
Additional 2011 European air quality maps

NO₂ annual average;

NO_x annual average, SO₂ annual and winter average; overlays with Natura2000 areas

ETC/ACM Technical Paper 2014/5
November 2014

Jan Horálek, Pavel Kurfürst, Peter de Smet

The European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) is a consortium of European institutes under contract of the European Environment Agency RIVM Aether CHMI CSIC EMISIA INERIS NILU ÖKO-Institut ÖKO-Recherche PBL UAB UBA-V VITO 4Sfera

Front page picture:

 NO_x annual average map of the rural areas overlaid with the map of Natura 2000 (Annex 1 of this paper).

Author affiliation:

Jan Horálek, Pavel Kurfürst: Czech Hydrometeorological Institute (CHMI), Prague, Czech Republic Peter de Smet: National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

DISCLAIMER

This ETC/ACM Technical Paper has not been subjected to European Environment Agency (EEA) member country review. It does not represent the formal views of the EEA.

© ETC/ACM, 2014.

ETC/ACM Technical Paper 2014/5

European Topic Centre on Air Pollution and Climate Change Mitigation PO Box 1

3720 BA Bilthoven

The Netherlands

Phone +31 30 2748562

Fax +31 30 2744433

Email etcacm@rivm.nl

Website http://acm.eionet.europa.eu/

Contents

1 Ba	ackground	3
1.1	Data used	3
1.2	2 Supplementary variables used	4
1.3	3 Uncertainty	4
1.4	4 Vegetation exposure tables	5
Referer	nces	5
Annexe	es	5

1 Background

For the analyses done for EEA Report No 5/2014 "Air quality in Europe - 2014 report", the ETC/ACM prepared several maps in addition to those presented in Horálek et al. (2014a). These maps have been calculated for the year 2011, resp. for the winter season 2010/2011. The maps are: health related indicator of NO_2 (annual average), vegetation related indicators of NO_x (annual average) and SO_2 (annual average, winter average) (**Annex 1**). Next to this, the ETC/ACM prepared concentration maps overlaid with NATURA2000 areas for all vegetation related indicators, i.e. for NO_x , SO_2 and ozone (indicators AOT40 for crops and AOT40 for forests as presented in Horálek et al., 2014a) (**Annex 2**), and from these maps NATURA2000 area exposure tables have been derived (**Annex 3**).

The methodology used for the creation of the concentration maps is in principle the same as documented in Horálek et al. (2014a). The mapping method consists of a linear regression model followed by kriging of the residuals produced from that regression model (residual kriging). The map of the health related indicator of NO_2 has been created for the rural and urban background areas separately on a grid at 10x10 km resolution. Subsequently, these rural and urban background maps we merged into one combined air quality indicator map using a population density grid at 1x1 km resolution. For presentational purposes at the European scale, we aggregated the final combined map at 1x1 km grid resolution into maps at a 10x10 km grid resolution. It should be noted that this map refers to background areas only as hotspot and traffic locations are not taken into consideration. The maps of vegetation related NO_x and SO_2 indicators we created on a grid at 2x2 km resolution, based on rural background measurements. These maps are applicable for rural areas only, as vegetation is considered not to occur at (sub)urban areas.

1.1 Data used

For the preparation of the additional indicator maps, we extracted air quality station monitoring data from the European monitoring database *AirBase* and derived the following indicators values: NO₂ annual average for 2011, NO_x annual average for 2011, SO₂ annual average for 2011, and SO₂ winter average for 2010/2011 (**Table 1**). Only data from stations classified by AirBase of the type *background* for the areas *rural*, *suburban* and *urban* are used. *Industrial* and *traffic* station types are not considered; they represent local scale concentration levels not applicable at the mapping resolution employed. Only the stations with annual (resp. winter) data coverage of at least 75 percent have been used.

