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1 Introduction 
Air quality mapping is an important task in order to provide as most complete spatial information 
about the air quality in a given region as possible. Among air pollutants nitrogen dioxide (NO2) is of 
main relevance for the map production, together with PM and ozone, due to the health impacts 
connected with these pollutants. While annual European-wide maps for PM and ozone have been 
produced regularly for many years under ETC/ACM, NO2 maps have been added to the set of regular 
maps just recently (Horálek et al., 2017a). In all cases, the mapping method is based primarily on air 
quality measurements. It combines monitoring data, chemical transport model results and other 
supplementary data in the data fusion by linear regression model followed by kriging of its residuals 
(‘residual kriging’). The rural and urban areas are mapped separately with a subsequent merging of 
these map layers. The method can be described as the regression – interpolation – merging mapping. 

Under Horálek et al. (2017b), an improved NO2 mapping methodology was developed through 
inclusion of land cover and road data, together with other supplementary variables. Next to this, the 
urban traffic air quality is taken into account as an additional map layer included in the merging 
process at this improved method. All the map layers are created on a grid at 1x1 km2 resolution. For 
population exposure calculations we go even inside this 1x1 km2 grid in order to better reflect the 
population exposed to traffic. This improved method for NO2 has already been incorporated in the 
annual routine mapping (Horálek et al., 2017c, 2018). 

In this paper, two new data sources are examined to assess their potential contribution to 
methodological improvements for NO2 mapping under ETC/ACM. The first is the inclusion of 
satellite data. The second is the data output from the model using the so called ‘QUARK kernel 
method’.  

• Satellite data is now widely used in regional mapping of PM and NO2, thanks to data assimilation 
techniques. Earlier, the suitability of the satellite OMI based product for the spatial mapping of 
NO2 was tested (Schneider et al, 2012). In this earlier study, it was recommended to investigate 
the use of the OMI based NO2 high resolution products in the operational ETC/ACM air quality 
mapping methodology. Based on this recommendation, we examine now whether this OMI based 
satellite imagery data can improve the operational NO2 mapping as a supplementary data source in 
the routine methodology. 

• The QUARK kernel method has been developed in a recent DG-ENV project1 as a downscaling 
methodological tool to improve air quality modelling that is used for EU-wide NO2 exposure 
assessment. This paper examines the use of the QUARK kernel based model output in the 
ETC/ACM mapping. For doing this, we examine and mutually compare the use of two model 
outputs in the ETC/ACM mapping, namely the ‘CHIMERE-SHERPA’ model output in 7 x 7 km2 
resolution and the ‘CHIMERE-SHERPA with QUARK kernel method applied’ model output 
in  125 x 125 m2 that is aggregated into a 1x1 km2 resolution.  

Chapter 2 describes the methodological aspects. Chapter 3 documents input data. Chapter 4 presents 
the analysis and results of the examination of the application of both satellite data and QUARK 
application based model output in the mapping methodology. Chapter 5 discusses the results and 
summarizes the conclusions. 

                                                 
 
1 Service contract 070201/2015/SER/717473/C.3 for DG-ENV – Improved Tools for Assessing NO2 Exposure. Project team: 
VITO (Belgium), King’s College (UK). 
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Annex 1 presents an overview of the current and future NO2 satellite products and gives a brief 
summary of the use of NO2 satellite data in the Copernicus Atmospheric Monitoring Service (CAMS). 
Annex 2 describes the QUARK kernel method, which performs a downscaling on coarser resolution 
background concentration maps, and discusses its potential integration with the ETC/ACM mapping 
methodology. Next to the use of the QUARK kernel based model output as a proxy in the ETC/ACM 
mapping (as examined in a main report), an alternative potential coupling of the QUARK method with 
the ETC/ACM mapping methodology is discussed. 
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2 Methodology  
2.1 Current method  

The current mapping methodology used by ETC/ACM to create the NO2 concentration maps is 
described in Horálek et al. (2017b). It is an improved variant of the regression – interpolation – 
merging mapping method. Separate map layers are created for rural, urban background and urban 
traffic areas on a grid at 1x1 km2 resolution. The rural background map layer is based on the rural 
background stations, the urban background map layer on the urban and the suburban background 
stations, and the urban traffic map layer on the urban and the suburban traffic stations. All the map 
layers are created using a linear regression model followed by kriging of the residuals produced from 
that model (residual kriging). Interpolation is therefore carried out according to the relation: 

( ) )(....)(.)(.)(ˆ
000220110 ssXasXasXacsZ nn η+++++=  (2.1) 

where ( )0sẐ  is the estimated value of the air pollution indicator at the point so, 
 X1(s0), X2(s0),…, Xn(s0)  are the n number of individual supplementary variables at the point so 
 c, a1, a2,,…, an  are the n+1 parameters of the linear regression model estimated based on 

the observed values and supplementary data at the points of measurement, 
 η(s0) is the spatial interpolation of the residuals of the linear regression model at 

the point so estimated based on the residuals at the points of measurement. 

