level with international institutions as NILU and VITO in the framework of EU research projects, Paris cooperates at two national and interregional levels with INERIS and ESMERALDA, respectively; Antwerp cooperates at regional level with LNE and Vilnius collaborates at regional level with the Lithuanian Environmental Protection Agency in the exchange of information and data as well as consultation in general. The cooperative activities are not always conducted on an operative basis or employed for air quality reporting.

Name of the model	Туре	Applications	City	Documentation		
AERMOD	Gaussian	1;3;4;5;7	Malmö	http://pandora.meng.auth.gr/mds/sho		
				wlong.php?id=128		
OSPM	Street	2;5	Malmö,	http://pandora.meng.auth.gr/mds/sho		
	canyon		Madrid	wlong.php?id=74		
		1;4;7;8	Antwerp			
FARM	Eulerian	1;2;4;5;7;8	Milan	http://pandora.meng.auth.gr/mds/sho		
				wshort.php?id=130		
SPRAY	Lagrangian	3	Milan	http://pandora.meng.auth.gr/mds/sho		
				wshort.php?id=87		
CALPUFF	Gaussian	3	Milan	http://www.epa.gov/ttn/scram/dispers		
		1	Paris	ion_prefrec.htm#calpuff		
СВМ	Chemical	3	Milan	http://www.epa.gov/scram001/recepto		
	mass			<u>r_cmb.htm</u>		
	balance					
GRAL modified	Lagrangian	1; 2; 3; 4; 7;	Vienna	http://pandora.meng.auth.gr/mds/sho		
		8		wlong.php?id=133		
CAMx	Eulerian	5; 6;7	Vienna	http://pandora.meng.auth.gr/mds/sho		
				wshort.php?id=177		
SERENA	Statistical	6	Madrid	http://www.mambiente.munimadrid.es		
	Neural			/opencms/opencms/calaire/SistIntegral		
	Network			/SistPrediccion.html		
CMAQ	Eulerian	2; 3; 4; 5	Madrid	http://www.cmaq-model.org/		
WRF-Chem	Eulerian	2; 3; 4; 5	Madrid	[http://www.acd.ucar.edu/wrf-chem/]		
ATEM	Gaussian	1; 2; 3; 4; 5;	Prague	[http://www.atem.cz/en/atem.html]		
		7				

² <u>http://acm.eionet.europa.eu/databases/MDS/index_html</u>

Name of the	Туре	Applications	City	Documentation		
model						
SYMOS	Gaussian	5	Prague	http://pandora.meng.auth.gr/mds/sho wshort.php?id=119		
REM_CALGRID_ RCG	Eulerian	1,3	Berlin	http://pandora.meng.auth.gr/mds/sho wshort.php?id=173		
IMMISluft (IMMIScpb)	Gaussian	1, 3, 4, 7,8	Berlin	http://pandora.meng.auth.gr/mds/sho wshort.php?id=178		
CHIMERE	Eulerian	1;2;3;4;6;7	Paris	http://pandora.meng.auth.gr/mds/sho wshort.php?id=144		
ADMS urban	Gaussian, Lagrangian	1 1,2,3,5,6,7,8	Paris Vilnius	http://pandora.meng.auth.gr/mds/sho wshort.php?id=18		
PMSS	Eulerian		Paris	http://www.harmo.org/Conferences/Pr oceedings/_Kos/publishedSections/H14 -176.pdf		
STREET	Street canyon	2; 4; 7	Paris	NA		
AUSTAL 2000	Lagrangian	1; 3; 4; 5; 7;8	Plovdiv	http://pandora.meng.auth.gr/mds/sho wlong.php?id=132		
PROKAS_B	Gaussian	1; 3; 4; 5; 7	Plovdiv	http://pandora.meng.auth.gr/mds/sho wlong.php?id=115		
VinMISKAM	Eulerian	1; 3; 4; 5; 7	Plovdiv	http://pandora.meng.auth.gr/mds/sho wlong.php?id=123		
POLTRAN	Eulerian	1; 3; 7; 8	Plovdiv	NA		
RIO	Interpolati on model	1;4;7;8	Antwerp	http://rma.vito.be/demo/faces/docum ents/rio/RIO.pdf		
AURORA	Eulerian	1;4;7;8	Antwerp	http://pandora.meng.auth.gr/mds/sho wlong.php?id=167		
IFDM	Gaussian	1;4;7;8	Antwerp	http://pandora.meng.auth.gr/mds/shc wlong.php?id=50		

List of applications:

1) Assessment of air quality in general (including evaluating the environmental (AQ) impact of new infrastructure like highways, airport, etc.)

2) Reporting of air quality compliance assessment

3) Assessment of source contributions

4) Long-term planning and scenario calculations

5) Short-term action plans

6) Air quality forecasting

7) Assessment of population exposure

8) Supplement measurements

4 Overview of the models and applications

In this section an overview of the models used in each city and a brief summary of their experience as users of AQ models is presented. The city of Ploiesti has not completed the questionnaire provided to the cities but has sent a document with a brief description of the modelling activities performed in the city. The information from that document is presented in this section. However the document does not answer all the questions formulated in the questionnaire and therefore the information presented here for the city of Ploiesti is not as complete as for the other cities.

4.1 Berlin

The city of Berlin has applied two models, REM_CALGRID and IMMISluft, covering several spatial scales from regional and urban background to street canyons (see table 3). The models are run by a service contract consultant. Apart from these applications, there have been other modelling studies in the city of Berlin. For instance, the Eulerian grid model REM_CALGRID³ has been used on different scales to simulate air quality in the city giving valuable indications on background and regional contribution to air quality; also trajectory studies have been performed⁴.

The models are used on a frequent basis, and they have been found to be helpful for the purposes they were applied. For instance, in relation to air quality assessment activities they have been used for source apportionment and long range transport assessment. The model results have been taken into account in air quality management decisions. Moreover the models have been linked to other topics such as deposition and noise. The two main weak points encountered by the city of Berlin in the application of the models is the PM_{10} underestimation in the Eulerian grid model and the background dependency in the street canyon model.

4.2 Madrid

The city of Madrid employs four different modelling systems for air quality purposes. In some of the cases they also employ a meteorological model (WRF) to drive an Eulerian Photochemical models (CMAQ and Chem). The models employed are Eulerian (WRF/Chem and CMAQ), combined plume and box model (OSPM) and statistical neural networks (SERENA). All the models are run by external institutions.

All the models have been helpful for the purpose used, and all of them with the exception of SERENA have been helpful for the AQ activities they have been applied for. SERENA model has only been applied for air quality forecasting and not for air quality assessment purposes. All the model results have been taken into account for air quality management decisions as long-term planning, short actions or public information. Some of the applications of the models include the estimation of GHG emissions.

The main weak points identified by the city of Madrid in their use of models are accounting for subgrid scale processes at hotspots in complex urban geometries when using the Eulerian models; as well as the lack of spatial coverage in the statistical model, as the forecasting only covers the monitoring site. The city of Madrid also points out the necessity for a general framework and criteria for harmonization in modelling.

4.3 Malmö

The city of Malmö applies two different models for different air quality applications, a Gaussian model based on a modified version of AERMOD and the same street canyon model (plume and box model) used also by the city of Madrid (OSPM), and plans to develop a Land Use Regression model for ozone. The models are run by the institution itself. The city of Malmö collaborates with Lund University⁵ on the development of the emission database and modelling software.

³ http://pandora.meng.auth.gr/mds/showshort.php?id=173

⁴ <u>http://wekuw.met.fu-berlin.de/trumf/trajektorien/</u>

⁵ http://www.lunduniversity.lu.se

Both models employed by the city of Malmö have been helpful in relation to air quality assessments and also the results have been taken into account in air quality management decisions as well as other environmental management decisions, for instance noise management. The main use of air quality models is for planning and follow-up on measures implemented in the action plan.

The city of Malmö identifies as weak points in the modelling the inventory of heavy vehicles on each road as well as the estimation of boundary conditions (sources outside the geographical area). The further guidance required by the city is related to technical aspects on the applications of models, as for example, how to evaluate the outputs of the model, how to know if a model can be applied under certain conditions or how to estimate the concentrations of certain pollutants.

4.4 Milan

The city of Milan applies 4 different models, one Eulerian (FARM) and two Lagrangian models (SPRAY and CALPUFF) for different air quality purposes such as reporting of air quality or long term planning. Table 4 summarizes the applications of each of the models. In the case of Milan the models are run by the same institution. Additionally, there are other modelling studies conducted by other institutes in the Lombardy region.

The Eulerian and Lagrangian models have been helpful in relation to air quality assessment activities and their results have been taken into account in air quality management decisions. The city of Milan has not identified any weak points concerning the model applications.

4.5 Vienna

The city of Vienna has applied two different models, one Lagrangian model (GRAL) and the Eulerian photochemical model CAMx. The last for air quality forecasting and short action plans. Both models are run by other institutions.

The models have been helpful both for air quality assessment activities and for air quality management decisions. Other topics like noise and climate change have also been considered through a cross-functional cooperation with noise and climate change experts.

The main weaknesses encountered when applying the model are related to the interpretation of the results that requires air quality experts, the amount of resources required, and the limitations in the results (overestimation, limited knowledge about some processes and emissions, etc.).

4.6 Prague

The city of Prague has used two different models for air quality activities, the two models are Gaussian: ATEM and SYMOS (Table 4), and are run by another institute. The experience with ATEM has been mostly satisfactory, and the results have been taken into account in air quality management decisions. ATEM model has also been applied for generating concentration maps and estimating population exposure. However, the second model, SYMOS did not provide precise enough results due mainly to the poor quality of input data employed. Model SYMOS is used only for different limited areas of Prague. Despite this, the SYMOS model has been applied successfully for short term action plans. The ATEM model is more sophisticated and it is designed to cover all territory of Prague. Concentration maps produced by the ATEM model covering all territory of Prague are regularly updated. The update of ATEM 2012 is under preparation and will be published on the website http://www.premis.cz/AtlasZP/. The model ATEM has been employed for short term

action plan evaluation, although it is a climatological Gaussian model producing annual statistics as results.

Both models employ annual averages of emission sources with their specifications and annual or climate wind roses as input. The output is a field of annual mean concentrations of pollutants NO_2 , NO_x , SO_2 , CO, PM_{10} , $PM_{2.5}$ and benzene.

4.7 Ploiesti

In Ploiesti city the models are used to assess air quality in general, for instance the impact of economic activities on air quality. Air quality management programs as well as the measures necessary to reduce the concentration of pollutants in the region are based on the modelling results.

The modelling analysis are not performed by Prahova EPA but by companies contracted by the Ministry of Environment and Forests. In the local agency yearly emission inventories are made according to a guideline in accordance with the requirements of the EMEP/EEA 2009 in the context of AQ Directive 2008/50/EC. The emission inventory (described in Annex B) is the input for the air quality models.

During the presentations at the project kick-off meeting, the city of Ploiesti highlighted that one of the difficulties they are facing is the elaboration of emission inventory due to fugitive emissions. It was commented that one of the key implementation successes was the inclusion of the refineries in the area of Ploiesti city. A dispersion study of pollutants was carried out to assess the individual contribution of each refinery.

4.8 Paris

The city of Paris use models for different purposes as for instance reporting of air quality, assessment of source contributions or air quality forecasting. The selection of the model depends on the type of application. A total of five models are employed in the city, including both Eulerian and Gaussian models. Only two of the models are documented in the MDS database, CHIMERE and ADMS urban. AirParif runs the models⁶, but the city of Paris has also established cooperation with other institutes like INERIS and ESMERALDA in relation to modelling activities.

The models have been helpful in relation to AQ assessment activities and the results have been successfully taken into account in AQ management decisions as long-term planning. Moreover the models have also been employed to estimate the geographic areas and population exposure to regulatory pollutants.

The city of Paris also reports some of the difficulties that have been found in the application of the models as for instance biases at kerbside for near real time air quality assessment applications and the underestimation of PM_{10} levels during high concentrations events when applying the CHIMERE model for air quality forecasting.

4.9 Plovdiv

Plovdiv uses models in the city for air quality activities such as assessment of air quality in general, long term planning and assessment of population exposure. The models employed depend on the application. Two models have been applied, AUSTAL 2000 and POLTRAN. Only the first one, AUSTAL

⁶ http://www.airparif.asso.fr/en/index/index

2000 is documented in the MDS database. The models are run by independent experts at the National Institute of Meteorology and Hydrology⁷ in Bulgaria, and no other collaborations are hold with other research institutes or administrations regarding air quality modelling.

Both models have been found helpful for the purposes they were applied, but only the results from AUSTAL 2000 have been taken into account in air quality decisions as long-term planning or short actions.

Some of the difficulties pointed out by the city of Plovdiv are the absence of data regarding the regional background concentration levels or that the meteorological conditions are estimated through interpolation and indirect methods.

4.10 Antwerp

The city of Antwerp employs air quality models for management activities such as long term planning or to supplement measurements. The chain of models RIO-AURORA-IFDM-OSPM is used for the different applications. The modelling activities are conducted by VITO⁸. The model has been documented and the results have been published in scientific papers describing the parameterisations and numerical methods employed.

AURORA is a three-dimensional Eulerian model and it is intended for regional applications with typical grid cell sizes ranging from 500 m to 30km, over domains 30 by 30 to 3000 by 3000 km. The AURORA model consists of several modules. The emission generator of AURORA calculates hourly pollutant emissions at the desired resolution, based on available emission data, and proxy data to allow for proper downscaling of coarse data.

The IFMD model (Immission Frequency Distribution Model) is a bi-Gaussian transport and dispersion model. It is used to assess the impact of emissions from point and area sources up to a distance of 30 km. Input to IFDM are the emissions of point and area sources in the region of interest, a receptor grid of arbitrary size and resolution, and a time series of hourly meteorological parameters over a period up to one year.

The RIO model it is not documented in the MDS database, but has been documented in scientific papers (see table 13).

The city of Antwerp has not made any comments about the user experience and if the model has been helpful for the purposes it has been applied.

4.11 Vilnius

The city of Vilnius employs the ADMS-Urban model for air quality management in the city. Some of the purposes addressed are reporting of air quality compliance assessment or short action plans evaluation (see Table 2). The model is run by a company and there are other modelling studies that have been realized in the city by the Environmental agency of Lithuania. In that case the models are used to create air pollution maps. The city of Vilnius cooperates with the Environmental protection agency for assessment of air quality in general, exchanging information and data, identifying possible

⁷ http://www.meteo.bg

⁸ http://www.vito.be

problems in the modelling, etc. As result of this cooperation annual air quality maps for the city for PM_{10} , $PM_{2.5}$, NO_2 , NO_x among other pollutants have been created.

The ADMS-Urban model has also been employed in the city of Paris for air quality management and assessment in general. The model has NO_x - NO_2 chemistry, sulphate chemistry and includes modules for street canyons (based on OSPM), complex terrain and buildings. Moreover a simple Lagrangian trajectory model is used to calculate background concentrations for the air approaching the main modelling area.

Some of the weak points identified by Vilnius concerning air quality modelling are the long computational time or the lack of knowledge in the model application.

5 Intercomparison of practices

The Air Quality Directive (2008/50/EC) lists three main applications of models:

- 1. Assessment of the existing air quality
 - a. To supplement fixed data when a zone is in exceedance of the upper assessment threshold
 - b. In combination with monitoring when a zone is in exceedance of the lower assessment threshold
 - c. To replace monitoring when a zone is below the lower assessment threshold
- 2. Management: when limit or target values are exceeded an air quality plan is required
 - a. Long term air quality plans
 - b. Short term action plans in regard to exceedances of alert thresholds
 - c. Co-operative air quality plans with other member states when transboundary air pollution in the cause of exceedances
- 3. Source apportionment: modelling in combination with monitoring to assess the causes of exceedances and the contribution from different sources.