Table 1 Number of stations selected for additional indicator mapping – rural background stations used for rural areas, urban and suburban background stations used for urban areas

	Health		Ecosystems							
Indicator type	NO ₂		NO	x	SO ₂					
	annual average		annual a	verage	annual average	winter average				
	2011		201	1	2011	2011/2012				
Number of Airbase		direct	+ der	ived						
stations by type		NO _x	NO & NO ₂	NO ₂ only	NO _x					
rural background	392	352	+ 21	+ 20	= 393	232	214			
urban background	1147									

For NO_2 , 392 rural background and 1147 urban/suburban stations are used. For NO_x , 393 rural background stations are used. Out of these stations used in NO_x mapping, for 352 stations just NO_x data are reported in AirBase. For 21 stations, NO_x values are calculated from reported NO_2 and NO_3 data, using the equation $NO_x = NO_2 + (46/30) \cdot NO$. For 20 stations, for which NO_2 data only are reported, NO_x values are estimated from NO_2 data using the quadratic regression, similar to Horálek et al. (2007). For SO_2 , 232 rural background stations are used for the annual average, while 214 such stations for the winter areas.

1.2 Supplementary variables used

Next to the air quality monitoring data, a comparable set of supplementary data variables as reported in Horálek et al. (2014a) have been used, namely EMEP MSC-W model output, altitude, wind speed, surface solar radiation, and population density. For EMEP model output the same indicators as for the monitoring data are applied. Next to these supplementary data, also NATURA2000 data have been used (EEA, 2012).

For the actual map creation we applied supplementary variables similar to Table 2.1 of Horálek et al. (2014b). For the health indicator NO_2 annual average the EMEP model output, altitude and wind speed at both rural and urban background areas have been used. For the ecosystem indicator NO_x annual average these are the EMEP model output, altitude, wind speed and surface solar radiation. The supplementary data used for SO_2 is the EMEP model output only.

1.3 Uncertainty

The uncertainty estimations of the maps we based on the cross-validation, see Horálek et al. (2014a). The statistical indicators for the individual maps are, as follows. NO₂ annual average, rural map: RMSE = $5.2 \,\mu g.m^{-3}$, RRMSE = 49.1%, bias = $0.0 \,\mu g.m^{-3}$; urban map: RMSE = $6.6 \,\mu g.m^{-3}$, RRMSE = 28.3%, bias = $0.3 \,\mu g.m^{-3}$. NO_x annual average: RMSE = $7.5 \,\mu g.m^{-3}$, RRMSE = 51.3%, bias = $0.1 \,\mu g.m^{-3}$. SO₂ annual average: RMSE = $1.5 \,\mu g.m^{-3}$, RRMSE = 58.3%, bias = $0.0 \,\mu g.m^{-3}$. SO₂ winter average: RMSE = $1.7 \,\mu g.m^{-3}$, RRMSE = 57.0%, bias = $0.0 \,\mu g.m^{-3}$ (**Table 2**).

Next to the uncertainty estimates, Table 2 shows also the parameters of the linear regression models and of the residual kriging. Supplementary data used are the same as described in Section 1.2. However, altitude was found to be statistically non-significant for the urban background areas at indicator NO_2 annual average. Similar to this, surface solar radiation was found to be statistically non-significant for the rural background areas at indicator NO_x annual average.

Table 2 Statistical parameters and uncertainty estimates of the maps, based on cross-validation

linear regression model	N	O ₂	NO _x	S	O ₂
linear regression model + OK of its residuals	Annual	average	Ann. average	Ann. average	Winter average
+ OK OI IIS residuais	Urban map	Rural map	Rural map	Rural map	Rural map
c (constant)	24.2	11.9	23.7	0.6	0.6
a1 (EMEP model 2011)	2.26	2.30	0.93	1.14	1.03
a2 (altitude GTOPO)	n. sign.	-0.0026	-0.0090		
a3 (wind speed 2011)	-2.26	-1.91	-4.32		
a4 (s. solar radiation 2011			n. sign.		
adjusted R ²	0.30	0.39	0.50	0.42	0.51
standard error [µg.m -3	7.3	5.3	7.6	1.8	2.0
nugget	26	0	60	1.0	2.2
sill	47	32	67	3.0	4.0
range [km]	40	40	560	270	250
RSME [µg.m ⁻³	6.6	5.2	7.5	1.5	1.7
Relaltive RSME [%]	28.3	49.1	51.3	58.3	57.0
Bias [µg.m ⁻³	0.3	0.0	0.1	0.0	0.0