The spatial interpolation of the regression’s residuals is carried out using ordinary kriging, according 
to  
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where  )(ˆ 0sη   is the interpolated value at a point so, derived from the residuals of the linear 
 regression model at the points of measurement si, i = 1, …, N, 

η(si) are the residuals of the linear regression model at N points of measurement si, 
i = 1, …, N, 

λ1,…, λN  are the estimated weights based on the variogram, which is a measure of a 
spatial correlation, see Cressie (1993). 

For different map layers (rural background, urban background, and urban traffic) different 
supplementary data are used, depending on their improvement to the fit of the regression. The three 
map layers are merged into one final map using a weighting procedure: 

( ) ( ) )(ˆ)()()(ˆ)(1)()(ˆ)(1)(ˆ 000000000 sZswswsZswswsZswsZ TTUUBTURUF ⋅+⋅−+⋅−=  (2.3) 

where  )(ˆ
0sZ F  is the resulting estimated concentration in a grid cell so for the final map, 
)(ˆ

0sZUB  is the estimated concentration in a grid cell so for the urban background map layer, 
)(ˆ 0sZ R  is the estimated concentration in a grid cell so for the rural background map layer, 

)(ˆ
0sZT  is the estimated concentration in a grid cell so for the urban traffic map layer, 

)( 0swU  is the weight representing the ratio of the urban character of the  grid cell so, 
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)( 0swT  is the weight representing the ratio of areas exposed to traffic air quality in the grid 
cell so. 

The weight )( 0swU is based on the population density grid, while )( 0swT  is based on the buffers 
around the roads.  

For further details and for supplementary data used, see Horálek et al. (2007, 2017b). 

2.2 Satellite data and QUARK kernel based model output inclusion 

In this paper, we examine the inclusion of satellite data in the mapping as an additional supplementary 
variable Xi of Equation 2.1, in all map layers resp. areas. 

Next to this, we also examined the improvement brought by the integration of the QUARK kernel 
method with the chemical transport model output, applied as supplementary data source in the linear 
regression and interpolation of the regression residuals. In the analysis, alternative model outputs (see 
Section 3.2) are used in Equation 2.1 instead of the routinely applied EMEP model output. 

In some cases, the supplementary variables of Equation 2.1 are selected through a stepwise regression 
and backwards elimination of the weakest performing variables (Horálek et al., 2007). In this selection 
two criteria are applied in general, similar to Beelen et al. (2009): a variable is not excluded from the 
regression model that (i) increases the adjusted R2 value by more than 1%, and (ii) has a coefficient 
that conforms to the pre-specified direction of association between the variable and the pollutant.  

2.3 Uncertainty estimates of the concentration maps 

The uncertainty estimation of the mapping results is based on the ‘leave one out’ cross-validation 
method. It computes the quality of the spatial interpolation for each measurement point from all 
available information except from the point in question, i.e. it withholds one data point and then makes 
a prediction at the spatial location of that point. This procedure is repeated for all measurement points 
in the available set. The results of the cross-validation are expressed by statistical indicators and 
scatter plots. The main indicators used are root mean squared error (RMSE) and bias: 

∑
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where Z(si) is the observed air quality indicator value at the ith point, 
)(ˆ

isZ  is the estimated air quality indicator value at the ith point using other information, 
except the observed indicator value at the ith point, 

 N is the number of the observational points. 

Next to the RMSE expressed in absolute units, one could express this uncertainty in percentage by 
relating the RMSE to the mean of the air quality indicator value for all stations: 
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where RRMSE is the relative RMSE, expressed as percentage.  



 
 
 

 
 
Satellite data inclusion and kernel based potential improvements in NO2 mapping 9 

Other cross-validation indicators are the coefficient of determination R2 and the regression equation 
parameters slope and intercept, following from the scatter plot between the cross-validation predicted 
and the observed concentrations. 

Next to the cross-validation, in some cases also the simple comparison of measured and predicted grid 
values was done. In these cases, the similar statistical indicators as in cross-validation are used (i.e. 
RMSE, bias, R2, slope and intercept). 
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3 Input data  
3.1 Monitoring data  

We extracted and applied the monitoring data for the year 2014 as this was the most up-to-date year 
with all data needed (monitoring, modelling, meteorology, satellite) available when this study started. 
Furthermore, we extracted the monitoring data for 2010 to allow for comparability with the QUARK 
kernel methodical calculation results already produced within the EU project and readily available to 
apply within our exploration of mapping improvement.  

Air quality station monitoring data for the year 2010 is extracted from the Air Quality e-Reporting 
database, EEA (2017). Air quality station monitoring data for the year 2014 is extracted from the Air 
Quality e-Reporting database, EEA (2016a). This data set is supplemented with 11 additional rural 
background stations from the database EBAS (NILU, 2016) not reported to the Air Quality e-
Reporting database, in agreement with Horálek et al. (2017c), in order to increase data coverage. Only 
data from stations classified by the Air Quality e-Reporting database and/or EBAS of the type 
background and traffic for the areas rural, suburban and urban are used. Station type industrial is not 
considered; it represents local scale concentration levels not applicable at the mapping resolution and 
information employed. The following pollutant and its indicator is considered: 

NO2  – annual average [µg.m-3], years 2010 and 2014 

Only the stations with annual data coverage of at least 75 percent are used. We excluded the stations 
outside the EEA map extent Map_1c (EEA, 2011), which contains the mapping window of Map 3.1. 