As commented before, the city of Ploiesti has not completed the questionnaire sent to the cities but submitted a document describing the procedure to build up the emission inventory instead. A very brief description of the modelling activities in Ploiesti can be found in section 4, but the information has not been compiled in the tables and figures in this section for compatibility reasons. Therefore, all the information in this section is exclusively related to the 10 cities that have submitted the questionnaire.

In the questionnaire distributed to the cities it was asked if they have used models for the applications listed in Table 2. Figure 1 gives an overview of the purposes for which models have been applied. All of the cities except Vilnius have used models for long term planning, and most of them have employed models for air quality assessment in general, source contributions, and population exposure estimation. Only five of the cities have applied models for AQ forecasting (Milan, Vienna, Madrid, Paris and Vilnius). The cities of Milan, Vienna, Berlin, Plovdiv, Antwerp and Vilnius have employed modelling to supplement fixed data. Finally, seven cities have applied modelling for reporting: Malmo, Milan, Vienna, Madrid, Prague, Paris and Vilnius. None of the cities have provided a description of alternative applications.

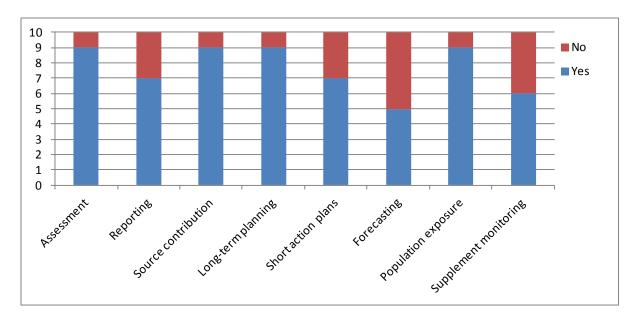


Figure 1. Number of cities that have used models for each particular air quality purpose.

Regarding the user experience in the application of models for AQ purposes, all the cities have found that the model has been helpful for the purpose it was applied (the city of Antwerp has not answered this part of the questionnaire), although the city of Vilnius mention that the model results have not been taken in account in AQ management decisions. All the cities have used different models depending on the purpose of application with the exception of Vilnius that has employed one model for all the purposes. Only two cities run the models by themselves (Malmo and Milan), while in the other cities other institutions run the models. Moreover, the cities have identified needs for further guidance on the necessity of a general framework for modelling and more orientation on to how to use and validate a model.

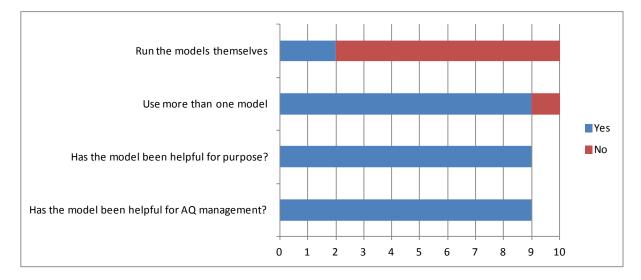


Figure 2. Summary of user experience evaluation.

In the next subsections we will compare how each city has applied the models for AQ purposes, comparing the different models they have used for each specific purpose and the configuration of the models (spatial and temporal resolution, pollutants modelled, etc.).

5.1 Assessment of air quality

Nine cities have applied models for assessment of air quality in general including evaluating the environmental impact of new infrastructures (highways, airports, etc.): Malmö, Milan, Vienna, Prague, Berlin, Paris, Plovdiv, Antwerp and Vilnius (Table 4). Each city has applied a different model for assessment of air quality.

The city of Malmö uses a Gaussian model (AERMOD) for assessment of air quality in general, the resolution employed depends on the purpose. This model is also employed for other purposes such as assessment of source contributions, long-term planning and source apportionment, just to mention some of them. The model outputs have hourly resolution and the components taken into account are nitrogen oxides. The model input includes all emission sources (traffic, domestic, industrial) although not all of them are updated on a yearly basis. For the meteorological fields the data from a measurement tower in Malmö are employed.

The city of Milan employs an Eulerian model for assessment of air quality (FARM). This model is also employed for other purposes as for instance reporting of air quality or long-term planning. The model outputs the concentrations for particulate matter and nitrogen oxides on an hourly basis. All the emission data for known sources have been included. The meteorological fields employed as input are ECMWF fields interpolated with the local monitoring network. The outputs of the dispersion model are validated against measurement data.

The city of Vienna employs the GRAL model, a Lagrangian model for assessment of air quality in general. Additionally this same model is employed for other applications such as reporting, assessment of source contributions or assessment of population exposure. The emissions introduced in the model consider all industrial, commercial, domestic and traffic sources. The meteorological fields are produced with the prognostic wind field model GRAMM (Grazer Mesoskaliges Modell).

The city of Prague uses the Gaussian model (ATEM) for air quality assessment. This model is employed for all the purposes addressed by the city of Prague (see table 3). The emissions included as input to the model cover all the known industrial, commercial, domestic and traffic sources. The model is validated against the data measured in the air quality monitoring network.

The city of Berlin employs two models for assessment of air quality in general, an Eulerian model (REM_CALGRID) and a Gaussian model (IMMISluft). The Eulerian model is also employed for source apportionment studies, and the Gaussian model is employed for the rest of the applications addressed by Berlin such as assessment of source contributions, long-term planning or short-action plans. The REM_CALGRID model considers both natural and anthropogenic emission sources; and the meteorological fields are obtained from an optimum interpolation of observations. The outputs of the model are validated against observations. The IMMISluft Gaussian model is employed to predict concentrations at street level, and the meteorology is obtained from one observation site. For the background concentrations the outputs from the REM_CALGRID model are employed. The background concentrations include the industrial and commercial sources, the emissions from traffic are included as line sources. The output of this model is also validated against measurements.

The city of Paris conducts near real time air quality assessment employing CHIMERE and then ADMSurban and CALPUFF. ADMS-urban is employed over the Paris agglomeration, whereas the CALPUFF model is employed over specific areas as the western part of the Paris agglomeration for the motorway underground infrastructure and also for the air quality assessment around the airports of Orly and Roissy. For the modelling a specific local emission inventory has been developed with an spatial resolution of 1km that contains specific traffic emission for 40000 traffic lines. The emissions for traffic are based on traffic counts and the emission model COPERT IV is used. The emissions for industry and commercial and domestic sector take into account the vertical distribution of the emissions. Additionally the monitoring data has been used in combination with the model through sequential assimilation methods as for instance various kriging methods. The outputs of the models are validated against measurements using classical metrics as bias, root mean square error, etc.

The city of Plovdiv employs two models for general assessment of air quality; the models are AUSTAL 2000 and POLTRAN. The AUSTAL model is a Lagrangian particle model that models the transport of passive trace substances, and the result of the dispersion calculation is the substance-specific quantities according to EU directives. The estimation of emissions is conducted for traffic, industry and domestic sectors. For the estimation of transport emissions data about vehicle fleet has been employed (differentiation between light and heavy duty vehicles, speed, road obstacle density, type of fuel, etc.). For commercial and domestic sectors an average height is assumed according to the prevailing floor height. For the industrial emissions the characteristics of the stack is employed in the modelling. However, with the second model POLTRAN only industry and domestic sector emissions are considered and no PM speciation is conducted. When POLTRAN is employed for air quality assessment total dust is considered. The POLTRAN model is run with more simplistic assumptions, as for instance the background concentration are not taken into account. The quality of the results from both models AUSTAL and POLTRAN is assessed through error calculation using several statistics.

The city of Antwerp uses the same model for different applications with the same input data (emissions and meteorology). We will briefly discuss the setting of the model in this section and we will refer to this section in the next ones. The chain of models employed in Antwerp is RIO, AURORA, IFDM and OSPM. The pollutants modelled are: PM₁₀, PM_{2.5}, NO₂ and EC. Regarding the emissions, and specific local emission inventory for road traffic has been developed, but generic emissions inventories are employed for other purposes. Different sectors are employed depending on the model, for instance, all sources are included implicitly in RIO, all SNAP sectors in AURORA, industry and road emissions in IFDM and exclusively road emissions in OSPM. For traffic emissions the emissions have been updated in regard to fleet composition and emission factors. For instance the speciation for NO and NO_x is conducted employing the COPERT model. Traffic is considered as line source emissions for the modelling, the commercial and domestic sector is considered as surface emissions and the industrial sources are considered as a combination of point sources and surface emissions. The meteorology employed depends on the model, for AURORA modelling input is employed, while for IFDM and OSPM meteorological measurements are used. The model results have been compared against observations and the uncertainty of the model has also been determined for RIO and AURORA models.

As mentioned before the city of Vilnius employs the same model for assessment of air quality in general as for the other purposes (see Table 3). A general overview of how the model is configured will be given in this section. The model ADMS urban was applied with a finer resolution of 130 x 130m over an area of 400 km². The time resolution is annual and seasonal and it is done for NO₂, SO₂, CO, PM₁₀ and since 2013 it also includes PM_{2.5}. The emission inventory does not cover all the sources, but it includes the main ones as for instance stationary, road, rail and residential sources. Emissions

from domestic sector and small industries are identified as difficult to collect and include in the modelling system. The model outputs have been verified employing monitoring data.

If we compare how the models have been configured in the different cities we see that for instance the spatial scale ranges from street scale (tens of meters) to a more urban or regional scale. Six cities have used nesting in the models. The cities of Vienna, Prague, Plovdiv and Vilnius have employed annual time resolution, while Antwerp, Malmö, Milan and Paris have employed models with hourly resolution outputs. The city of Berlin has used two different models with different spatial and temporal resolution: hourly resolution for the regional scale (REM_CALGRID) and annual resolution for the street scale (IMMISluft).

All the cities use a dispersion AQ model, but only three models are able to resolve the local/hotspot spatial scales: AERMOD (Malmö), GRAMM/GRAL (Vienna), IMMISluft (Berlin), in the rest of cities this issue is not well solved. For instance in Paris emissions are based on traffic counts (flow and speed) that cannot reflect completely congestion effects. Regarding the photochemical activity in the atmosphere Milan, Berlin, Paris, Antwerp, Plovdiv and Vilnius included it. All the cities have validated the model against measurements with different types of stations (background, traffic, etc.). For the validation common statistical errors are employed (bias, RMSE, correlation factor, etc.). The city of Malmö only uses bias, but a more stringent quality process is being developed.

In table 13 references to more detailed information about the application of models in the cities can be consulted.

Table 4: General description of model configuration for AQ general assessment.

	Malmö	Milan	Vienna	Prague	Berlin	Berlin
Model	AERMOD	FARM	GRAMM/GRAL	ATEM	REM_CALGRID	IMMISluft
Spatial scale	Depending on applic.	4x4 km ²	10x10m ²	50m-100km	4000m ²	Street canyon
Nesting	Yes	No	No	No	Yes	No
Time resolution	Hourly, daily, annual	Hourly	Annual means	Annual	Hourly	Annual
Pollutants	NO _x /NO ₂	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x	PM ₁₀ , NO _x , NO ₂	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x , SO ₂ , benzene, CO	PM ₁₀ (components), NO ₂ , O ₃	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x
	Paris	Paris	Plovdiv	Plovdiv	Antwerp	Vilnius
Model	CHIMERE + CALMET - ADMS- urban	CHIMERE + CALMET- CALPUFF	AUSTAL 2000	POLTRAN	RIO-AURORA- IFDM-OSPM	ADMS urban
Spatial scale	~ 2700 km 50m x 50m	50m, refinement along roads	54 km ² 24mx24m	250mx250m	10mx10m irregular grid	400 km ² 130x130m
Nesting	Background from regional model	Background from regional model	Yes	Yes	Yes for road emissions	Yes
Time resolution	Daily	Hourly, daily	yearly	hourly	hourly	Yearly, Seasonal
Pollutants	PM ₁₀ , PM _{2.5} , NO ₂	PM ₁₀ , PM _{2.5} , NO ₂ , benzene	2002 – SO ₂ , PM ₁₀ , Cd 2007 and 2010 – PM ₁₀ , NO ₂ 2011 – PM _{2.5} , B(a)P	Dust, SO ₂ , NO _x	PM ₁₀ , PM _{2.5} , NO ₂ , EC	PM ₁₀ , PM _{2.5} NO ₂ , SO ₂ , CO

5.2 Reporting of air quality compliance assessment

A total of 7 cities have applied air quality models for reporting of air quality assessment: Malmö, Milan, Vienna, Madrid, Prague, Paris and Vilnius. The cities of Milan, Vienna, Vilnius and Prague have used the same model for reporting as for assessment of air quality in general. The city of Malmö has used a street canyon model for reporting of AQ assessment, the city of Madrid has used two models, one of them, the street canyon model, is the same as in Malmö. The city of Paris has employed the CHIMERE and STREET model for reporting of air quality compliance assessment (Table 5). In those cities that have also used the model for air quality assessment (Milan, Prague, Vilnius and Vienna)

the model has been configured with the same settings (see Tables 4 and 5) and no further analysis is provided in this section.

The city of Madrid uses two models for reporting of air quality compliance assessment. The models are used for notification of time extension but not for annual compliance assessment. One of the models is the chain of grid models WRF-SMOKE-CMAQ for meteorology, emissions and air quality dispersion, respectively. The model uses 4 nested domains from 48 km² to 1 km² in the inner domain. The pollutants modelled include not only PM and NOx but also O_3 , NH₃ and VOC with hourly time resolution. The second model employed is the plume and box model for street canyon applications OSPM, the spatial scale is not fixed and it has temporal hourly resolution.

The photochemical model CMAQ employed by the city of Madrid includes full chemistry and in order to solve the local spatial scales and hotspots the street canyon OSPM model has been applied. The validation of the model results has been performed using the Delta tool⁹. The uncertainty of the model results fulfils the requirement of the AQ Directive.

The city of Malmö has also applied the OSPM model (Table 5). Malmö use the dispersion model for reportning on concentrations at certain critical streets in the city. The model has been validated against local measurement for NO_x and NO_2 , but only bias has been used as a quality indicator. The uncertainty of the model has not been determined. The model is run in a base of 1 or 2 times per year, and the model has been found helpful for AQ compliance assessment. The results have been successfully taken into account in AQ management decisions, where applicable, and also have been linked to topics such as noise. The outputs of the model have been used for estimating spatial distribution and population exposure of national limit values and have also served for epidemiological research studies.

The city of Paris uses the chain of models CHIMERE and STREET for reporting of air quality compliance assessment. The model covers the Île-de-France region (12,012 km²) with a high horizontal resolution (50 meters) and annual temporal resolution. A specific emission inventory has been developed, with 1 km for the local sources and around 40000 traffic lines. The outputs of the model have been validated against measurement employing metrics such as bias, mean error or correlation factor. The models CHIMERE-STREET have been found helpful for reporting AQ compliance, and the model results have been taken into account for AQ management decisions.

⁹ <u>http://aqm.jrc.it/DELTA/</u>

	Malmö	Milan	Vienna	Madrid	Madrid	Prague
Model	OSPM	FARM	GRAMM/GRAL	WRF- CMAQ	OSPM	ATEM
Spatial scale	Street canyon (50-500m)	4x4 km ²	10x10 m ²	1x1 km²	Depending on application	50 m
Nesting	Dual grid	No	No	Yes	-	No
Time resolution	Hourly, daily, annual	Hourly	Annual	Hourly	Hourly	Annual
Pollutants	NOx/NO2	PM10, PM2.5, NO2, NOx	PM10, NOx, NO2	PM10, PM2.5, NO2, NOx, O3, NH3, VOC, SOx	PM10, PM2.5, NO2, NOx, O3, NH3, VOC, SOx, Benzene, HM	PM10, PM2.5, NO2, NOx, SO2, benzene, CO
	Paris	Vilnius				
Model	CHIMERE+STREET	ADMS urban				
Spatial scale	50mx50m	400 km ² 130x130m				
Nesting		Yes				
Time resolution	Annual	Yearly, Seasonal				
Pollutants	Regulatory pollutants	PM10, PM2.5 NO2, SO2, CO				

Table 5: General description of the model configuration for reporting of AQ compliance assessment.