1.4 Vegetation exposure tables

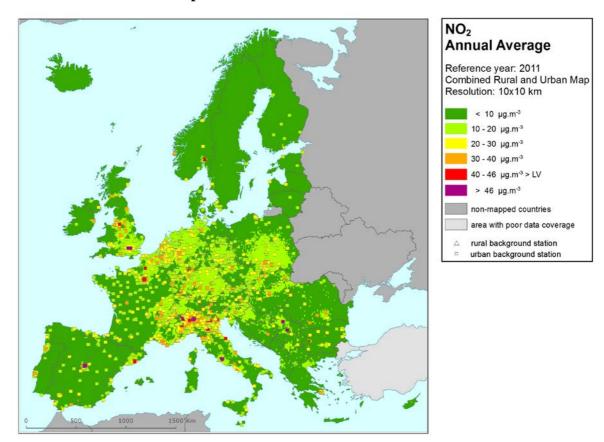
For the vegetation related indicator maps (NO_x annual average, SO₂ annual and winter average, ozone's AOT40 for forests and for crops), the NATURA2000 area exposure tables have been derived: for each concentration class the total NATURA2000 area in Europe has been determined (**Annex 3**).

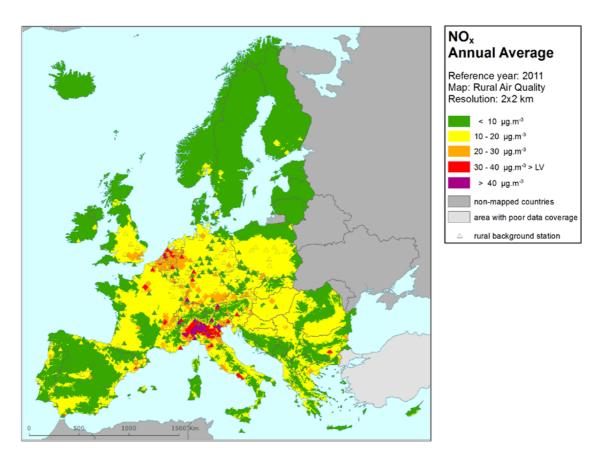
References

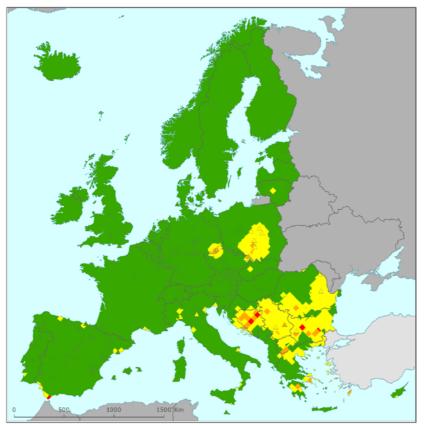
EEA (2012). NATURA2000. Version 2012 rev. 1. https://sdi.eea.europa.eu/internal-catalogue/srv/eng/search?uuid=c773f1a8-16ed-4f7a-91aa-f7475105f805

Horálek J, Denby B, de Smet P, de Leeuw F, Kurfürst P, Swart R, van Noije T (2007). Spatial mapping of air quality for European scale assessment. ETC/ACC Technical paper 2006/6. http://acm.eionet.europa.eu/reports/ETCACC TechnPaper 2006/6 Spat AQ

Horálek J, de Smet P, Kurfürst P, de Leeuw F, Benešová N (2014a). European air quality maps of PM and ozone for 2011 and their uncertainty. ETC/ACM Technical Paper 2013/13. http://acm.eionet.europa.eu/reports/ETCACM_TP_2013_13_spatAQmaps_2011