In total, 362 (for 2010) resp. 410 (for 2014) rural background stations, 1156 resp. 1126 
urban/suburban background stations and 811 resp. 704 urban/suburban traffic stations are used. Rural 
traffic stations are not considered due to their small number (i.e. 16 in both years), in agreement with 
Horálek et al. (2017b). Map 3.1 shows the distribution of the selected stations by type and by annual 
average NO2 concentration class.  

Map 3.1 Station monitoring data, NO2 annual average, 2010 (left) and 2014 (right) 
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3.2 Chemical transport modelling data  

EMEP MSC-W 

The EMEP MSC-W (formerly called Unified EMEP) model (version rv4.9) is an Eulerian chemical 
transport model. Simpson et al. (2012) and https://wiki.met.no/emep/page1/emepmscw_opensource 
(web site of Norwegian Meteorological Institute) describes the model in more detail. Emissions for 
the years 2010 (Mareckova et al., 2012) and 2014 (Mareckova et al., 2016) are used and the model is 
driven by ECMWF meteorology for each year 2010 and 2014. EMEP (2012, 2016) provide details on 
the EMEP modelling parametrisations for 2010 and 2014. The resolution of the model is about 50x50 
km2. The parameters used are the same as for the monitoring data, i.e. 

NO2  – annual average [µg.m-3], years 2010 and 2014 

We downloaded the EMEP data from NMI (2016) in the form of NO2 daily means. We aggregated 
this primary data to the NO2 annual average 2010 and 2014 values. 

Map 3.2 presents the ‘EMEP’ model outputs for 2010 and 2014. 

CHIMERE as used in SHERPA tool  

The CHIMERE chemistry transport model (http://www.lmd.polytechnique.fr/chimere) is used, as it 
was derived in the context of the SHERPA project (http://aqm.jrc.ec.europa.eu/sherpa.aspx)2. The 
emissions are derived using EC4MACS proxies as used in the SHERPA emission database applied on 
GAINS total emissions at 2010 (total per country-pollutant-macrosector), see Bessagnet et al. (2012). 
Meteorology from the ECMWF-IFS model at 12.5x12.5 km2 resolution is used. The original 

                                                 
 
2 The background NO2 concentration at 7 km used in the present report as well as underlying emissions were originally 
produced by INERIS with the CHIMERE under contract JRC/IPR/2014/H.2/0008/NC with the European Commission. 

Map 3.2 EMEP model output, NO2 annual average, 2010 (left) and 2014 (right) 

 

https://wiki.met.no/emep/page1/emepmscw_opensource
http://www.lmd.polytechnique.fr/chimere
http://aqm.jrc.ec.europa.eu/sherpa.aspx
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resolution of the model is 0.125° x 0.0625° (i.e. about 7x7 km2). We refer further to this model as 
‘CHIMERE-SHERPA’ or simply ‘CHIMERE’. The parameter used is 

NO2  – annual average [µg.m-3], year 2010 

CHIMERE as used in SHERPA tool, with QUARK kernel method applied 

The QUARK kernel method (see Annex 2, Section A2.1) performs a downscaling of originally 
coarser resolution background concentration maps using dispersion kernels calculated by the IFDM 
model (Lefebvre, 2013). In our examinations we use the CHIMERE model as applied in SHERPA 
tool with application of this kernel method, as was derived by VITO under the DG-ENV project 
“Improved Tools for Assessing NO2 Exposure” for the year 2010. We refer further to this model as 
‘CHIMERE-SHERPA with QUARK applied’ or simply ‘CHIMERE+QUARK’. The resolution of 
this data is 125x125 m2:  the QUARK kernel method adds a traffic contribution in this fine resolution 
on top of a coarse (7x7 km2) background concentration. The parameter used is 

NO2  – annual average [µg.m-3], year 2010 

Map 3.3 presents the ‘CHIMERE-SHERPA’ and the ‘CHIMERE-SHERPA with QUARK applied’ 
model outputs. One can see that the central and northern parts of Scandinavia and Iceland are not 
included in the CHIMERE domain. The covered domain is <-10.5°, 37.5°>, <34°, 62°>. 

In order to better visualize the differences among the three models, Map 4.3 shows an extract of the 
three model output covering the western Po valley. 

The ‘EMEP’ and the ‘CHIMERE-SHERPA’ model outputs were converted into ETRS89-LAEA5210 
projection. The ‘CHIMERE-SHERPA with QUARK applied’ model outputs were provided already in 
ETRS89-LAEA5210 (resp. EPSG3035) projection. All model outputs were transformed into the 
reference EEA 1x1 km2 grid: both ‘EMEP’ and ‘CHIMERE-SHERPA’ model outputs were imported 
into ArcGIS as a point shapefile, subsequently converted into a 100x100 m2 raster grid (in order to 
minimize a distortion during the conversion) and then spatially aggregated into the 1x1 km2 raster 

Map 3.3 ‘CHIMERE-SHERPA’ (left) and ‘CHIMERE-SHERPA with QUARK applied’ 
(right) model outputs, NO2 annual average, 2010 
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grid; the ‘CHIMERE-SHERPA with QUARK applied’ data was spatially aggregated into the 1x1 km2 
grid. 