5.3 Assessment of source contributions

All the cities except Antwerp have applied AQ modelling for assessment of source contributions. The type of model applied varies, for instance Malmö, Prague and Berlin apply a Gaussian model, Milan a combination of Eulerian and Puff model, Vienna a coupled Eulerian (meteorology) and Lagrangian (air quality) model, Madrid a Eulerian model, Paris a Eulerian model, Plovdiv a Lagrangian model and Vilnius the ADMS Gaussian and Lagrangian urban model.

The general description of the model configuration can be consulted in the Table 6. The table shows that the spatial resolution is very high ranging from $10x10 \text{ m}^2$ to $1x1 \text{ km}^2$. Malmö and Madrid applied nesting, but with very different scales. In the case of Madrid the model is configured with 4 nested domains with horizontal cells from 48 km² to 1 km², while in Malmö the outer domain is 500x500 m². All the cities model PM₁₀ and NO_x, and all of them but Vienna and Plovdiv also include PM_{2.5}. As shown in the table some of the cities include other pollutants such as O₃, NH₃, benzene or VOC. NO₂ and PM₁₀ are the two pollutants included in the time extension notifications (TEN) and plans and programs (P&P) for the European Commission.

The dispersion AQ models have been validated employing the AQ monitoring network. The number and type of station vary from each city. For instance Vienna uses all the stations to validate PM_{10} , NO_x and NO_2 , while in Madrid the validation is conducted only with urban background monitoring stations. In Berlin, that employs a street canyon model, the validation is conducted at hot spots for PM_{10} , $PM_{2.5}$ and NO_2 . The links for further information about the modelling approach in each city can be found in the table 13.

	Malmö	Milan	Vienna	Madrid	Prague	Berlin
Model	AERMOD	SPRAY & CALPUFF	GRAMM/GRAL	WRF-CMAQ	ATEM	IMMISluft
Spatial scale	50 m	Variable, 1x1 km ²	10x10 m ²	1 km ²	50 m	Street canyon
Nesting	Local (one road), inner (50x50 m), and outer (500x500m)	No	No	4 nested domains from 48 km ²	No	No
Time resolution	Annual	Hourly	Annual	Hourly	Annual	Annual
Pollutants	NO _x , PM ₁₀ , PM _{2.5}	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x	PM ₁₀ , NO _x , NO ₂	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x , O ₃ , NH ₃ , VOC, SO _x	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x , SO ₂ , benzene, CO	PM ₁₀ , PM _{2.5} , NO ₂ , NOx
	Berlin	Paris	Plovdiv	Plovdiv	Vilnius	
Model	REM_CALGRID	CHIMERE	AUSTAL	POLTRAN	ADMS urban	
Spatial scale	4 x 4 km ²	3x3 km	24x24m	250x250m	400 km ² 130x130m	
Nesting	Yes	Yes	Yes	Yes	Yes	
Time resolution	Hourly	Hourly	Annual	Hourly	Yearly, Seasonal	
Pollutants	PM ₁₀ (components), NO ₂ , O ₃	Aerosols	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5} , Cd, B(a)P	Dust, SO ₂ , NOx	PM ₁₀ , PM _{2.5} NO ₂ , SO ₂ , CO	

Table 6: General description of model configuration for source contributions (SC).

5.4 Long term planning and scenario calculations

All cities except Vilnius apply models for long term planning and scenario calculations, as shown in Table 2. Malmö and Prague apply a Gaussian model, Milan, Paris and Madrid apply an Eulerian model, Vienna and Plovdiv apply a Lagrangian model, Berlin applies, as in all the applications on street level, a street canyon model, and Antwerp applies the chain of models described in section 5.1, including Eulerian and Gaussian models. The configuration of the models is the same as in the previous applications (see section 5.1 to 5.3). Only Malmö commented that the spatial scales and

nesting depends on the purpose (Table 7), as long term scenario modeling often involves choosing between a number of different traffic solutions that may affect the entire city or just a specific set of hot-spots. The rest of cities keep the same configuration of the model independent of the purpose.

	Malmö	Milan	Vienna	Madrid	Prague	Berlin
Model	AERMOD/OSPM	FARM	GRAMM/GRAL	WRF-CMAQ	ATEM	IMMISluft
Spatial	Depending on	4x4 km ²	10x10 m ²	1x1 km ²	50 m	Street
scale	purpose					canyon
Nesting	Depending on	No	No	4 nested	No	No
	purpose			domains		
				from 48 km ²		
Time	Hourly, daily,	Hourly	Annual	Hourly	Annual	Annual
resolution	annual					
Pollutants	NO _x /NO ₂	PM ₁₀ ,	PM ₁₀ , NOx,	PM ₁₀ , PM _{2.5} ,	PM ₁₀ ,	PM ₁₀ ,
		PM _{2.5} ,	NO ₂	NO ₂ , NOx,	PM _{2.5} ,	PM _{2.5} ,
		NO ₂ , NOx		O ₃ , NH ₃ ,	NO ₂ ,	NO ₂ , NOx
				VOC, SOx	NO _x , SO ₂ ,	
					benzene,	
					CO	
	Paris	Plovdiv	Antwerp			
Model	CHIMERE-STREET	AUSTAL	RIO-AURORA-			
			IFDM-OSPM			
Spatial	50x50 m	24x24m	10m (irregular			
scale			grid)			
Nesting	Yes	Yes	Yes			
Time	daily	annual	hourly			
resolution						
Pollutants	PM ₁₀ , PM _{2.5} , NO ₂ ,	SO ₂ , NO ₂ ,	PM ₁₀ , PM _{2.5} ,			
	O ₃	PM ₁₀ ,	NO ₂ , EC			
		PM _{2.5} , Cd,				
		B(a)P				

Table 7: General description of model configuration for long term planning and scenario calculations.

5.5 Short term action plans

Seven cities have applied models for short term action plans: Malmö, Milan, Vienna, Madrid, Prague, Plovdiv and Vilnius (Table 8). The city of Malmö has applied a Gaussian model AERMOD covering the entire city and a street canyon model OSPM. The city of Malmö evaluates the expected outcome of the actions as for instance rerouting of public transportation to avoid local hotspots but also more general traffic actions as street/lane configuration changes. The city of Milan has applied the Eulerian model FARM, configured in the same way as it was for the assessment of air quality and for the long term planning and scenario calculations. The city of Madrid applies, as in most of its applications, the chain of models WRF, SMOKE and CMAQ for meteorology, emissions and air pollutant dispersion, respectively. The city of Prague has applied two models for short term action plans, the Gaussian model ATEM with the same configuration as for the assessment of air quality, and the Gaussian model SYMOS, that has only been applied for short term action plans.

The city of Vienna has applied the Eulerian model CAMx driven by the meteorological model ALARO. This model has been applied for short term actions and forecasting. In Vienna, the air quality model

is considered "fit for purpose" and the outputs have been validated for ozone at all the monitoring stations. Also the model has been validated in similar environments in the provinces Niederösterreich (Lower Austria) and Burgenland. It has been observed that the model tends to overestimate the concentrations.

The city of Plovdiv has employed the Lagrangian model AUSTAL for the development of short term action plans. The model uses the same input data and configuration as for air quality assessment in general and long term planning (see sections 5.1 and 5.4). The domain covers the city of Plovdiv with a final resolution of 24x24m. The model employs nested domains with coarse resolutions of 250x250m2 and 400x400m2. The results from modelling have been useful but some of the difficulty in applying the AUSTAL model is that there is not data about regional background concentration levels.

The city of Vilnius applies the ADMS urban model with the same configuration as in air quality assessment with also annual and seasonal time resolution (see 5.1 for further description).

	Malmö	Milan	Vienna	Madrid	Prague	Prague
Model	AERMOD/OSPM	FARM	CAMx	CMAQ	ATEM	SYMOS
Spatial scale	Depending on purpose	4x4 km ²	9.6x9.6 km ²	1 km ²	50 m – 100 Km	Depending on purpose
Nesting	Depending on purpose	No	No	4 nested domains from 48 km ²	No	No
Time resolution	Hourly, daily, annual	Hourly	Hourly	Hourly	Annual	Annual
Pollutants	NO _x /NO ₂	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x	O ₃	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x , O ₃ , NH ₃ , VOC, SO _x	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x , SO ₂ , benzene, CO	PM ₁₀ , NO ₂ , NO _x
	Plovdiv	Vilnius				
Model	AUSTAL	ADMS urban				
Spatial scale	24mx24m	400 km ² 130x130m				
Nesting	Yes	Yes				
Time resolution	Annual	Annual, Seasonal				
Pollutants	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5} , Cd, B(a)P	PM ₁₀ , PM _{2.5} NO ₂ , SO ₂ , CO				

Table 8: General description of model configuration for short action plans.

5.6 Air quality forecasting

Five cities have used models for air quality forecasting: Milan, Vienna, Madrid, Vilnius and Paris. However, Milan has not included a description of the modelling activities (model configuration, data input, user experience, etc.) and, therefore, no further information is provided. The city of Vienna has employed the CAMx model with the same configuration and data input as in the short term action plan application. The city of Madrid has employed a statistical model for air quality forecasting, SERENA (Statistical Neural Network Air-Quality Forecasting System). In table 9 the model configurations for air quality forecasting purposes are indicated.

The city of Madrid does not employ a dispersion model for air quality forecasting but a statistical model based on neural networks. This model does not employ emissions as data input and the meteorology is based on single point measurement. The background concentrations are considered. Monitoring data have been used as a historical database to produce prediction algorithms and also as numerical predictors. The model has been validated against observations. The main difficulties associated with the use of this statistical model are the need for historical data representative of each point to be modelled and also that hourly observations from the monitoring network are needed to run the model. The weaker point of the model is its spatial coverage, as actually the forecasting is only for the locations where the monitoring stations are placed and does not cover the entire city.

The city of Paris employs the CHIMERE model on a daily basis for air quality forecasting with a 3x3 km resolution that covers an area of 250000 km². A nested modelling with 4 nested domains from continental (45km), national (15km) and 2 interregional domains with a finer resolution of 3km. The temporal resolution is 1 hour and the pollutants forecasted are NO₂, O₃, PM₁₀ and PM_{2.5}. The main difficulty that has been found in the forecasting application is the underestimation of PM₁₀ concentration during high concentration events.

The city of Vilnius employs as in the rest of applications the ADMS urban model. The model is run in a daily operational basis and the pollutants include: PM_{10} , CO, SO₂ and NO₂. Currently NO and $PM_{2.5}$ are being tested.

	Vienna	Madrid	Paris	Vilnius
Model	CAMx	SERENA	CHIMERE	ADMS urban
Spatial scale	9.6x9.6 km	Monitoring station (receptor oriented statistical model)	3kmx 3km	400 km² 130x130m
Nesting	No	No	Yes	Yes
Time resolution	Hourly	Hourly	hourly	daily
Pollutants	O ₃	PM ₁₀ , NO ₂ , O ₃	NO ₂ , O ₃ , PM ₁₀ , PM _{2.5}	PM ₁₀ , PM _{2.5} NO ₂ , SO ₂ , CO

5.7 Assessment of population exposure

The cities of Malmö, Milan, Vienna, Prague, Berlin, Paris, Plovdiv, Vilnius and Antwerp have used the model results for estimating spatial distribution of pollutant concentrations and population exposure to exceedances of the air quality limit values (Table 10). For that purpose they have used the models already employed in other applications such as air quality assessment or forecasting. In some of the cities, such as Malmö, Plovdiv and Vienna, the results of two different models have been applied to assess population exposure. The city of Malmö has employed the plume and box model OSPM and the Gaussian model AERMOD, while the city of Vienna has employed the GRAL Lagrangian model and the Eulerian photochemical model CAMx. The cities of Milan, Prague, Berlin and Vilnius have only used the outputs from one model to evaluate human exposure. The city of Berlin a Gaussian semi-empirical chemical model (IMMISluft). The city of Vilnius has employed the ADMS urban model, but it is not usually run to estimate geographic areas and population exposure, however it is being employed in 2013 to identify educational institutions where air pollution exceed the limit values.

Paris has employed the chain of models CHIMERE+STREET to assess the population exposure in public-access buildings, for that purpose a resolution of 50m have been employed. This chain of models has also been employed for AQ compliance assessment (see section 5.2) for regulatory pollutants. The assessment of population exposure has been conducted for PM_{10} , NO_2 and Benzene (see table 10). The cities of Plovdiv and Antwerp have employed the same models and configurations as for assessment of air quality in general (see table 10 and section 5.1 for model set up details).

For all the cities the configuration, as can be seen in the table 10, does not change from the configuration used in previous applications, and the same model outputs have also been employed to estimate population exposure.

	Malmö	Malmö	Milan	Vienna	Vienna	Prague
Model	OSPM	AERMOD	FARM	GRAMM/G RAL	MM5-CAMx	ATEM
Spatial scale	Street canyon (50-500m)	50x50 m	4 x 4 km	10 x 10 m	9.6 x 9.6 km	50 m
Nesting	Dual grid	Local (one road), inner (50x50 m), and outer (500x500m)	No	No	Νο	No
Time resolution	Hourly, daily, annual	Annual	Hourly	Annual	Hourly	Annual
Pollutants	NO _x /NO ₂	NO _x , PM ₁₀ , PM _{2.5}	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x	PM ₁₀ , NO _x , NO ₂	O ₃	PM ₁₀ , PM _{2.5} , NO ₂ , NO _x , SO ₂ , benzene, CO

Table 10: General description of model configuration for assessment of population exposure.

	Berlin	Paris	Plovdiv	Plovdiv	Antwerp	Vilnius
Model	IMMISluft	CHIMERE +	AUSTAL	POLTRAN	RIO-	ADMS
		STREET			AURORA-	urban
					IFDM-OSPM	
Spatial scale	Street	50x50m	24mx24m	250x250m	10m	400 km ²
	canyon				(irregular	130x130
					grid)	m
Nesting	No	Yes	Yes	Yes	Yes	Yes
Time	Annual	Annual	Annual	Hourly	hourly	Yearly,
resolution						Seasonal
Pollutants	PM ₁₀ ,	PM ₁₀ , NO ₂ ,	SO ₂ , NO ₂ ,	Dust, SO ₂ ,	PM ₁₀ , PM _{2.5} ,	PM ₁₀ ,
	PM _{2.5} , NO ₂ ,	Benzene	ΡM ₁₀ ,	NO _x	NO ₂ , EC	PM _{2.5}
	NO _x		PM _{2.5} , Cd,			NO ₂ , SO ₂ ,
			B(a)P			СО

5.8 Supplement measurements

Six of the cities have employed models to supplement monitoring stations, Milan has employed the Eulerian model FARM; Vienna has applied GRAMM/GRAL; Berlin has employed the IMMISluft street canyon model, Vilnius has employed the ADMS urban model, Plovdiv has employed the models AUSTAL 2000 and POLTRAN, and Antwerp has employed the chain of models RIO-AURORA-IFDM-OSPM. The spatial scales employed ranged from 10x10 meters in Vienna to 4x4 km² in Milan, and the time resolution is both hourly and annual (Table 11). For further information about modelling activity links, Table 13 can be consulted.