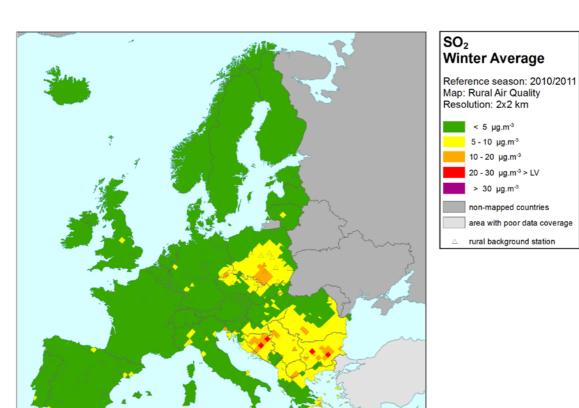

Horálek J, Tarrasón L, de Smet P, Malherbe L, Schneider P, Ung A, Corbet L, Denby B (2014b). Evaluation of Copernicus MACC-II ensemble products in the ETC/ACM spatial air quality mapping. ETC/ACM Technical Paper 2013/9.


http://acm.eionet.europa.eu/reports/ETCACM TP 2013 9 AQmaps with MACCproducts

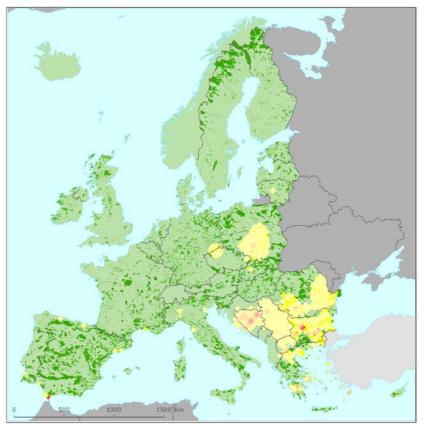

Annexes

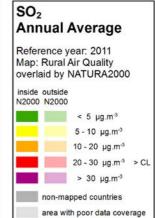
Annex 1: Concentration maps	ϵ
Annex 2: Concentration maps overlaid with Natura2000 areas	8
Annex 3: Vegetation exposure tables for Natura2000 areas	11

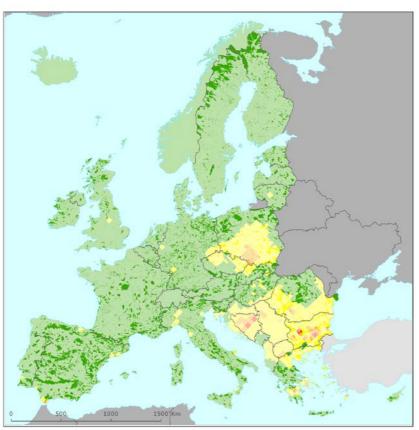
Annex 1: Concentration maps

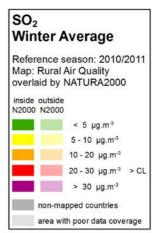


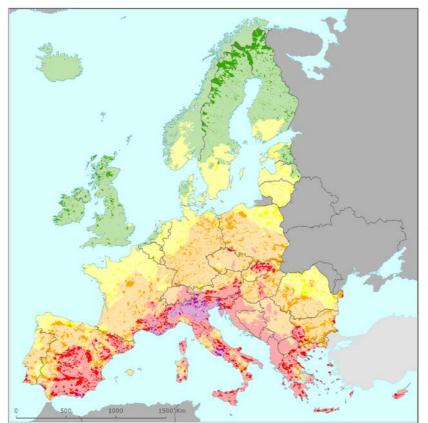
SO₂ Annual Average Reference year: 2011 Map: Rural Air Quality Resolution: 2x2 km 5 μg.m³ 5 - 10 μg.m³ 10 - 20 μg.m³ 20 - 30 μg.m³ > LV 30 μg.m³ non-mapped countries area with poor data coverage