3.3 Satellite data  

Annual average NO2 datasets for the years 2010 and 2014 were constructed from data acquired by the 
OMI instrument onboard the Aura platform, see Map 3.5. The parameter used is 

NO2 – annual average tropospheric vertical column density (VCD) [number of NO2 molecules per 
cm2 of earth surface], years 2010, 2014 

The OMNO2d product generated by NASA was used as a basis, NASA (2017). While the product 
contains the column amounts of both the troposphere and the entire atmosphere, only the tropospheric 
column was used here. OMNO2d is a Level-3 daily global gridded OMI dataset that is derived from 
the Level-2 HDF-EOS5 files containing the swath data for each overpass. All the orbits within a given 
day (typically observed between 13:00 and 14:00 local time) are mapped into a 0.25x0.25 degrees 
grid, where the grid values are calculated using areal weighted interpolation of the original swath-
level pixels.  

A script in the R programming language (see http://www.r-project.org) was written to carry out the 
averaging of the data to an annual average grid. The set of 365 daily OMNO2d products was averaged 
over time to result in the annual average NO2 datasets for 2010 and 2014. It should be noted that the 
daily products represent early afternoon values (see above), so the annual mean in fact represent the 
annual mean of the afternoon values. Next to this, it should be noted that no gap filling was carried 
out to handle gaps due to clouds. Instead, the averaging algorithm only used the available valid 
(cloud-free) values for each grid cell and ignored missing values. While this procedure has the 

Map 3.4 EMEP (left), ‘CHIMERE-SHERPA’ (middle) and ‘CHIMERE-SHERPA with 
QUARK applied’ (right) model outputs, NO2 annual average, 2010, 
western Po valley 

 

http://www.r-project.org/
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advantage that the annual mean cannot be subject to averaging errors caused by erroneous and often 
scientifically questionable gap-filling of large areas through spatial interpolation, it means on the 
other hand that the annual average estimates for some grid cells are calculated from significantly less 
than 365 values  (for the most of Europe even significantly less than 274 days corresponding to 75% 
coverage, i.e. the minimum requirement on ground monitoring data) and that the number of daily 
observations going into the calculation of the mean varies from pixel to pixel (see Map 3.6). As such, 
some pixels and regions can be subject to biases and larger random errors. Spatially, this effect can 
sometimes result in increased “noise”, particularly in very cloudy regions.  

The resulting annual global average NO2 datasets for the years 2010 and 2014 were then cropped for 
the European domain (-30 to +50 degrees longitude, +30 to +75 degrees latitude) and subsequently 
projected from a simple latitude/longitude grid to the Lambert Equal Area projection. Finally, the data 
were converted to ArcGIS and spatially transformed into the reference EEA 1x1 km grid, similarly 
like the modelled data (see Section 3.2). 

Figure 3.5 Annual average tropospheric column (VCD) of NO2 for 2010 (left) and 
2014 (right) as derived from OMI OMNO2d Level-3 daily product. Units: 
number of NO2 molecules per cm2.  

  
   

Figure 3.6 Number of valid daily NO2 observations in 2010 (left) and 2014 (right) 
that went into the calculation of the annual mean. Units: total number of 
daily OMI OMNO2d product files used for each pixel.  
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3.4 Other supplementary data  

Land cover 

CORINE Land Cover 2006 – grid 100 x 100 m2, Version 18.5 (09/2016) is used (EEA, 2016b). The 
country missing in this database is Andorra; the areas missing are Faroe Islands and Jan Mayen.  

In order to reduce the high number of degrees of freedom in the CORINE Land Cover description, the 
44 CLC classes (http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-
3/corine-land-cover-2006-classes) have been re-grouped into the 8 more general classes in agreement 
with the recommendations of Horálek et al. (2017b), i.e. similarly like in Beelen et al. (2013). 

Table 3.1 Definition of general land cover classes, based on CLC2006 classes 

Label General class  
description 

CLC classes 
grid codes 

CLC classes 
codes 

CLC classes description 

HDR High density 
residential areas 

1 111 Continuous urban fabric  

LDR Low density 
residential areas 

2 112 Discontinuous urban fabric 

IND Industry 3, 7 – 9 121, 131 – 133 Industrial or commercial units, Mineral 
extraction sites, Dump sites, Construction sites 

TRAF Traffic 4 – 6 122 – 124 Road and rail networks and associated land, 
Ports, Airports 

UGR Urban green 10 – 11 141 – 142 Artificial, non-agricultural vegetated areas 

AGR Agricultural areas 12 – 22 211 – 244 Agricultural areas 

NAT Natural areas 23 – 34 311 – 335 Forest and semi natural areas 

OTH Other areas 35 – 44 411 – 523 Wetlands, Water bodies 

 
Like in Horálek et al. (2017b), two aggregations are used, i.e. into 1x1 km2 grid and into the circle 
with radius of 5 km, as a floating average for all 1x1 km2 grid cells. The reason for these two 
aggregations is this: 1x1 km is directly related to the mapping and calculation resolution, the circle 
with radius of 5 km corresponds to a buffer of 5 km often used in LUR models (Hoek et al., 2008). 
For each general CLC class we spatially aggregated the high land use resolution into the 1x1 km2 
EEA standard grid resolution. The aggregated grid square value represents for each general class the 
total area of this class as percentage of the total 1x1 km2 square area. For the floating averaging of the 
circle with radius 5 km around all relevant 1x1 km2 grid cells, the aggregated grid square value 
represents for each general class the total area of this class as percentage of the total area of this circle 
(which is 8.1 square kilometers; this value is influenced by the 100x100 m2 resolution of the land 
cover data).   