	Milan	Vienna	Berlin	Vilnius
Model	FARM	GRAMM/GRAL	IMMISluft	ADMS urban
Spatial scale	4x4 km	10x10 m	Street canyon	400 km ² 130x130m
Nesting	No	No	No	Yes
Time resolution	Hourly	Annual	Annual	Yearly, Seasonal
Pollutants	PM ₁₀ , PM _{2.5} , NO ₂ , NOx	PM ₁₀ , NO _x , NO ₂	PM ₁₀ , PM _{2.5} , NO2, NO _x	PM ₁₀ , PM _{2.5} NO ₂ , SO ₂ , CO
	Plovdiv	Plovdiv	Antwerp	
Model	AUSTAL	POLTRAN	RIO-AURORA- IFDM-OSPM	
Spatial scale	24mx24m	250x250m	10m (irregular grid)	
Nesting	Yes	Yes	Yes	
Time	Annual	Hourly	hourly	
resolution				
Pollutants	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5} , Cd, B(a)P	Dust, SO ₂ , NOx	PM ₁₀ , PM _{2.5} , NO ₂ , EC	

Table 11: General	description of	model	configuration	for supplement	t moscuromonte
Table II. General	uescription of	mouer	configuration	ior supprenter	it measurements.

6 Summary of models applied for each purpose

A range of different model types have been applied by the cities for the purposes described in the last section. Table 12 summarizes the models applied for each purpose and the list of cities that have addressed each of the applications.

- For assessment of air quality in general the type of models that have been applied are Gaussian (6), Eulerian (4) and Lagrangian (3), street canyon model (1) and also an statistical model based on interpolation (1).
- For reporting of air quality compliance the type of models applied are Street canyon model (1), Eulerian (2), Lagrangian (1) and Gaussian (1).
- For assessment of source contribution Gaussian (5), Lagrangian (4), Eulerian (4) and also a chemical mass balance model (1) have been applied.
- For long term planning and scenario calculations, Street canyon (2), Gaussian (4), Eulerian (3) and Lagrangian (2) models have been employed.
- For short term action plans Gaussian (4), Eulerian (3) and Lagrangian (2) models have been applied. For air quality forecasting the cities have employed Eulerian dispersion models (2), a statistical model based on neural networks (1), Lagrangian models (2) and Gaussian models (1).
- For assessing the exposure of the population the models used have been Gaussian (5), Eulerian (3), Lagrangian (3), street canyon (1) and interpolation model (1).
- Finally, to supplement measurements the type of models applied are Street canyon (1), Eulerian (3), Lagrangian (3) and Gaussian (3).

A more detailed description of the applications for each city can be found in the references supplied by the cities in the Table 13.

 Table 12: Summary of models applied for each purpose. G: Gaussian, E: Eulerian, L: Lagrangian, SC: Street Canyon, B: Box

 model, NN: Neural network model, Int: Interpolation model

	Purpose	Models	Cities
1	Assessment of air quality in general	AERMOD (G), FARM (E), GRAL (L), ATEM (G), REM_CALGRID_RCG (E), IMMISIuft (G), ADMS-urban (G,L), CALPUFF (G), AUSTAL 2000 (L), POLTRAN (E), RIO(Int)-AURORA(E)-IFDM (G)-OSPM (SC)	Malmö, Milan, Vienna, Prague, Berlin, Paris, Plovdiv, Vilnius, Antwerp
2	Reporting of air quality compliance assessment	OSPM (SC), FARM (E), GRAL (L), CMAQ (E), ATEM (G), STREET (SC), ADMS-urban (G)	Malmö, Milan, Vienna, Madrid, Prague, Paris, Vilnius
3	Assessment of source contributions	AERMOD (G), SPRAY (L), CALPUFF (G), GRAL (L), CMAQ (E), IMMISluft (G), CHIMERE (E), AUSTAL (L), POLTRAN (E), ADMS-urban (G, L), ATEM (G), REM_CALGRID (E), CBM (B)	Malmö, Milan, Vienna, Madrid, Prague, Berlin, Paris, Plovdiv, Vilnius
4	Long term planning and scenario calculations	AERMOD (G), FARM (E), GRAL (L), CMAQ (E), IMMISIuft (G), STREET (SC), AUSTAL (L), ATEM (G), RIO(Int)-AURORA (E)-IFDM (G)-OSPM (SC)	Malmö, Milan, Madrid, Prague, Berlin, Paris, Plovdiv, Antwerp
5	Short action plans	AERMOD (G), FARM (E), CAMx (E), CMAQ (E), ATEM (G), SYMOS (G), AUSTAL (L), ADMS-urban (G, L)	Malmö, Milan, Vienna, Madrid, Prague, Plovdiv, Vilnius
6	Air quality forecasting	CAMx (E), SERENA(NN), CHIMERE (E), AUSTAL (L), , ADMS-urban (G, L)	Vienna, Madrid, Paris, Plovdiv, Vilnius
7	Assessment of population exposure	AERMOD (G), FARM (E), GRAL (L), ATEM (G), IMMISIuft (G), STREET (SC), AUSTAL (L), POLTRAN (E), ADMS-urban (G, L), RIO (Int)- AURORA (E)-IFDM (G)-OSPM (SC)	Malmö, Milan, Vienna, Prague, Berlin, Paris, Plovdiv, Vilnius, Antwerp
8	Supplement measurements	FARM (E), GRAL (L), IMMISIuft (G), AUSTAL (L), POLTRAN (E), ADMS-urban (G, L), RIO(Int)-AURORA (E)- IFDM (G) -OSPM (SC)	Milan, Vienna, Berlin, Plovdiv, Vilnius, Antwerp

City/Model	System	References
Malmö	Emissions	Susanna Gustafsson (2007), Building and validation of an air pollution
AERMOD		emission database for Skåne (in Swedish), licenciate thesis, Lund
OSPM		University
	Meteorology	NA
	AQ Modelling	NA
Milan FARM	Emissions	http://www.inemar.eu/xwiki/bin/view/Inemar/WebHome
	Meteorology	NA
	AQ Modelling	http://ita.arpalombardia.it/ITA/qaria/doc_valutazione_mod_annuale.asp
Vienna	Emissions	http://emikat.ait-projects.uenterprise.de/wp-
GRAM/GRAL		content/uploads/2011/08/Bericht-emikat.at-ARC-sys-0049-April- 2005.pdf
	Meteorology	ZAMG (2011): Immikat Wien - Meteorologische Analysen - final report from 20.05.2011; on GRAMM:
		http://pandora.meng.auth.gr/mds/showlong.php?id=133; Öttl, D. (2000): Weiterentwicklung, Validierung und Anwendung eines Mesoskaligen Modells, PhD-thesis at Graz University
	AQ Modelling	http://pandora.meng.auth.gr/mds/showlong.php?id=133&MTG_Session =2a1c690d43644288abbcc9f635632406
Vienna	Emissions	http://emikat.ait-projects.uenterprise.de/wp-
MM5-CAMx		content/uploads/2011/08/Bericht-emikat.at-ARC-sys-0049-April- 2005.pdf
	Meteorology	http://wwwx.zamg.ac.at/cms/de/forschung/wetter/alaro
	AQ Modelling	http://www.zamg.ac.at/forschung/umweltmeteorologie/ozonprognose/
		ozonprognose/
		http://www.zamg.ac.at/docs/forschung/umweltmeteorologie/11_Harmo
Prague	Emissions	nisation.pdf National database of emissions, CHMI
ATEM	Meteorology	NA
	AQ Modelling	Bednář J., Brechler J., Bubník J., Keder J., Macoun J., Píša V.: Kompendium
	/ Q Wouching	ochrany kvality ovzduší. Část 6: Modelování přenosu a rozptylu
		znečišťujících příměsí v atmosféře. Gaussovské rozptylové modely.
		Ochrana ovzduší 1/2006.
Prague	Emissions	National database of emissions, CHMI
SYMOS	Meteorology	NA
	AQ Modelling	User manual (Czech only):
		http://www.idea-envi.cz/download/symos97v2006/Symos97.pdf
		Model description (Czech only):
		http://old.chmi.cz/uoco/prj/model/doc/symos_97.zip
		http://old.chmi.cz/uoco/prj/model/doc/symos_doplnek1.zip
Berlin REM_CALGRI	Emissions	http://www.umweltbundesamt.de/luft/infos/veranstaltungen/parest201 0/index.htm
D	Meteorology	Reimer, E. & Scherer, B., 1992. An operational meteorological diagnostic
		system for regional air pollution analysis and long term modelling. Air
		Pollution Modelling and its Application IX , eds. H. v. Dop und G. Kallos,
		NATO Challenges of Modern Society, Kluwer Academic/Plenum Publisher,
		New York.

Table 13: Documentation related to the application of models in the cities for AQ modelling.

City/Model	System	References
•	AQ Modelling	http://www.geo.fu-
		berlin.de/met/ag/trumf/Veroeffentlichungen/index.html
Berlin	Emissions	http://www.ivu-umwelt.de/front_content.php?idcat=92
IMMISluft		Lenschow et al., 2001, Some ideas about the source of PM10, Atmos.
		Enivorn., 35, suppl. 1, S23-S33.
	Meteorology	http://www.ivu-umwelt.de/front_content.php?idcat=92
		Lenschow et al., 2001, Some ideas about the source of PM10, Atmos.
		Enivorn., 35, suppl. 1, S23-S33.
	AQ Modelling	http://www.ivu-umwelt.de/front_content.php?idcat=92
		Lenschow et al., 2001, Some ideas about the source of PM10, Atmos.
		Enivorn., 35, suppl. 1, S23-S33.
Madrid	Emissions	NA
WRF-CAMQ	Meteorology	NA
OSPM	AQ Modelling	http://www.sciencedirect.com/science/article/pii/S1352231008002355;
		http://www.sciencedirect.com/science/article/pii/S1352231008007954;
		http://www.sciencedirect.com/science/article/pii/S1364815207002174;
		http://www.sciencedirect.com/science/article/pii/S1352231010003511; Air quality modelling at urban scale. Ongoing NO2 modelling activities for
		the Madrid city (Spain) in "Cet 2011 World Congress on Engineering and
		Technology, Oct.28 – Nov.2, 2011 Shanghai, China";
		http://www.sciencedirect.com/science/article/pii/S1352231008009795;
		http://fairmode.ew.eea.europa.eu/fol404948/sg3_background_docume
		nt_oct10_draft.pdf;
		http://www.epa.gov/ttnchie1/conference/ei16/session1/borge.pdf
Madrid	Emissions	NA
SERENA	Meteorology	NA
	AQ Modelling	Internal reports
Paris	Emissions	Methodology is defined with regard to national guide on emission
CHIMERE+		calculation
STREET	Meteorology	http://www.airparif.asso.fr/_pdf/publications/Robservatoire_1004.pdf
CALPUFF	AQ Modelling	
ADMS-urban		
Plovdiv		
	Emissions	Information is available in the database of RIFW
	Emissions Meteorology	Information is availavle in the database of RIEW
AUSTAL 2000	Meteorology	
		http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1-
	Meteorology	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011-
	Meteorology AQ Modelling	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1-
AUSTAL 2000	Meteorology AQ Modelling Emissions	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011-
AUSTAL 2000 Plovdiv	Meteorology AQ Modelling	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011- 2013_Plan+za+deistvie.pdf
AUSTAL 2000 Plovdiv	Meteorology AQ Modelling Emissions Meteorology	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011-
AUSTAL 2000 Plovdiv	Meteorology AQ Modelling Emissions Meteorology	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011- 2013_Plan+za+deistvie.pdf Atanassov, D., Validation of the Eulerian Pollution Transport Model
AUSTAL 2000 Plovdiv	Meteorology AQ Modelling Emissions Meteorology	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011- 2013_Plan+za+deistvie.pdf Atanassov, D., Validation of the Eulerian Pollution Transport Model PolTran on the Kincaid Data Set, Int. J. Environment & Pollution, vol. 20,
AUSTAL 2000 Plovdiv POLTRAN	Meteorology AQ Modelling Emissions Meteorology AQ Modelling	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011- 2013_Plan+za+deistvie.pdf Atanassov, D., Validation of the Eulerian Pollution Transport Model PolTran on the Kincaid Data Set, Int. J. Environment & Pollution, vol. 20, No.1-6, 105-113, 2003
AUSTAL 2000 Plovdiv POLTRAN Antwerp	Meteorology AQ Modelling Emissions Meteorology AQ Modelling	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011- 2013_Plan+za+deistvie.pdf Atanassov, D., Validation of the Eulerian Pollution Transport Model PolTran on the Kincaid Data Set, Int. J. Environment & Pollution, vol. 20, No.1-6, 105-113, 2003 Lefebvre W., Janssen S., Degraeuwe B., Lodewijks P., Deutsch F.,
AUSTAL 2000 Plovdiv POLTRAN Antwerp RIO-AURORA-	Meteorology AQ Modelling Emissions Meteorology AQ Modelling	http://www.plovdiv.bg/plovdiv/images/stories/10.2-Ekologiya/10.2.3.1- Upravlenie_na_KAV/id0002727-Plovdiv_Programa_KAV_2011- 2013_Plan+za+deistvie.pdf Atanassov, D., Validation of the Eulerian Pollution Transport Model PolTran on the Kincaid Data Set, Int. J. Environment & Pollution, vol. 20, No.1-6, 105-113, 2003 Lefebvre W., Janssen S., Degraeuwe B., Lodewijks P., Deutsch F., Veldeman N., Vankerkom J., Schrooten L., Cochez E., Meynaerts E.,

City/Model	System	References
		luchtkwaliteitszones Gent, Antwerpen en Haven Antwerpen in het kader
		van de richtlijn luchtkwaliteit 2008/50/EG, Report for the administration
		'Leefmilieu, Natuur en Energie' of the Flemish Government, 2011/RMA/R/45.
	Meteorology	Xue, M., Droegemeier K.K., and Wong V., 2000. The Advanced Regional
	Meteorology	Prediction System (ARPS) – A multiscale non-hydrostatic atmospheric
		simulation and prediction tool. Part I: Model dynamics and verification.
		Meteor. Atmos. Physics, 75, 161-193.
		Xue, M., Droegemeier K.K., Wong V., Shapiro A., Brewster K., Carr F.,
		Weber D., Liu Y., and Wang DH., 2001. The Advanced Regional
		Prediction System (ARPS) – A multiscale non-hydrostatic atmospheric
		simulation and prediction tool. Part II: Model physics and applications.
		Meteor. Atmos. Physics, 76, 134-165.
	AQ Modelling	Cosemans, G., Mensink, C., Veldeman, N., Deutsch, F., Van Looy, S.,
		Peelaerts, W., Lefebre, F., 2011b. Validation of the MIMOSA-AURORA-
		IFDM model chain for policy support: modeling concentrations of
		elemental carbon in Flanders, Atm. Env., 45/37, 6705-6713., doi:
		10.1016/j.atmosenv.2011.08.033
		OSPM: Berkowicz, R., Hertel, O., Larsen, S.E., Sørensen, N.N., Nielsen, M.,
		1997. Modelling traffic pollution in streets (report in PDF format, 850 kB), link on http://www.dmu.dk/en/air/models/ospm/ospm_description/
		Different aspects of model coupling: Lefebvre, W., Vercauteren, J.,
		Schrooten, L., Janssen, S., Degraeuwe, B., Maenhaut, W., de Vlieger, I.,
		Vankerkom, J., Cosemans, G., Mensink, C., Veldeman, N., Deutsch, F., Van
		Looy, S., Peelaerts, W., Lefebre, F., 2011b. Validation of the MIMOSA-
		AURORA-IFDM model chain for policy support: modeling concentrations
		of elemental carbon in Flanders, Atm. Env., 45/37, 6705-6713., doi:
		10.1016/j.atmosenv.2011.08.033
		Lefebvre W., Degraeuwe B., Beckx C., Vanhulsel M., Kochan B., Bellemans
		T., Janssens D., Wets G., Janssen S., de Vlieger I., Int Panis L., Dhondt S.,
		2013a. Presentation and evaluation of an integrated model chain to
		respond to traffic- and health-related policy questions, Env. Mod. & Soft.,
		40, 160-170, doi: 10.1016/j.envsoft.2012.09.003
		Lefebvre W., Van Poppel M., Maiheu B., Janssen S., Dons E., 2013. The
		RIO-IFDM-street canyon model chain: a validation study in Antwerp,
		Belgium, Atm. Env., submitted. Lefebvre W., Schillemans L., Op 't Eyndt T., Vandersickel M., Poncelet P.,
		Neuteleers C., Dumez J., Janssen S., Vankerkom J., Maiheu B., Janssen L.,
		Buekers J., Mayeres I., Voorstel van maatregelen om de luchtkwaliteit te
		verbeteren en de geluidshinder te beheersen in de stad Antwerpen,
		2011/RMA/R/29, Studie uitgevoerd in opdracht van Stad Antwerpen -
		Stadsontwikkeling/Milieu
		(*) Lefebvre W., Van Poppel M., Maiheu B., Janssen S., Dons E., 2013. The
		RIO-IFDM-street canyon model chain: a validation study in Antwerp,
		Belgium, Atm. Env., submitted
Vilnius	Emissions	NA
	Meteorology	NA
	AQ Modelling	http://www.cerc.co.uk/environmental-software/ADMS-Urban-
		<u>model.html</u>

7 Summary of input data for AQ modelling

7.1 Emissions

All the cities have developed a specific local emission inventory to run the model, the spatial and temporal resolution of the emission inventories vary according to the model used and the resolution employed in the AQ modelling. For instance, spatial resolution goes from 24 m in the AUSTAL 2000 (Plovdiv) or 50m in the OSPM model (Malmö) to 4x4km² in the FARM model (Milan); the temporal resolution employed is hourly or annual.