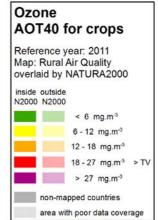

rural background station

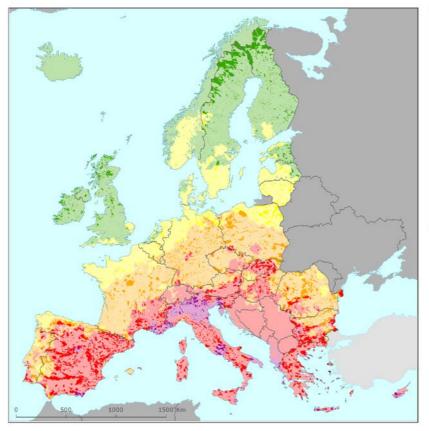


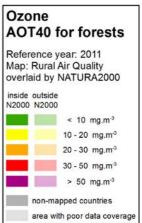

Additional 2011 air quality maps 7


Annex 2: Concentration maps overlaid with NATURA2000









Additional 2011 air quality maps

10 ETC/ACM Technical Paper 2014/5

Annex 3: Vegetation exposure tables for NATURA2000 areas

		NO _x , annual average, 2011											
	Area of NATURA2000						Percentage of NATURA2000 [%]						
Area	Total area	> 10 µg.	m ⁻³ .h	n ⁻³ .h > CL (30 μ		< 10	10 - 20	20 - 30	30 - 40	> 40			
	[km²]	[km²]	[%]	[km²]	[%]	μg.m ⁻³ .h	μg.m ⁻³ .h	μg.m ⁻³ .h	μg.m ⁻³ .h	μg.m ⁻³ .h			
NATURA2000	1 278 379	382 917	30.0	7 238	0.6	70.0	27.1	2.3	0.4	0.1			

		SO ₂ , annual average, 2011											
		Area of	NATUR	A2000	Percentage of NATURA2000 [%]								
Area	Total area	> 10 µg.	m ⁻³ .h)	> CL (20 μg.m ⁻³ .h)		< 5	5 - 10	10 - 20	20 - 30	> 30			
	[km²]	[km²]	[%]	[km²]	[%]	μg.m ⁻³ .h							
NATURA2000	1 278 379	6 972	0.5	1 744	0.1	90.7	8.8	0.4	0.1	0.0			

		SO ₂ , winter average, 2011/2012											
		Area of I	NATUR	A2000	Percentage of NATURA2000 [%]								
Area	Total area	> 10 µg.	m ⁻³ .h)	> LV (20 µg.m ⁻³ .h)		< 5	5 - 10	10 - 20	20 - 30	> 30			
	[km²]	[km ²]	[%]	[km ²]	[%]	μg.m ⁻³ .h							
NATURA2000	1 278 379	11 927	0.9	863 0.1		85.9	13.2	0.9	0.1	0.0			

		Ozone, AOT40 for crops, 2011											
		Area o	f NATURA	2000	Percentage of NATURA2000 [%]								
Area	Total area	> LTO (6	mg.m ⁻³ .h)	> TV (18	> TV (18 mg.m ⁻³ .h)		6 - 12	12 - 18	18 - 27	> 27			
	[km ²]	[km²]	[%]	[km²]	[%]	mg.m ⁻³ .h							
NATURA2000	1 278 379	1 060 976	83.0	308 066	24.1	17.0	22.8	36.1	21.6	2.5			

		Ozone, AOT40 for forests, 2011											
		Area o	f NATURA	2000	Percentage of NATURA2000 [%]								
Area	Total area	> CL (10 r	> CL (10 mg.m ⁻³ .h)		> RV (20 mg.m ⁻³ .h)		10 - 20	20 - 30	30 - 50	> 50			
	[km²]	[km²]	[%]	[km²]	[%]	mg.m ⁻³ .h							
NATURA2000	1 278 379	1 073 502	84.0	818 887	64.1	16.0	19.9	26.6	32.9	4.5			

Additional 2011 air quality maps