In the analysis, the first seven classes have been used only, while the class OTH has been omitted as 
redundant, as it can be expressed by the other general classes: the percentage of the grid square area 
attributed to this class can be calculated by subtracting the percentages attributed to other seven 
classes from 100. 

Altitude 

We use the altitude data field (in m) of Global Multi-resolution Terrain Elevation Data 2010 
(GMTED2010), with an original grid resolution of 15x15 arcseconds coming from U.S. Geological 
Survey Earth Resources Observation and Science, see Danielson et al. (2011). The data were 
converted into the ETRS89-LAEA5210 projection, resampled to 100x100 m resolution, shifted to the 
extent of EEA reference grid, and spatially aggregated into 1x1 km2 grid resolution.  

http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3/corine-land-cover-2006-classes
http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3/corine-land-cover-2006-classes
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Next to this, another aggregation has been executed based on the 1x1 km2 grid cells, i.e. the floating 
averaging of the circle with radius of 5 km around all relevant grid cells.  

Meteorological data 

The meteorological parameters used are wind speed (annual average for 2014, in m.s-1) and surface 
net solar radiation (annual average of daily sum for 2014, MWs.m-2). The daily data in resolution 
15x15 arc-seconds were extracted from the Meteorological Archival and Retrieval System (MARS) of 
ECMWF, see ECMWF (2015). For details, see Horálek et al. (2007). The data have been imported 
into ArcGIS as a point shapefile. Each point represents the centre of a grid cell. The shapefile has 
been converted into ETRS89-LAEA5210 projection, converted into a 100x100 m resolution raster 
grid and spatially aggregated into the reference EEA 1x1 km grid.  

Population density 

Population density (in inhabitants.km-2, census 2011) is based on Geostat 2011 grid dataset (Eurostat, 
2014). The dataset is in 1x1 km resolution, in the EEA reference grid. For regions not included in the 
Geostat 2011 dataset we use as alternative sources JRC (2009) and ORNL (2008) data. For details, 
see Horálek et al. (2017a).  

Road type vector data 

GRIP (Meijer et al., 2016) vector road type data base provided by PBL is used. In this data base, road 
types are distributed into five classes, from highways to local roads and streets. In agreement with the 
conclusion of Horálek et al. (2017b), classes 1 (Highways, coded T1), 2 (Primary roads, T2) and 3 
(Secondary roads, T3) are used. Based on the GRIP vector data, percentage of the area influenced by 
traffic represented by buffers around the roads were calculated in ESRI ArcGIS for individual road 
type classes 1 – 3 and for their combination (i.e. for classes 1 – 3 together), at all 1x1 km2 grid cells. 
A buffer of 75 metres distance at each side from each road vector is taken for the roads of classes 1 
(coded T1_buffer75m) and 2 (T2_buffer75m), while a buffer of 50 metres is taken for the roads of 
class 3 (T3_buffer50m). For motivation, see Horálek et al. (2017b). Figure 3.3 illustrates the buffer 
around the roads of classes 1 – 3 together (coded T123_buffer). 

 

  

Figure 3.1 Buffer around roads of classes 1 – 3 together, example  
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4 Analysis applying satellite data and QUARK 
kernel method 

4.1 Satellite data inclusion in mapping 

In this section, we examined potential improvement of the NO2 mapping by including satellite data in 
the set of supplementary variables. Satellite data from OMI (see Section 3.3) was used. 

For all individual map layers, i.e. rural background, urban background, urban traffic, we compared the 
mapping variants without and with the inclusion of satellite data. The analysis is based on 2014 data, 
being the most recent year with all data needed available when this study started. 

As the basic variant, we used the current methodology (Horálek et al., 2017c), labelled as (CE) 3. This 
variant we compared with a variant labelled as (CEs), consisting of the same set of supplementary 
variables but with satellite data in addition. Next to this, we examined another four additional variants, 
by an update (i.e. 2014 data) selection of the supplementary data through a stepwise regression and 
backwards elimination (Section 2.2). The set of the supplementary variables has been selected in two 
by two variants, i.e. a variant containing the land cover parameters among the set of supplementary 
data (AE) and not containing the land cover parameters (NE) – both without (coded (AE) resp. (NE)) 
and with satellite data included (coded (AEs) resp. (NEs)). Be it noted that for two area types, the 
same sets of variables (AE) and (AEs) were selected as already used under (CE) and (CEs). For 
details, see below. 