The sources included in the emission inventory also vary from city to city and from model to model. For instance in street canyon models only the relevant sources are included, and that refers usually to road traffic sources, while in other models as AERMOD, GRAL, ATEM, REM_CALGRID or CMAQ the cities have indicated that all the known sources are included, which usually means that all sectors are taken into account in the emission inventory. However, there are sources such as non-exhaust traffic PM emissions that, although known to be a significant source, are not usually fully included in the emission inventory.

In relation to the traffic emissions, all the cities have answered that traffic congestion is a problem in their cities with the exception of Vilnius, however not all the models are capable of reflecting it. For instance, FARM (Milan) or REM_CALGRID (Berlin) are not reflecting traffic congestion, and the cities of Paris and Plovdiv also indicate the difficulties in modelling traffic congestions as traffic emissions are based on traffic count that cannot reflect completely congestion effects. The city of Berlin uses the IMMISluft model to reflect those traffic situations. Traffic emission estimation includes traffic counts and traffic speed per vehicle class in all the cities but Prague and Vilnius. The traffic emission inventories have been updated in regard to fleet composition and emission factors for NO and NO₂ in all the cities and in Vienna, Madrid, Prague, Berlin and Plovdiv the speciation for NO and NO₂ is done according to the fleet composition (Table 15). Traffic emissions are included in some modelling activities as line sources, as for instance in AERMOD and OSPM (Malmö and Antwerp), STREET (Paris) or ATEM (Prague) but in some models are included as gridded emissions as in FARM (Milan) or CAMx (Vienna).

The PM speciation (PM₁₀ and PM_{2.5}) for the commercial and domestic sector is not completely implemented in any of the cities. For instance the city of Madrid uses the US EPA speciate database and the city of Berlin has implemented dust resuspension and secondary particles are treated explicitly in the Eulerian model REM_CALGRID. However, secondary particles are not implemented in the IMMISluft street canyon model also used by the city of Berlin. In the emission inventory from Malmö no speciation is applied and all airborne particles are considered as PM₁₀, this is also similar to Vienna where PM speciation was analyzed in the Aquella¹⁰ project, but is not considered in the modelling activities (Table 14). In the cities of Plovdiv and Antwerp PM speciation is considered in some models but not in others, for instance in Plovdiv only total dust is considered in POLTRAN model but emissions factors for PM are applied in AUSTAL; in Antwerp the PM speciation is contemplated in AURORA and implicitly in RIO but not in the other models (IFDM and OSPM).

The commercial and domestic sources are not in all the cases precisely distributed in height as allocated point sources, for instance in Malmö only large sources are located as height sources, in

¹⁰ <u>http://publik.tuwien.ac.at/files/PubDat_173988.pdf</u>

Madrid only coal-fired boilers are treated as point sources and all the rest are allocated as surface emissions, in Prague and Vilnius commercial sources are considered as point sources while domestic are allocated as surface sources, in Paris the source height is taken into account when the information is available and in Plovdiv an average height is assumed according to type of construction. In the chain of models employed in Antwerp all the emissions from commercial and domestic sector are allocated in the lowest layer of the model.

The PM speciation for the industrial sector is also not well resolved in the cities. The city of Milan uses speciation profiles to disaggregate PM_{10} and $PM_{2.5}$, the city of Madrid uses the US EPA speciate database and the city of Paris employs a PM speciation based on literature. But, for instance, Malmö considers the sources individually but often considers only that $PM_{2.5} = PM_{10}$, Vienna does not consider any speciation, and Berlin considers that EC and OC are percentages of PM_{10} dependent on source in REMCALGRIC, but IMMISluft considers EC directly as it is calculated with the emission model IMMISem (based on HBEFA 3.1). In all the cities the source height is precisely described when the information is available and usually industries are considered as point sources in the modelling or they are included as a combination of gridded surface emissions and point sources.

The city of Ploiesti, as commented before, didn't fill in the information regarding the use of air quality models in the questionnaire but sent a separate document relating how emissions are estimated. Therefore, the city of Ploiesti is not included in the Tables 14, 15 and 16 and its information regarding the inputs to air quality models can be found in Annex B.

	Malmö	Malmö	Milan	Milan
	AERMOD	OSPM	FARM	SPRAY
Did you develop a specific local emission inventory to run the model?	Specific local traffic flow (vehicle count) is usually updated.	Yes	yes	point source data used
What is the spatial and temporal resolution you have chosen?		dual grid: 50 m and 500 m Hourly	municipality/annual level (proxy used to disaggregate on cell and hourly base)	point source, hourly data used
Have emission data for all known sources been included?	Yes but not all sources are updated every year.	Yes but not all sources are updated every year.	yes	No
What sources have been included?	Road traffic, Point sources (industries and power plants) Sea traffic, Railway traffic, Airway traffic, non-road machinery, small- scale heating.	traffic, point, line (ship, rail) and area sources	NA	NA
Traffic:				
Is traffic congestion a problem and is it reflected in the modelling?	yes, sometimes and yes it is reflected	yes, sometimes and yes it is reflected	yes, no	NA
Do the emission	yes	yes	yes (as output from	

Table 14: Summary of the emissions used as input to the AQ models

	Malmö	Malmö	Milan	Milan
	AERMOD	OSPM	FARM	SPRAY
inventories for traffic include traffic counts and traffic speed per vehicle class?			traffic assignment model)	
Have the emission inventories been updated in regard to fleet composition, and emission factors (both for NO and NO ₂)?	HBEFA_31_program to get the emission factor. But only for NOx.	HBEFA_31_program to get the emission factor. But only for NOx.	yes	
Which speciation for NO and NO2 is used in the emission data according to the fleet composition? References?	No speciation is used. All calculation is based on NOx.	No speciation is used. All calculation is based on NOx.	emission inventory provides total NOx emissions	
Are line source emissions included or only gridded emissions?	Included	Included	gridded emissions	
Commercial/domestic sector:				
How do you deal with PM speciation?	No speciation. All airborne particles as PM10	No speciation. All airborne particles as PM10		
Is the source height precisely described?	All large sources are precisely described. Small sources may be estimated depending on the situation.	All large sources are precisely described. Small sources may be estimated depending on the situation.	emission inventory provides total PM 2.5 and PM 10 emissions, to disaggregate speciation profiles are used	
How are those sources described (surface emissions or point sources?) Industry:	Mostly as surface emissions	Mostly as surface emissions	no	
How do you deal with PM speciation?	individually, often PM2.5=PM10	individually, often PM2.5=PM10	emission inventory provides total PM 2.5 and PM 10 emissions, to disaggregate speciation profiles are used	
Is the source height precisely described?	yes	yes	yes	
How are those sources described (surface emissions or point sources?)	point, national environmental report portal: www.smp.se	point	both, as areal and point sources	

	Vienna	Vienna	Madrid	Madrid
	GRAL	САМх	CAMQ	OSPM
Did you develop a specific local emission inventory to run the model?	the model is based on the emission inventory "emikat wien"	the model is based on the emission inventory "emikat wien"	Yes	Yes
What is the spatial and temporal resolution you have chosen?	100x100 m; emission data are disaggregated hourly via analysis of diurnial variations	100x100 m; emission data are disaggregated hourly via analysis of diurnial variations	Accordingly to domain resolution (down to 1km ²)	Street length, 1 hour
Have emission data for all known sources been included?	yes	yes	Yes	No
What sources have been included?	all SNAP categories	all SNAP categories		Only traffic
Traffic:				
Is traffic congestion a problem and is it reflected in the modelling?	yes	yes	Yes	Yes
Do the emission inventories for traffic include traffic counts and traffic speed per vehicle class?	yes	yes	Yes, average speed data is vehicle type independent	Yes, average speed data is vehicle type independent
Have the emission inventories been updated in regard to fleet composition, and emission factors (both for NO and NO ₂)?	yes	yes	Yes (modelling inventory)	Yes (modelling inventory)
Which speciation for NO and NO2 is used in the emission data according to the fleet composition? References?	NO/NO2 conversion model Romberg (VDI-Richtlinie 3782, adapted for Vienna); Handbook Emission Factors for Road Transport - HBEFA (http://www.hbefa. net/e/index.html)	Handbook Emission Factors for Road Transport - HBEFA (http://www.hbefa. net/e/index.html)	COPERT IV and HBFA 3.1	COPERT IV and HBFA 3.1
Are line source emissions included or only gridded emissions?	line sources	gridded emissions	Line	Line
Commercial/domestic sector:				
How do you deal with PM speciation?	not in case of the modelling results, PM speciation was	not at all	Basically using US EPA speciate database	Implicitly through background concentration

	1	1		
	analysed elsewhere			
	(project "Aquella" publik.tuwien.ac.at/			
	files/PubDat_17398			
	8.pdf)			
Is the source height	ves	no	Yes	nr
precisely described?	yes	110	105	111
How are those	surface and point	surface and point	Surface emissions,	nr
sources described	sources	sources	except for coal-fired	
(surface emissions or			boilers treated as	
point sources?)			point sources	
. ,				
Industry:				
How do you deal with	not in case the	not at all	Basically using US EPA	Implicitly through
PM speciation?	modelling results,		speciate database	background
	PM speciation was			concentration
	analysed elsewhere			
	(Aquella:			
	publik.tuwien.ac.at/			
	files/PubDat_17398			
Is the source height	8.pdf) yes	Vec	Yes	nr
precisely described?	yes	yes	Tes	111
How are those	point sources	point sources	Point sources	nr
sources described			including stack	
(surface emissions or			parameters	
point sources?)				
	Prague	Prague	Berlin	Berlin
	· 0· ·		Bernin	
	ATEM	SYMOS	REM_CALGRID	IMMISluft
Did you develop a		-	-	-
specific local emission	ATEM	SYMOS	REM_CALGRID	IMMISluft
specific local emission inventory to run the	ATEM	SYMOS	REM_CALGRID	IMMISluft
specific local emission inventory to run the model?	ATEM yes	SYMOS yes	REM_CALGRID	IMMISluft yes
specific local emission inventory to run the model? What is the spatial	ATEM	SYMOS	REM_CALGRID	IMMISluft yes annual car fleet, traffic
specific local emission inventory to run the model? What is the spatial and temporal	ATEM yes	SYMOS yes	REM_CALGRID	IMMISluft yes annual car fleet, traffic situation, street
specific local emission inventory to run the model? What is the spatial and temporal resolution you have	ATEM yes	SYMOS yes	REM_CALGRID	IMMISluft yes annual car fleet, traffic
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen?	ATEM yes 300x250 m	SYMOS yes 300 m	REM_CALGRID yes 2 x 2 km ² , annual	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data	ATEM yes	SYMOS yes	REM_CALGRID	IMMISluft yes annual car fleet, traffic situation, street
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources	ATEM yes 300x250 m	SYMOS yes 300 m	REM_CALGRID yes 2 x 2 km ² , annual	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included?	ATEM yes 300x250 m yes	SYMOS yes 300 m only relevant	REM_CALGRID yes 2 x 2 km², annual yes	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have	ATEM yes 300x250 m yes industrial,	SYMOS yes 300 m only relevant industrial,	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic,	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included?	ATEM yes 300x250 m yes industrial, commercial,	SYMOS yes 300 m only relevant	REM_CALGRID yes 2 x 2 km², annual yes	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have	ATEM yes 300x250 m yes industrial,	SYMOS yes 300 m only relevant industrial,	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic,	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included?	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic	SYMOS yes 300 m only relevant industrial,	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic,	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a	ATEM yes 300x250 m yes industrial, commercial,	SYMOS yes 300 m only relevant industrial,	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic,	IMMISluft yes annual car fleet, traffic situation, street description
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic	SYMOS yes 300 m only relevant industrial, commercial, traffic	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic	IMMISluft yes annual car fleet, traffic situation, street description yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic	SYMOS yes 300 m only relevant industrial, commercial, traffic	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic	IMMISluft yes annual car fleet, traffic situation, street description yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling?	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic yes	SYMOS yes 300 m only relevant industrial, commercial, traffic no	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic no	IMMISluft yes annual car fleet, traffic situation, street description yes yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling? Do the emission	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic	SYMOS yes 300 m only relevant industrial, commercial, traffic	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic	IMMISluft yes annual car fleet, traffic situation, street description yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling? Do the emission inventories for traffic	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic yes	SYMOS yes 300 m only relevant industrial, commercial, traffic no	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic no	IMMISluft yes annual car fleet, traffic situation, street description yes yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling? Do the emission inventories for traffic include traffic counts	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic yes	SYMOS yes 300 m only relevant industrial, commercial, traffic no	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic no	IMMISluft yes annual car fleet, traffic situation, street description yes yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling? Do the emission inventories for traffic include traffic counts and traffic speed per	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic yes	SYMOS yes 300 m only relevant industrial, commercial, traffic no	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic no	IMMISluft yes annual car fleet, traffic situation, street description yes yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling? Do the emission inventories for traffic include traffic counts and traffic speed per vehicle class?	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic yes yes	SYMOS yes 300 m only relevant industrial, commercial, traffic no no	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic no no	IMMISluft yes annual car fleet, traffic situation, street description yes yes yes yes yes yes yes yes
specific local emission inventory to run the model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources been included? What sources have been included? <i>Traffic:</i> Is traffic congestion a problem and is it reflected in the modelling? Do the emission inventories for traffic include traffic counts and traffic speed per	ATEM yes 300x250 m yes industrial, commercial, domestic, traffic yes	SYMOS yes 300 m only relevant industrial, commercial, traffic no	REM_CALGRID yes 2 x 2 km², annual yes anthropogenic, natural, biogenic no	IMMISluft yes annual car fleet, traffic situation, street description yes yes