The main motivation for examination of alternative (AE) and (AEs) variants is to deeply explore 
whether the inclusion of the satellite data improves the NO2 mapping. If we compared only (CE) and 
(CEs), one could object that another selection of CLC data (i.e. the most optimal (AE) variant) would 
also improve the fit, without the use of the satellite data. The additional benefit is the increase of the 
methodology robustness: The selection of the supplementary data should be robust across the years. 

The reason for the examination of variants without land cover parameters (NE) and (NEs) is to explore 
whether the inclusion of the satellite data improves the fit when the land cover data is not used. Still, 
in some areas CLC2006 data is not available (see Section 3.4) and a map for these areas might be 
needed.  

The set of supplementary parameter data tested on suitability for inclusion in the linear regression 
model includes 27 variables. Note that all are in 1x1 km2 default mapping resolution. The set consists 
of: 

- EMEP model  
- altitude:  - 1x1 km grid altitude 

- floating average of circle radius 5 km around 1x1 km2 grid cell  
- meteorological parameters:  - wind speed  

- temperature  
- surface net solar radiation  
- relative humidity  

- population density  

                                                 
 
3 Slight differences between the map (and its uncertainty results) presented in Horálek et al. (2017c) and the variant (CE) 
presented here are caused by the use the most actual CLC2006 version 18 in this paper, while in Horálek et al. (2017c) the 
CLC2006 version 17 is used. 
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- road data (as a ratio of 1x1 km grid influenced by traffic represented by buffers around 
roads): - for road type class 1 (coded T1_buffer75m) 
- for road type class 2 (coded T2_buffer75m) 
- for road type class 3 (coded T3_buffer50m) 
- for road type classes 1–3 together (coded T123_buffer) 

- land cover type (as percentage of 1x1 km2 grid and of radius 5 km; see Table 3.1 for further 
definitions): - HDR (coded HDR_1km and HDR_5km_r) 

- LDR (coded LDR_1km and LDR_5km_r) 
- IND (coded IND_1km and IND_5km_r) 
- TRAF (coded TRAF_1km and TRAF_5km_r) 
- UGR (coded UGR_1km and UGR_5km_r) 
- AGR (coded AGR_1km and AGR_5km_r) 
- NAT (coded NAT_1km and NAT_5km_r) 

- satellite data OMI 

In the selecting procedure applied on all supplementary data including land cover, exactly the same 
sets of variables as in use at the current method were selected for rural background and urban traffic 
areas, both for variants without and with the satellite data. Thus, the variants (AE) and (AEs) were not 
further examined for these two types of areas, being the same as the variants (CE) and (CEs). By this 
selection, the robustness of the specific sets of the supplementary data for these two types of areas 
were confirmed. 

For urban background areas, a slightly different set of variables is nominated under (AE) resp. (AEs) 
compared to the current method (CE) resp. (CEs), for both variants without and with the satellite data. 
There the set of nominated variables consists of TRAF_5km_r and T2_buffer75m, instead of AGR_1km 
and NAT_1km that was used at the current method.  

Table 4.1 provides the overview of all the mutually compared variants, including their specific set of 
nominated supplementary data variables. For the rural background and urban traffic areas four variants 
were compared, while six variants were compared for the urban background areas. Table 4.2 presents 
the supplementary variables ultimately nominated and applied, including their relevant statistical 
performance parameters at both the multiple linear regression and the subsequent interpolation by 
ordinary kriging of its residuals.  
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Table 4.1 List of mutually compared variants of the mapping method 

Lab. Variant 
Description 

Area type EMEP Alti-
tude 

Meteo  Pop. 
dens. 

Road 
data 

Land 
cover 

Satel. 
OMI 

(CE) Current Rur. backgr.    +  +    +    +     -  +     - 

Urb. backgr.    +  +    +    +     +   +     - 

Urban traffic    +  +    +    -     -  +     - 

(CEs) Current, including 
satellite data 

Rur. backgr.    +  +    +    +     -  +     + 

Urb. backgr.    +  +    +    +     +   +     + 

Urban traffic    +  +    +    -     -  +     + 

(AE) Alternative Urb. backgr.    +  +    +    +     + + (b)     - 

(AEs) Alternative, incl. sat. Urb. backgr.    +  +    +    +     + + (b)     + 

(NE) No LC data Rur. backgr.    +  +    +    +    - (a)  -     -   

Urb. backgr.    + - (a)    +    +      +  -    - 

Urban traffic    + - (a)   - (a)   - (a)     +  -    - 

(NEs) No LC data, including 
satellite data 

Rur. backgr.    +  +    +    +    - (a)  -    +  

Urb. backgr.    +  - (a)    +    +     +  -    + 

Urban traffic    +  - (a)   - (a)   - (a)     +  -    + 

(a) Not included by the backward stepwise selecting procedure  (b) Alternative set of land cover data 

Table 4.2 Parameters of the linear regression models and of the ordinary kriging 
(nugget, sill, range) of NO2 annual average for 2014 in rural background, 
urban background and urban traffic areas for different mapping variants 