updated in regard to				
fleet composition,				
and emission factors				
(both for NO and				
NO ₂)?	references and	references and	hattan //	HBEFA 3.1
Which speciation for NO and NO2 is used	measurements		http://www.umweltb undesamt-daten-zur-	(www.hbefa.net)
in the emission data	MEFA6	measurements MEFA6	umwelt.de/umweltda	(www.iibeia.iiet)
	(http://www.atem.	(http://www.atem.	ten/public/theme.do?	
according to the fleet composition?	cz/mefa.html)	cz/mefa.html)	nodeldent=3573	
References?			<u>IIUueiueiii-5575</u>	
Are line source	Yes	yes	only gridded	only line sources
emissions included or	163	yes	emissions and point	only line sources
only gridded			sources	
emissions?			sources	
Commercial/domestic				
sector:				
How do you deal with	dust resuspension	NA	EC and OC are	EC directly as it is
PM speciation?	implemented,		percentages of PM10	calculated with the
·	secondary particles		dependent on source	emission model
	not implemented			IMMISem (based on
				HBEFA3.1).
Is the source height	yes	yes	gridded emissions are	urban background
precisely described?			input on	added to street canyon
			corresponded vertical	model
			level	
llow ore these				
How are those sources described	commercial- point/domestic-	commercial - point sources	surface sources, vertical level sources,	urban background added to street canyon
(surface emissions or	surface sources	sources	if appropriate	model
point sources?)	surface sources			model
point sources:				
Industry:				
How do you deal with	dust re-suspension		EC and OC are	EC directly as it is
PM speciation?	implemented,		percentages of PM10	calculated with the
·	secondary particles		dependent on source	emission model
	not implemented			IMMISem (based on
				HBEFA3.1).
Is the source height	yes	yes	yes	urban background
precisely described?				added to street canyon
				model
How are those	point sources	point sources	point sources	urban background
sources described				added to street canyon
(surface emissions or				model
point sources?)				
. ,	Paris	Plovdiv	Plovdiv	Antwerp
		AUSTAL 2000	POLTRAN	RIO-AURORA-IFDM-
	CHIMERE/STREET/			
	ADMS-urban/			OSPM
Did you double	ADMS-urban/ CALPUFF			
Did you develop a specific local emission	ADMS-urban/	Yes	yes	OSPM yes for road emissions, no for other sectors

model?				
model? What is the spatial and temporal resolution you have chosen? Have emission data for all known sources	1 km resolution for the local emission inventory and traffic emission on ~ 40 000 traffic lines	250 x 250 m ² and 400 x 400 m ² ; 48m x 48m and 24m x 24m IE for the industrial and transport sector is based on hourly emission rates, whereas in the household sector – modelling is done on a seasonal basis (1 November - 1 April) In the modelling actifities for the	250m ; 1 hour no	Emissions: road network: 1m; other sectors: 3x3 km ² ; grid resolution of models: irregular grid up to 10m; hourly concentrations
been included?		year: - 2002 - not all (excluding transport) - 2007, 2010 and 2011 - all		interpolation tool RIO) in IFDM en OSPM; explicitely in AURORA
What sources have been included?	level 3 SNAP classification	In the modelling actifities for the year 2002 are included emission data about sources in industrial and household sector, and in 2007, 2010 µ 2011 - emission data about sources in industrial and household sector and transport	industry, domestic sector	All (implicitely) in RIO; all SNAP-sectors in AURORA; industry and road emissions in IFDM; road emissions in OSPM
Traffic: Is traffic congestion a problem and is it reflected in the modelling?	Difficult to model as traffic emissions are based on traffic counts (flow and speed) that cannot reflect completely congestion effects. COPERT IV is used.	Traffic congestion of up to 2-3 minutes stay occur mostly in rush hours in several intersections of the city. Those are not included and kept in a register and are not taken into consideration in the modelling activities.		it is a problem, not explicitly taken into account
Do the emission inventories for traffic include traffic counts and traffic speed per vehicle class?	yes	One-hour traffic counting is performed twice a year during the performance of noise monitoring – done by the Regional health		Yes

		<u>. </u>	•	
		inspectorate. It was		
		further updated in		
		2008, 2009 and		
		2011 for the		
		purpose of		
		elaborating		
		strategic noise		
		maps, and in 2012		
		in the development		
		of a General plan		
		for traffic		
		organization on the		
		territory of the city		
		of Plovdiv.		
		Distribution in 24-		
		hour and weekly		
		periods is done by		
		applying standard		
		characteristics. For		
		the emission		
		inventory, the		
		traffic structure		
		(light duty and		
		heavy duty		
		vehicles) is taken		
		into consideration		
		as well as speed		
		and road obstacle		
		density relating to		
		emissions.		
Have the emission	NOX emission	For the estimation		Yes
inventories been	factors are used	of transport		
updated in regard to	with NO/NO2	emissions is used		
fleet composition,	speciation	data about		
and emission factors		registered vehicle		
(both for NO and		fleet: vehicle class,		
NO ₂)?		type of fuel, year of		
27		manufacture		
Which speciation for	COPERT IV	NO _x ;		COPERT
NO and NO2 is used		HBEFA - Handbook		
in the emission data		Emission Factors for		
according to the fleet		Road Transport,		
composition?		Version HBEFA 3.1		
References?		(Jan. 2010)		
Are line source	line sources	Streets with 24-		Line sources included
emissions included or		hour traffic		
only gridded		intensity above		
emissions?		2000 vehicles are		
		modelled as linear		
		sources		
Commercial/domestic				
sector:				
How do you deal with	PM speciation	Emission factors for	total dust is	in AURORA: complete;
PM speciation?	based on	different forms of	considered at the	in RIO: implicitly;
	bliography	PM are attributed	present	otherwise: no
	Sucerupity	to the relevant solid		
		or liquid fuel type		

		according to CR-		
		CORINAIR		
Is the source height precisely described?	Source height is taken into account when available	Residential areas are classified according to the type of construction (prevailing floorage). According to this floorage, for each type is assumed average stack height.	yes	no (lowest layer of model)
How are those sources described (surface emissions or point sources?)	gridded surface emissions, point sources and line sources are used	Emissions from residential heating are estimated for specific type of housing construction. Emission from the thus determined surface source is calculated as the product of the number of households with individual combustion installations multiplied by the fuel quantity by its emission factor.	surface	surface emissions
Industry:				
How do you deal with PM speciation?	PM speciation based on bibliography	Data about industrial sources is used from the annually updated database of RIEW Plovdiv. The database contains information about source parameters (height and diameter), flow parameters and concentration of pollutants in released gas flow.	total dust is considered at the present	in AURORA: complete; in RIO: implicitly; otherwise: no
Is the source height precisely described?	Source height is taken into account	Yes, as described above.	yes	in IFDM yes; in AURORA: not precise
precisery described:	when available			
How are those sources described (surface emissions or point sources?)	gridded surface emissions and point sources are used	Point sources only.	point	combination

	Milation		
	Vilnius		
	ADMS urban		
Did you develop a	Yes, by EMIT toolkit		
specific local emission			
inventory to run the			
model?			
What is the spatial	130 x130 m		
and temporal			
resolution you have			
chosen?	NI-		
Have emission data	No		
for all known sources been included?			
What sources have	Stationary road		
been included?	Stationary, road, rail, residential		
	rail, residential		
<i>Traffic:</i> Is traffic congestion a	Not at all		
problem and is it	INUL AL AII		
reflected in the			
modelling?			
Do the emission	No		
inventories for traffic			
include traffic counts			
and traffic speed per			
vehicle class?			
Have the emission	No		
inventories been	-		
updated in regard to			
fleet composition,			
and emission factors			
(both for NO and			
NO ₂)?			
Which speciation for	NOx (using generic		
NO and NO2 is used	reaction set) and		
in the emission data	supthate chemistry		
according to the fleet			
composition?			
References?			
Are line source	Both		
emissions included or			
only gridded			
emissions?			
Commercial/domestic			
sector:			
How do you deal with	Difficulties with		
PM speciation?	domestic sector		
Is the source height	Commercial yes,		
precisely described?	domestic - no		
How are those	Commercial both,		
sources described	domestic - grid		
(surface emissions or	0		
point sources?)			
,			
Industry:			
How do you deal with	No data available of		

PM speciation?	small industry		
	points		
Is the source height	Yes		
precisely described?			
How are those	Both		
sources described			
(surface emissions or			
point sources?)			

7.2 Meteorology

As described in the Table 15, the meteorological fields for AQ modelling are obtained from 1) measurement towers (Malmö, Prague, Berlin, Plovdiv, Antwerp) but depending of the city and model on some occasions only one observation site is employed (IMMISluft, Berlin) or an optimum interpolation of observations is conducted (REM_CALGRID, Berlin); 2) high resolution meteorological models including GRAMM, ALADIN/ALARO (Vienna) or WRF (Madrid, Paris) and 3) ECMWF fields interpolated with local monitoring network (Milan). The meteorological fields in the case of Vienna, Madrid, Paris and Antwerp have been validated against local measurements.

Table 15: Summary of the meteorological fields used as input to the AQ models

	Malmö	Malmö	Milan	Milan
	AERMOD	OSPM	FARM	SPRAY
How are the	Data from	Data from	ECMWF fields	ECMWF fields
meteorological fields	measurement	measurement	interpolated with	interpolated with local
obtained?	tower in Malmö	tower in Malmö	local network	network measurements
			measurements	
If a meteorological				
model is used, has it				
been validated				
against local				
measurements?				
	Vienna	Vienna	Madrid	Madrid
	GRAL	САМх	CAMQ	OSPM
How are the	with the prognostic	with the high	With WRF model	With WRF model
meteorological fields	wind field model	resolution models		
obtained?	GRAMM (Grazer	ALADIN/ALARO		
	Mesoskaliges			
	Modell)			
If a meteorological	yes	yes	Yes including urban	Yes including urban
model is used, has it			parameterizations	parameterizations
been validated				
against local				
measurements?				
	Prague	Prague	Berlin	Berlin
	ATEM	SYMOS	REM_CALGRID	IMMISluft
How are the	annual windroses	annual windroses	optimum	one observation site
meteorological fields	for different	for different	interpolation of	
obtained?	stability classes	stability classes	observations	
If a meteorological	nr	nr	nr	
model is used, has it				

haan walidatad			[
been validated				
against local measurements?				
measurements:	Paris	Plovdiv	Plovdiv	Antwerp
	CHIMERE/STREET/	AUSTAL 2000	POLTRAN	RIO-AURORA-IFDM-
	ADMS-urban/	AUSTAL 2000	POLIKAN	
	CALPUFF			OSPM
How are the	MM5/WRF/CALME	Modelling system	Bulgarian weather	Measurements for IFDM
meteorological fields	T/monitoring	SELMA ^{GIS} requires	forecast model and	and OSPM; Modelling
obtained?	stations	statistical data	surface in-situ	for AURORA
		about wind	measurements	
		direction, wind		
		speed and		
		dispersion class in		
		TA Luft format.		
		Transformation of		
		data of Plovdiv		
		weather station		
		into said data		
		format is done by		
		NIMH with BAS.		
If a meteorological	yes	The preparation of	yes	total validation on
model is used, has it		the file containing		concentration levels;
been validated		statistical data		validation of
against local		about wind		meteorology to local
measurements?		dispersion classes is		meteorology only on
		done on the basis		more regional scale
		of meteorological		
		data from Trakia		
		AWS.		
	Vilnius			
	ADMS urban			
How are the	Supplied by the			
meteorological fields	hydrometeorologic			
obtained?	al institute and the			
	meteorology			
If a motocrological	institute of Finland			
If a meteorological	No			
model is used, has it been validated				
against local measurements?				
measurements?				

7.3 Background concentration

The background concentration of pollutants is considered in all the cities but using different sources (Table 16) as for instance 1) estimation from modelling of regional sources together with several measurement stations (Malmö); 2) estimation from monitoring data from background stations and emission inventories of neighbouring provinces when needed (Vienna, Paris, Plovdiv, Vilnius and Antwerp); 3) provided as boundary conditions under nesting models (Madrid), other regional models (Berlin, Vilnius) and models run at national level for forecasting (Vilnius); and 4) European simulations (Berlin).

7.4 Model combination with monitoring data

Four of the cities have used monitoring data in combination with a dispersion model. The city of Malmö has used it for adjusting the regional background concentrations of NO₂ and PM, the city of Milan has employed it for data fusion, the city of Paris has used monitoring data with sequential assimilation methods and the city of Antwerp has also employed models and observations to characterize spatial representativeness of air quality monitoring stations and its relevance for model validation. Madrid has only employed monitoring data with the statistical model as a historical database to produce prediction algorithms, but has not employed it for other purposes with dispersion models (Table 16). The rest of the cities have employed monitoring data only for validation purposes.

	Malmö	Malmö	Milan	Milan
	AERMOD	OSPM	FARM	SPRAY
How are background concentrations of the various pollutants taken into account?	Estimation from modelling of regional sources and several measurement stations	Estimation from modelling of regional sources and several measurement stations	yes	NA
Has monitoring data been used in combination with the model?	Yes	yes	yes	NA
If monitoring data has been used, describe how it has been used.	For adjusting the regional background concentrations of NO2 and PM	For adjusting the regional background concentrations of NO2 and PM	Data fusion	NA
From a more general point of view: How do you evaluate boundary conditions provided to your model or the chain of nested models?			data from Prev'Air system based on CHIMERE model	NA
	Vienna	Vienna	Madrid	Madrid
	GRAL	САМх	CAMQ	OSPM
How are background concentrations of the various pollutants taken into account?	by considering the monitoring data of background stations and the emission data of inventories of neighbouring provinces	by considering the monitoring data of background stations and the emission data of inventories of neighbouring provinces	Provided by the boundary conditions under a nesting approach	In this model corresponds to the concentration at roof level which is provided by the eulerian model (avoiding double counting)
Has monitoring data been used in combination with the model?	No	No	No	No

Table 16: Summary of other data (background and monitoring) used as input to the AQ models

		1	n	
If monitoring data has	Only for validation	Only for validation		
been used, describe				
how it has been used.				
From a more general			By comparison with	By comparison with
point of view: How do			observations for the	specific measurements
you evaluate			different domains	and experiments based
boundary conditions				on alternative strategies
provided to your				to provide background
model or the chain of				concentrations (station
nested models?				nearby, urban
				background stations,
				downscaling from
				mesoscale models, etc.)
	Prague	Prague	Berlin	Berlin
	ATEM	SYMOS	REM_CALGRID	IMMISluft
How are background	For each pollutant	maps of	European simulations	calculated by REM-
concentrations of the	background	background	with 30x30 km ² grid	Calgrid
various pollutants	concentration	concentrations	resolution	Calgilu
taken into account?	(distant sources	produced by CHMI	resolution	
	and natural	are used		
	background) is	are used		
	included			
Has monitoring data	no	no	No	no
been used in	110	110	NO	110
combination with the				
model?				
If monitoring data has				
been used, describe				
how it has been used.				
	Comparison with		vonvinanartant	voruimportant
From a more general point of view: How do	data measured in		very important.	very important.
you evaluate	AQ monitoring			optimum interpolation needed
boundary conditions	AQ INDITIONING			needed
provided to your				
model or the chain of				
nested models?				
nesteu mouers:	Paris	Plovdiv	Plovdiv	Antwerp
	CHIMERE/STREET/	AUSTAL 2000	POLTRAN	RIO-AURORA-IFDM-
	ADMS-urban/	A031AL 2000	I OLIMAN	
	CALPUFF			OSPM
How are background	Air quality	Background	background is not	via use of measurement
concentrations of the	monitoring stations	concentration	taken into account;	interpolation (RIO)
	monitoring stations	concentration		
	and background	lovals are estimated		
various pollutants	and background	levels are estimated	emission sectors	
taken into account?	concentration	on the basis of data	contribution is	
-	_	on the basis of data from the national		
-	concentration	on the basis of data from the national background station	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is adjusted by the	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is adjusted by the regional	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is adjusted by the regional background factor,	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is adjusted by the regional background factor, expertly	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is adjusted by the regional background factor, expertly determined for	contribution is	
-	concentration	on the basis of data from the national background station Rozhen. The general background level of pollutants is adjusted by the regional background factor, expertly	contribution is	