(AE) (AEs)
rural urb. b. urb. tr. rural urb. b. urb. tr. urb. b. urb. b. rural u. b. u. tr. rural u. b. u. tr.
coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 9.75 17.28 23.37 9.38 16.53 23.12 16.75 15.97 9.29 16.35 22.36 8.70 15.37 20.62
a1 (EMEP model) 0.699 0.550 0.677 0.443 0.318 0.423 0.506 0.271 0.826 0.662 1.031 0.481 0.375 0.744
a2 (altitude_1km) -0.0085 -0.0082 -0.0215 -0.0093 -0.0089 -0.0219 -0.0090 -0.0096 -0.0090 -0.0100
a3 (altitude_5km_r) 0.0068 0.0086 0.0216 0.0075 0.0091 0.0216 0.0085 0.0089 0.0047 0.0058
a4 (wind speed) -1.135 -1.809 -1.256 -1.308 -2.046 -1.522 -2.062 -2.296 -1.220 -1.456 -1.430 -1.818
a5 (pop. d. * 1000) 0.624 0.231 0.689 0.252 0.284 0.304 1.039 0.481 1.057 0.501
a6 (T1_buffer75m) 14.29 14.07 13.23 13.02 19.25 18.71
a7 (T2_buffer75m) 6.70 7.10 9.87 10.11
a8 (T123_buffer) 18.43 17.22
a9 (AGR_1km) -0.0274 -0.0273
a10 (NAT_1km) -0.0621 -0.0584
a11 (LDR_5km_r) 0.0177 0.0127 0.0300 0.0150 0.0107 0.0271 0.0129 0.0108
a12 (HDR_5km_r) 0.0200 0.0319 0.0217 0.0338 0.0171 0.0188
a13 (NAT_5km_r) -0.0040 -0.0039
a14 (TRAF_5km_r) 0.0304 0.0295
a15 (satellite OMI) 0.747 0.948 1.013 0.971 0.959 1.120 1.128
adjusted R2 0.67 0.51 0.38 0.68 0.54 0.39 0.52 0.55 0.61 0.44 0.25 0.64 0.48 0.27
st. err.  [µg.m-3] 3.37 5.31 10.28 3.29 5.18 10.20 5.26 5.12 3.63 5.69 11.29 3.51 5.51 11.18
nugget 12 16 59 12 15 60 16 15 14 17 78 13 17 77
sill 12 24 133 12 22 132 24 22 14 28 143 13 26 143
range  [km] 190 280 570 190 280 570 280 300 190 300 300 560 300 300

linear regr. model 
+ OK of its 
residuals

(CEs) current + sat. (CE) current (NE) no LC (NEs) no LC + sat.

 
Note: Dark grey indicates variables not considered in the variant of the linear regression model. Light grey 
indicates variables not selected in the variant by the selecting procedure. 
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Comparison by cross-validation  

The mapping results of all variants are mutually compared by means of the ‘leave one out’ cross-
validation (Section 2.3). The comparison results are presented in Table 4.3. The table highlights the 
statistics of each combination of variant and type of area and provides the level of performance by 
including a colour ranking: the darker the green marking, the better performance. Lower RMSE and 
RRMSE and higher R2 generally indicate better performance; bias closer to zero is also an indication 
of better performance. Furthermore, the slope a of the regression equation y = ax + b should be as 
close to 1 as possible and the intercept b as close to zero as possible. 

Not surprisingly, for all types of areas the variants not containing the land cover parameters show 
poorer results compared to the variants containing land cover, which is in agreement with Horálek et 
al. (2017b) and confirms the relevance of the inclusion of land cover in the mapping methodology. 

It can be seen that for rural background and urban background areas, variants including the satellite 
data give slightly better results compared to the relevant variant without the satellite data.  One can 
conclude that from the lower RMSE and RRMSE and higher R2 in the variant (CEs) compared to 
(CE), and variant (NEs) compared to (NE), and variant (AEs) compared to (AE).  

In the urban traffic areas, for the variant without the use of the land cover data the inclusion of satellite 
data bring a slight improvement in terms of RMSE, RRMSE and R2, i.e. (NEs) performs better 
compared to (NE). However, for the current method the inclusion of satellite data bring no 
improvement, i.e. (CEs) performs slightly worse compared to (CE). 

Table 4.3 Comparison of different mapping variants of spatial interpolation 
showing RMSE, RRMSE, bias, R2 and linear regression from the cross-
validation scatter plots of NO2 annual mean predicted values, 2014. 
Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE bias  R2 regr. eq.
(CE) current  (EMEP, alt., wind speed, pop. d., LC) 3.3 36.6% 0.0 0.676 y = 0.694x + 2.8
(CEs) current + sat.  (EMEP, alt., wind speed, pop. d., LC, sat.) 3.2 35.7% 0.0 0.691 y = 0.688x + 2.9
(NE) no LC  (EMEP, alt., wind speed, pop. d.) 3.6 40.0% 0.1 0.613 y = 0.649x + 3.3
(NEs) no LC + sat. (EMEP, alt., wind speed, pop. d., sat.) 3.4 38.0% 0.0 0.650 y = 0.637x + 3.3