			ſ	r
Has monitoring data been used in combination with the model?	yes	In the process of gathering modelling input data collection is not used monitoring data. Emission concentration values reported by the automated measuring ssytem are compared to the results from the modelling for verification of uncertainty according to data quality goals contained in the national legislation and described in Annex I, item A of DAQ 2008/50/EC on modelling quality. As described above	no	yes , via RIO intelligent interpolation:
If monitoring data has been used, describe how it has been used.	Sequential assimilation methods (Optimal interpolation and various kriging methods)	As described above		intelligent interpolation: Janssen, S., Dumont, G., Fierens, F., Deutsch, F., Maiheu, B., Celis, D., Trimpeneers, E., Mensink, C., 2012. Land use to characterize spatial representativeness of air quality monitoring stations and its relevance for model validation. Atmospheric Environment, 59, 492– 500. doi:10.1016/j.atmosenv. 2012.05.028
From a more general point of view: How do you evaluate boundary conditions provided to your model or the chain of nested models?	For background modelling, the national air quality modelling system is used (PREVAIR) For local models, modelled background concentrations can be used as data from monitoring stations	Provision of boundary conditions for the process of modelling is insufficient - background concentration levels are expertly estimated on the basis of data from the national background station Rozhen.		RIO has been validated extensively

	Vilnius		
How are background	Background		
concentrations of the	concentrations is		
various pollutants	provided by the		
taken into account?	regional		
	environmental		
	protection		
	department,		
	meteorology		
-	institute of Finland		
Has monitoring data			
been used in			
combination with the	Only for model		
model?	verification		
If monitoring data has			
been used, describe	For model		
how it has been used.	verification		
From a more general			
point of view: How do			
you evaluate			
boundary conditions			
provided to your			
model or the chain of			
nested models?	-		

8 Validation of the model

All the cities have validated the model against local measurements, and in some cases the model has also been validated in a similar environment (Table 17). Most of the cities use the same air quality indicators to assess the quality of the model outputs (bias, rmse, me, etc). The city of Madrid has also validated the statistical model that they employ for air quality forecasting (not included in table 19). The statistical model has been validated against PM_{10} , O_3 and NO_2 employing twelve monitoring stations, including 4 traffic stations, 5 urban background and 3 suburban station. The indicators employed have been: bias, root mean square error and mean error. The uncertainty has also been estimated and the values obtained show that the model accomplishes the requirements of the AQ Directive. The city of Prague has only validated one of the models they have employed for short action plans together with ATEM.

The cities of Milan, Vienna, Madrid, Berlin, Paris, Plovdiv, Antwerp and Vilnius have also estimated the uncertainty of the air quality model as required by the EU legislation (Table 17).

Table 17: Summary of model validation for each of the city.

	Malmö	Milan	Milan	Vienna	Vienna
Model	AERMOD & OSPM	FARM	SPRAY	GRAMM/GRAL	CAMx
Pollutants	NOx, NO2	NO2, O3, PM10		NO2, NOx, PM10	03
Stations	3 fixed 1 mobile	Different types	NA	All stations	All stations
Indicators	Bias	bias, root mean square error, mean error, correlation factor	NA	bias, root mean square error, mean error, correlation factor	NA
Uncertainty	NO	YES	NA	YES	NA
AQ requirements	-	YES	NA	YES	NA
	Madrid	Prague	Berlin	Berlin	Paris
Model	CMAQ	ATEM	REM_CALGRID	IMMISluft	
Pollutants	NOx, PM,	NO2, NOx, PM10, PM2.5, SO2	PM10, NO2, O3	PM10, PM2.5, NO2	
Stations	10 urban background monitoring stations	13 stations	urban and regional background	Hot spots	monitoring network or specific monitoring campaigns.
Indicators	Delta tool	NA	bias, rmse, me, correlation coefficient	bias, correlation coefficient	Classical metrics : bias, root mean square error, mean error, correlation factor, factor of excess, standard deviation.
Uncertainty	YES	NO	YES	YES	YES
AQ requirements	YES	-	NA	NA	NA
	Plovdiv	Antwerp	Vilnius		
Model			ADMS urban		
Pollutants			PM10, PM2.5, NO2, SO2, CO		
Stations	Monitoring network (transport oriented and background)	50 independent NO2 stations in Antwerp (*)	4 monitoring stations		
Indicators	error calculation, relative error calculation	bias, RMSE, slope, R	Mean error, correlation factor		
Uncertainty	YES (AUSTAL) / NO (POLTRAN)	YES (RIO)	Yes		
AQ requirements	YES	YES	-		

9 Usefulness of the model

In the questionnaire sent to the cities it was asked if, in their opinion, the model is 'fit for purpose' and if the results have been helpful in relation to the AQ activities. The city of Antwerp has not filled out this part of the questionnaire, but the rest of the cities have in general found the models are fit for purpose and helpful in assessment activities and management decisions.

The city of Malmö has found that the models employed (AERMOD and OSPM) are fit for the purpose they were applied to and the results have been helpful in relation to AQ assessment activities. The results have successfully been taken into account in AQ management decisions. The model results have also been applied in other management decisions.

The city of Milan has also found that the models applied (FARM and SPRAY) are fit for purpose, the Eulerian model FARM has also been helpful in relation to AQ assessment activities, but there is no

comment concerning the helpfulness of SPRAY. The results from FARM have been successfully taken into account in AQ management decisions.

The city of Vienna finds the applied models, GRAMM/GRAL and MM5-CAMx, to be fit for purpose. Both of them have been helpful in relation to AQ assessment activities and the model results have been successfully taken into account in AQ management.

The city of Madrid has applied three models, OSPM, WRF-CMAQ and a statistical model named SERENA. All of the models have been found to be fit for purpose. All the models have been helpful in relation to AQ assessment activities.

The city of Prague has found the ATEM model to be mostly fit for purpose, but the other model applied, SYMOS, is less fit for purpose. The results from ATEM have been applied for AQ assessment activities and the results have been taken into account in AQ management decisions.

The city of Berlin also finds that the models applied in Berlin, REM_CALGRID and IMMISluft, are fit for purpose. The results from the model have been satisfactory applied in AQ assessment activities. The outputs from REM_CALGRID have been used for source apportionment and long-range transport assessment. The results have been considered in AQ management decisions.

The city of Paris has found that the model is fit for purpose and the model results are taken into account for AQ assessment activities and management decisions. The model results have also been employed for estimating geographic areas and population exposure.

In the city of Plovdiv the model AUSTAL 2000 is found to be fit for purpose but the model POLTRAN is less fit for purpose. While the results from AUSTAL have been employed for air quality assessment activities and helpful in management decisions, the results from POLTRAN have not been taken into account in any management decisions. Both models have been employed for estimating geographic areas and population exposure to air quality limit values.

The city of Vilnius has employed the model ADMS urban and the results have been useful for the purpose they were applied. The model has been helpful in relation with AQ assessment and the results have been used in planning processes.

10 Difficulty in model application and need for further guidance

The list below shows the opinion of the cities in relation to the difficulties that they have found in the model application as well as where further guidance in the application of models for AQ purposes is needed based on their experience.

Some of the difficulties or weak points in the application of models identified by the cities are: (i) input data, especially the estimation of emissions and background concentrations; (ii) dealing with the uncertainties in the model and the interpretation of model results; and the (iii) high computational cost.

Regarding the point (i) for instance the city of Malmo comment the difficulties in estimating the correct amount of heavy vehicles on each road, as well as the emissions from sea traffic. Moreover, the emission factors are subjected to high uncertainty. The cities of Berlin, Madrid and Plovdiv also

comment the difficulties associated with the background concentration estimation when using street canyon models.

In relation to point (ii), the city of Paris comment the problems associated with biases in the estimation of PM concentration and the difficulties to do prospective planning based on actual biases. In the case of Vienna, overestimation of the concentrations is a difficulty they need to deal with especially when the models are employed for AQ forecasting or when employed for short action plans.

Other of the difficulties mentioned by several cities is the high computational time and the need of experts to run the models and interpret the results. As pointed by the city of Vienna, the required human, temporal and financial resources are considerable.

The cities have identified the need for further guidance in three main areas: (i) estimation of the emissions; (ii) validation of the model results, (iii) framework for modelling approach and criteria harmonization, and (iv) general guidance in the use of models for AQ management.

11 Cooperative activities

The cities of Malmö, Prague, Paris, Antwerp and Vilnius have reported other modelling activities that have been undertaken in cooperation with other institutes. In Malmö the cooperation has been conducted at regional level with the Scania Air Quality Management Association and the University of Lund. In Prague the cooperation has been undertaken in the framework of two European projects (TRANSPHORM and PASODOBLE) with two research institutes NILU-Norwegian institute for air research and VITO-Flemish institute for technological research. The cooperation with both institutes is at national level. In Paris the cooperation has been conducted at national level with INERIS and at interregional level with ESMERALDA. In the city of Antwerp the cooperation is at regional level with LNE. In the city of Vilnius the cooperation is also at regional level with the Environmental protection agency.

11.1 Malmo

In the city of Malmö the aim of the cooperation was: 1) To develop and emission database (with Scania Air Quality Management Association) and 2) To share data and information regarding health effects of air pollution in the city (with Lund University). The objective of 1) is related to the purposes of assessment of air quality in general; assessment of source contributions and source apportionment. The cooperation with Lund University was related to assessment of population exposure. The models employed and the configuration of the models is the same as described in the chapter 5 for those purposes and no further description is included here.

11.2 Prague

In the city of Prague the aims of the cooperation were: 1) Dispersion modelling for the city of Prague in the framework of the TRANSPHORM¹¹ project (with NILU¹²) and 2) Set up an AQ forecast modelling system for Prague, conducted in the framework of PASODOBLE¹³ project (with VITO¹⁴). The

¹¹ http://www.transphorm.eu

¹² http://www.nilu.no

¹³ http://www.myair.eu

¹⁴ http://www.vito.be

aim of the collaboration with NILU was to contribute to the AQ applications of assessment of air quality in general, long term planning and scenario calculations and assessment of population exposure. The collaboration with VITO was related with the purpose of Air quality forecasting.

In the collaboration with NILU the air quality model employed is EPISODE. The model is currently being run by CHMI in cooperation with the city of Prague. The spatial scale covered is 20x30 km with hourly temporal resolution for particulate matter (PM_{10} and $PM_{2.5}$). A specific local emission inventory was not developed for this application but previous inventories were updated. The spatial and temporal resolution was 500m and 1 hour, respectively. The emission inventory included all the known source emissions from industrial, commercial, domestic and traffic sectors.

Regarding the estimation of traffic emissions, the NO and NO_2 speciation is based on MEFA06, and are not Czech fleet-specific. Traffic is included as a line source, but traffic congestion is not reflected in the model simulations.

For the commercial and domestic sectors the sources are included as point sources for commercial sector and area sources for the domestic sector. In both of them the height is precisely described. The PM speciation is the one from the National inventory that includes the speciation between PM_{10} and $PM_{2.5}$.

For the industrial emissions a similar approach to the commercial and domestic sectors is employed, using the speciation from the National Inventory for PM. The industrial emissions are allocated as point sources and the source height is precisely described.

The meteorology used as input for the model comes from observations. The background concentrations are provided by a background measurement station. Although the background station was considered to be representative, that has not been strictly evaluate.

The air quality model employed is EPISODE¹⁵ with a grid resolution of 500m. The outputs of the model have been validated against 20 stations in Prague, including urban, suburban and roadside stations. The model is still being tested and no real air quality applications have been carried out so far.

The second collaboration conducted by the city of Prague is in relation to AQ forecasting with VITO research institute. For that purpose the Eulerian air quality model AURORA¹⁶ is employed. The spatial scale is 50x60 km and it uses nested domains, one covering most of Europe at 6km resolution with the Lotos-EUROS and the inner domain with 1 km resolution covering Prague with AURORA. The time resolution is hourly and the pollutants modelled include O3, NO2, PM10 and PM2.5.

No specific emission inventory has been developed to run the model, and the emissions are downscaled from national totals employing the National Inventory¹⁷. The final spatial and temporal resolution is 1km and 1 hour, respectively. Traffic and commercial and domestic emissions are included as gridded emissions whereas some of the industrial sources are included as point sources.

¹⁵ The Urban Air Dispersion Model EPISODE applied in AirQUIS2003 Technical Description, Leiv Håvard Slørdal, Sam-Erik Walker and Sverre Solberg, NILU (2003), ISBN: 82-425-1522-0

¹⁶<u>http://pandora.meng.auth.gr/mds/showlong.php?id=167&MTG_Session=8643a484284ea4a2b2e692cd3ce4b</u> fdb

¹⁷ <u>http://portal.chmi.cz/files/portal/docs/uoco/oez/emisnibilance_CZ.html</u>

The meteorological inputs are interpolated from the ECMWF forecasts. The evaluation of the outputs from AURORA is still being conducted. More information about the AURORA model can be found here: <u>http://aurora.vito.be/manual.html</u>.

As both collaborations are still ongoing and none of the models have yet been completely validated, Prague has not reported any weak points concerning the model applications. However it is highlighted that the main difficulty was in using Prague's emission inventory for 'bottom up emission' calculation, due to the fact that emissions were not known outside Prague's boundary. That is the main reason for VITO's downscaled emissions. In the case of the EPISODE model, the main difficulties for the application of the model are that the model is still being tested and bugs are still being found.

The collaboration with VITO has been found helpful, and it is expected to use AURORA for air quality forecasting in the city of Prague.

11.3 Paris

In Paris the collaboration with INERIS¹⁸ and ESMERALDA¹⁹ is addressing two different topics. The collaboration at national level with INERIS has as main goal the use of the national air quality forecasting system as boundary conditions of the regional forecasting system. In this case the national modelling system runs with a resolution of 50km and this is employed as boundary conditions as the 15km domain in the nested modelling system used in Paris for forecasting purposes. The collaboration with ESMERALDA requires the creation of an interregional high resolution emission inventory (3km or higher) for forecasting and scenario modelling purposes. The emissions are employed as input to the nested modelling system with one mother domain with 15km resolution covering a large part of France and two high resolution domains with 3km resolution. The ESMERALDA emission inventory does not consider line emissions, but can be used up to 1km resolution.

11.4 Antwerp

In Antwerp the collaboration is conducted with the Environment, Nature and Energy Department of the Flemish Government (LNE²⁰). The department is responsible for planning and evaluating the environmental policy and the implementation and enforcement of the environmental legislation in Flanders. The collaboration covers the activities of air quality assessment, long term planning and scenario calculations, population exposure and source apportionment. The modelling system employed is the one described in section 5.

11.5 Vilnius

The city of Vilnius is also collaborating at regional level with the Environmental Protection Agency²¹ for assessment of air quality in general. Result of this collaboration is the elaboration of annual averaged maps for PM_{10} , NO_2 , CO and SO_2 .

¹⁸ http://www.ineris.fr

¹⁹ http://www.esmeralda-web.fr

²⁰ http://www.lne.be

²¹ http://oras.gamta.lt/cms/index?rubricId=4cff26a3-ece5-46be-ad58-c8d14b94bea6

12 Available resources for guidance on modelling

There are a range of web sites and documents available concerning air quality modelling. Several countries in Europe, e.g. The United Kingdom (DEFRA²²), The Netherlands (INFOMIL²³) and Norway (MODluft²⁴), provide information on air quality modelling on a national level. In addition there is extensive guidance and documentation available concerning US EPA models²⁵.

On a European level a set of recommendations concerning air quality assessment and modelling was developed as part of the EU FP6 project Air4EU²⁶. Since then a set of guidance documents, aimed principally at applications of models for the European air quality Directive, have been developed as part of FAIRMODE (Forum for Air Quality Modelling in Europe), which is a joint response action of the European Environment Agency (EEA) and the European Commission Joint Research Centre (JRC). These documents include:

- 'The application of models under the European Union's Air Quality Directive: A technical reference guide'
- 'Guide on modelling Nitrogen Dioxide (NO₂) for air quality assessment and planning relevant to the European Air Quality Directive'
- and the currently in progress guide on PM modelling 'Modelling of Particulate Matter (PM) for air quality assessment and planning relevant to the European Air Quality Directive'.

All of these documents can be accessed through the FAIRMODE web site (FAIRMODE²⁷).

Another source of information that includes descriptions and applications of air quality models can be found in the Model Documentation System²⁸ (MDS), a database containing most air quality models currently applied in Europe.

During the course of the coming years new guidance will be developed within FAIRMODE specifically aimed at cities employing air quality modelling and the MDS will be updated to improve relevance and accessibility. These developments will be partially based on feedback obtained from this Air Pilot study.

13 Conclusions

The questionnaire was sent to 12 European cities: Berlin, Dublin, Madrid, Malmö, Milan, Ploiesti, Prague and Vienna in the year 2012 and Paris, Plovdiv, Vilnius and Antwerp in the year 2013. All the cities applied models for air quality management except the city of Dublin. All the cities expect to learn from the city pilot about how the other cities have applied models and share the difficulties inherent to the application of dispersion models: data input, interpretation of the results, etc.

As mentioned before, Dublin is the only city that had not applied air quality models at the time the questionnaire was sent, however they stated that their involvement in the city air pilot has been

²² http://uk-air.defra.gov.uk/research/air-quality-modelling

²³ http://www.infomil.nl/onderwerpen/klimaat-lucht/luchtkwaliteit/rekenen-meten/

²⁴ <u>http://www.luftkvalitet.info/ModLUFT/ModLUFT.aspx</u>

²⁵ http://www.epa.gov/scram001/

²⁶ <u>http://www.air4eu.nl/reports_products.html</u>

²⁷ http://fairmode.ew.eea.europa.eu/guidance-use-models-wg1

²⁸ <u>http://acm.eionet.europa.eu/databases/MDS/index_html</u>

highly beneficial as they worked closely with EPA-Ireland in the past months in commencing a process to develop an emissions inventory and an air quality model.

The models have been used for different purposes, as for instance, reporting of air quality compliance, long term planning, population exposure estimation or source apportionment. Not all the cities have applied models for all the purposes. All the cities have found models helpful for the applications they were used for, and the outputs have been used in air quality management in the cities.

All the cities have developed a specific local emission inventory to run the model, with the spatial and temporal resolution according to the horizontal grid cell, for instance for street models such as OSPM the resolution is 50m and for local models as REM_CALGRID the horizontal resolution is 2km. The sources included vary from city to city and from model to model, while in street canyon models only the relevant sources are included (usually road traffic emissions), in the local and regional models all known sources are included.

Regarding traffic emissions, all cities identified the representation of traffic emissions due to congestion to be a problem, with the exception of Vilnius. Also, traffic emissions are not included as line sources in all the models, for instance in FARM and CAMx they are treated as grid sources.

In the commercial and domestic emissions the PM speciation in PM_{10} and $PM_{2.5}$ is not always completely implemented or generic speciations are employed. For example, Madrid employs the US EPA speciation developed for United States whereas in Vienna the PM speciation is not considered. Moreover, the consideration of height and the allocation of emissions as point sources is not always done for commercial and domestic emissions. For instance, Malmö only considers this for large sources.

Similar to the commercial emissions, the PM speciation from industrial sources is not well resolved in all the cities. For example, the city of Milan employs local speciation profiles for PM_{10} and $PM_{2.5}$ but the city of Madrid employs speciation profiles from United States. In all the cities the industrial emissions are considered as point sources and the stack height is considered, however some of the cities such as Paris and Antwerp use a combination of surface emissions and point sources due to the fact that the chimney characteristics are not always available.

The meteorological fields employed as input to the air quality dispersion model are obtained from:

- i. measurement towers;
- ii. high resolution meteorological models and
- iii. ECMWF fields interpolated with the local monitoring network.

The background concentrations are considered in all the cities, but different sources have been employed, ranging from the use of background stations to the use of nested models.

Only four of the cities have employed monitoring data in combination with the dispersion model, in the city of Malmö to adjust the regional background concentrations of NO_2 and PM, in the city of Milan for data fusion purposes, in Paris with assimilation methods as kriging to create spatial maps of pollution and in Antwerp to characterize the spatial representativeness of air quality monitoring stations.

Air Implementation Pilot: Assessing the modelling activities

The main difficulties that have been found in the use of air quality models are:

- i. difficult to estimate the uncertainties of each source sector in source contribution and source apportionment studies;
- ii. the computation time is very high;
- iii. the model results can overestimate or underestimate the pollutant levels;
- iv. the compilation of the emission inventory and
- v. the estimation of the background concentration.

The weak points identified are:

- i. the emission estimation (correct amount of vehicles in each road, sea traffic, spatial and temporal variation, emission factors, etc.);
- ii. the interpretation of the model results (uncertainties, over and under-estimation, etc.);
- iii. the high cost of the required resources (human, temporal and financial);
- iv. the consideration of sub-grid processes and hotspots and
- v. the background dependency in street canyon models.

The main point where further guidance is required are:

- i. validation of the models (meteorology and air quality);
- ii. estimation of the emissions (how to find a balance between the required emissions for modelling and the work effort);
- iii. the necessity of a general framework for modelling approach and criteria harmonization.

14 Annex A. Questionnaire sent to the cities

14.1 Section 1: Overview

The aim of the task is to examine the model practices (if models have been applied at all) in 8 European cities, to assess the strengths and weaknesses of such applications and further to identify needs for guidance in the use of air quality models.

Table 1. Pilot Cities and EEA or DG ENV responsible person to contact them in the Pilot team

City	Lead (institution)		
Berlin	Anke Lükewille (EEA)		
Dublin	Daniela Buzica (DG ENV)		
Madrid	Alberto González Ortiz (EEA)		
Malmö	Valentin Foltescu (EEA)		
Milan	Giorgio Arduino (DG ENV)		
Ploiesti	Daniela Buzica (DG ENV)		
Prague	Alberto González Ortiz + Peder Gabrielsen (EEA)		
Vienna	Daniela Buzica (DG ENV)		

Table 2. Pilot Cities and general and modelling responsible persons to contact them in the Pilot team

City	General contact	Modelling activities contact
Derlin	Martin Lutz	Andreas Kerschbaumer
Berlin	martin.lutz@senstadt.berlin.de	Andreas.kerschbaumer@senstadt.berlin.de
Dublin	Martin Fitzpatrick	Martin Fitzpatrick
Dublin	martin.fitzpatrick@dublincity.ie	martin.fitzpatrick@dublincity.ie
A a a u i a	Paz Valiente	Ángeles Cristóbal
Madrid	valientecp@madrid.es	cristoballma@madrid.es
	Mårten Spanne	Mårten Spanne
	marten.spanne@malmo.se	marten.spanne@malmo.se
Malmö		Lotten J. Johansson
		lotten.jonsson-johansson@malmo.se
Milan	Guido Lanzani	Guido Lanzani
	g.lanzani@arpalombardia.it	g.lanzani@arpalombardia.it
Distant	Cornelia Mateescu	Cornelia Mateescu
Ploiesti	cornelia.mateescu@apmph.anpm.ro	cornelia.mateescu@apmph.anpm.ro
Dressue	Mária Kazmuková	Ondrej Vlcek
Prague	kazmukova@urm.mepnet.cz	vlcek@chmi.cz
Vienne	Heinz Tizek	Heinz Tizek
Vienna	heinz.tizek@wien.gv.at	heinz.tizek@wien.gv.at

Table 3. Contact persons in EEA and ETC/ACM for the task on modelling activities

Institution	Name	Role
EEA EEA	Alberto González Ortiz Anke Lükewille	General project coordinator EEA task coordinator
NILU (ETC/ACM) INERIS (ETC/ACM)	Nuria Castell-Balaguer ncb@nilu.no Laurence Rouïl	Contact person if further guidance is needed to fill in the Questionnaire
RIVM (ETC/ACM)	Frank de Leeuw	

14.2 Section 2: Use of models

2.1	а	Are models used in your city for air quality activities?
	a	
2.2		If the previous answer was "No",
	а	Could you explain why they are not used?
	b	Do you feel you would need guidance in case you decide to use them?
	С	What kind of guidance/help would you like to receive and from whom?
2.3		If the previous answer was "Yes",
	а	For what purposes do you use them?

	Assessment of air quality in general (including evaluating the environmental (AQ) impact of new infrastructure like highways, airport, etc.)
	Reporting of air quality compliance assessment
	Assessment of source contributions
	Long term planning and scenario calculations
	Short action plans
	Air quality forecasting
	Assessment of population exposure
	Supplement measurements
	Source apportionment studies
	If other, please include a description:
b	In case of different applications, is the same model used for all purposes or are different models used?
c d	What is the name and version of the model(s) employed? If different models have been applied, please indicate which model has been used for each of the applications.
e	Is(Are) the model(s) run by your institution or is it (are they) run by another one (independent institute, service contract consultants, etc.)? If yes, could you give the coordinates of the institution and some references?

2.4	а	Are you aware of other specific and independent modelling studies that
		had been realized for your city by research teams or other
		administrations? If yes, what do you think about them? (see also form 4
		Cooperation activities)

14.3 Section 3: Modelling activities

3.1	а	General desciption	Indicate the type of application according to question 2.3a ²
	b		Spatial scale (m ²)
	С		Describe the spatial resolution of nested models implemented if needed.
	d		Time resolution (annual, seasonal mean, daily, hourly)
	е		List the pollutants modelled (PM10, PM2.5, NO2, NOx, etc.)
3.2		Input data	
	а	Emissions	Did you develop a specific local emission inventory to run the model?
			What is the spatial and temporal resolution you have chosen?
			Have emission data for all known sources been included?
			What sources have been included?
			In relation to traffic:
			Is traffic congestion a problem and is it reflected in the modelling?

Do the emission inventories for
traffic include traffic counts and traffic speed per vehicle class?
Have the emission inventories been updated in regard to fleet composition, and emission factors (both for NO and NO ₂)?
Which speciation for NO and NO2 is used in the emission data according to the fleet composition? References?
Are line source emissions included or only gridded emissions?
In relation to commercial/domestic sector:
How do you deal with PM speciation?
Is the source height precisely described?
How are those sources described (surface emissions or point sources?)
In relation to industry:
How do you deal with PM speciation?
Is the source height precisely described?
How are those sources described (surface emissions or point sources?)
If available, please include the references to reports or publications where the estimation of emissions is described.

	b	Meteorology	How are the meteorological fields obtained?
			If a meteorological model is used, has it been validated against local measurements?
			If available, please include the references to reports or publications where the meteorological modelling is described.
	С	Other input data	How are background concentrations of the various pollutants taken into account?
			Has monitoring data been used in combination with the model?
			If monitoring data has been used, describe how it has been used.
			From a more general point of view: How do you evaluate boundary conditions provided to your model or the chain of nested models?
3.3	а	Air Quality Model	Has a dispersion model been employed?
	b		If the previous answer was 'No', What kind of air quality model has been used?
	С		Is the model type 'fit for purpose' for the spatial and temporal scales assessed?

	d		Does the model resolve the local/hotspot spatial scales? How do you deal with that issue?
	е		Does the model include photochemical reactions?
	f		Has the model been validated against local measurements? What pollutants? Against how many and which type of stations?
	g		Has the model been validated in a similar environment?
	h		Which kind of quality indicators has been assessed: bias, root mean square error, mean error, correlation factor ?
	i		Has the uncertainty of the model been determined? If yes, does it fulfil requirements in the AQ Directives?
	j		Has the model been documented including a complete description of parameterisations and numerical methods? If yes, please include the references.
	k		If available, please include the references to reports or publications where the modelling activities are described.
3.4	а	User experience	Who runs the model? (see also 2.3.e)
	b		How frequent are run and used models for the different applications?

C	What difficulties have been found in the model application?
d	Has the model been helpful for the purpose it was used for?
e	Have the model results been helpful in relation to AQ assessment activities (exceedances of limit/target values; exchange of information; reporting)?
f	Have the model results successfully been taken into account in AQ management decisions (long-term planning, short actions, public information, etc.)?
g	Have the model results been taken into account in any other management decisions (evaluating the environmental impact of new infrastructure, etc.)?
h	Have the model results being used for estimating geographic areas and population exposure to exceedances of the AQ limit values? Have these maps been reported according to the AQD?
i	Are other topics linked to AQ (noise, climate change, etc.) considered? If yes, in which way?
j	What are, for your situation, weak points concerning the model applications?

k		Is any further guidance on modelling needed? If yes, please specify.		
	The table needs to be completed to have used models	for each one of the applications where		
² D	² Describe the applications according to question 2.3a			
	Assessment of air quality in general			
	Reporting of air quality compliance assessment			
	Assessment of source contributions			
	Long term planning and scenario calculations			
	Short action plans			
	Air quality forecasting			
	Assessment of population exposure			
	Supplement measurements			
	Source apportionment studies			
	If other please include the same descriptions as in question 2.3a			

14.4 Section 4: Cooperation activities

For the cooperation activities the same questions as in Modelling activities were supplied (see section 3 of the questionnaire).

15 Annex B: Description of emission inventory in Ploiesti

In Ploiesti, Prahova EPA conducts the elaboration of the emission inventory. The emission inventory is structured in accordance with the Reporting Nomenclature (NFR) as defined in reporting guidelines LRTAP Convention. The previous Nomenclature version-SNAP97 sources are still considered to ensure the continuity in emission inventory drafting. The local emissions inventories include anthropogenic and natural sources located within the district of Prahova, as for instance: industrial units, residential areas, transport infrastructure, farms, farmland and forests.

In order to estimate the local emission inventories Prahova EPA draws data collection questionnaires containing information on:

- Location in space, coordinates;
- Type of activities as NFR;
- Source type: punctual, linear, surface;
- Type of process: combustion, industrial process, etc.
- Type of fuel used;
- Techniques and technologies used, including the emission control;
- Physical characteristics: height level above ground, chimney diameter (for point sources), speed and temperature of exhaust gas, volumetric flow of the gas (for point sources);
- Temporal variation during the year: daily, weekly and monthly operating mode;

To meet the purposes for which the local emission inventories are used, they must, for the territorial unit (industrial site, neighbourhood, city, county) include point, linear and surface sources in Prahova district. After receiving the completed questionnaires, the assurance and quality control data procedure is used for:

- Verification of the source data and their references;
- Checking for errors in transmission and transcription;
- Checking completeness of information;
- Identify confidential data and checking their credibility and quality;
- Verify proper registration of measurement units and the use of appropriate conversion factors.

The pollutants that are part of the annual emission inventory are: NOx, CO, NMVOC, SOx, TSP, PM_{10} , $PM_{2.5}$, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, benzo-a-pyrene, benzo-b-fluoranthene, benzo-k-fluoranthene, indo(1 2 3) pyrene, PCB, PAH and HCB. The method of developing the local emission inventories is the based on emission factors.

Finally, the emissions inventory of the district of Prahova is submitted to the Environment National Authority. This emission inventory is the starting point of other dispersion studies that are later conducted by companies contracted by the Ministry of Environment and Forests.