RMSE RRMSE bias  R2 regr. eq.
(CE) current  (EMEP, alt., w. sp., pop. d., road, LC) 4.8 23.7% 0.0 0.605 y = 0.639x + 7.3
(CEs) current + sat.  (EMEP, alt., w. sp., pop. d., road, LC, sat.) 4.7 23.5% 0.0 0.612 y = 0.636x + 7.3
(AE) alternative (EMEP, alt., w. sp., pop. d., road, LC) 4.7 23.3% 0.0 0.620 y = 0.650x + 7.1
(AEs) alternat. + sat. (EMEP, alt., w. sp., pop. d., road, LC, sat.) 4.6 23.0% 0.0 0.627 y = 0.647x + 7.1
(NE) no LC  (EMEP, wind speed, pop. d.) 5.2 25.6% 0.0 0.541 y = 0.586x + 8.4
(NEs) no LC + sat. (EMEP, alt., wind speed, pop. d., sat.) 5.1 25.2% 0.0 0.552 y = 0.584x + 8.4

RMSE RRMSE bias  R2 regr. eq.
(CE) current  (EMEP, alt., wind speed, LC) 8.9 25.4% 0.0 0.533 y = 0.547x + 15.9
(CEs) current + sat.  (EMEP, alt., wind speed, LC, sat.) 8.9 25.4% 0.0 0.532 y = 0.538x + 16.2
(NE) no LC  (EMEP, road data) 9.9 28.1% 0.1 0.431 y = 0.457x + 19.2
(NEs) no LC + sat. (EMEP, road data, sat.) 9.8 28.0% 0.1 0.434 y = 0.452x + 19.3

spatial interpolation variant + supplementary data used urban traffic areas

rural background areasspatial interpolation variant + supplementary data used

spatial interpolation variant + supplementary data used urban background areas
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In the urban background areas, the alternative variants (AE) and (AEs) give slightly better results 
compared to the current variants (CE) and (CEs). In order to have o robust set of the supplementary 
variables across the years, it is desirable to compare the current and alternative variants for more years. 

Conclusion  

One can conclude that the inclusion of the satellite data provides improvement on the NO2 mapping 
methodology in the rural background and urban background areas. Therefore, it is recommended to 
implement the satellite data in the routine methodology for the rural background and urban 
background areas. Furthermore, the application of land cover is confirmed firmly to contribute to 
better performance at all types of area.  

Next to this, it is recommended to consider in the routine mapping the alternate set of the 
supplementary variables (AEs) in the urban background areas, in dependence to the analysis results in 
the actual year. 

4.2 Use of QUARK kernel based model output in mapping 

In this section, we examine the use of QUARK kernel based model output in the ETC/ACM mapping. 
For doing this, we examine and mutually compare the use of the ‘CHIMERE-SHERPA’ model output 
(original resolution 7x7 km2) and the ‘CHIMERE-SHERPA with QUARK applied’ model output 
(original grid resolution 125 x 125 m2, aggregated into the default mapping resolution of 1x1 km2). 
Although the CHIMERE-SHERPA model outputs are not suitable for the routine use in the ETC/ACM 
mapping due to their limited domain, with Iceland and large parts of Scandinavia missing, their 
mutually comparison can show the strength of the QUARK kernel approach, which could be in 
principle applied on other model output as well (e.g. EMEP). Additionally, we compare these model 
outputs and their use in the mapping with the EMEP model output (original resolution 50x50 km). 
This comparison can give us a rough insight on the influence of the model grid resolution. The 
analysis is based on 2010 data, due to the availability of the QUARK kernel based model data for this 
year. For the description of the models used, see Section 3.2.  

In Section 4.2.1, we mutually compare the model outputs. In Section 4.2.2, we compare their use in 
mapping. For simplicity, we further code the models as EMEP, CHIMERE and CHIMERE+QUARK. 

4.2.1 Comparison of modelling data with measurements  

Table 4.4 presents the comparison of different modelling data with station measurements for 2010 
data, separately for the rural background, urban background and urban traffic areas. This simple 
comparison is performed using statistical indicators bias, RMSE and RRMSE, and also R2 and the 
regression equation from the scatter plot between the modelled data and the observed concentrations at 
the measurement stations (Section 2.3). Next to the EMEP (original resolution circa 50x50 km2), 
CHIMERE (original resolution circa 7x7 km2) and CHIMERE+QUARK (original grid resolution 125 
x 125 m2 aggregated into 1x1 km2) model outputs, we present also the original CHIMERE+QUARK 
in the 125x125 m2 resolution. The reason is to show the comparison between the original 
CHIMERE+QUARK data and the aggregated 1x1 km2 form of it. 
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To guarantee the comparability between the different models, a common domain has been considered 
in the scatter plot comparison, namely the smaller model domain of the CHIMERE and 
CHIMERE+QUARK models. This secures that only the data from measurement stations, which are 
covered by all the models are taken into account. 

A direct comparison of different model outputs against measurement data for 2010 shows better 
agreement of both CHIMERE and CHIMERE+QUARK compared to EMEP, for all three area types, 
with the most prominent difference in the urban background areas. The reason is probably related to 
the higher resolution of both CHIMERE and the two CHIMERE+QUARK model outputs compared to 
the EMEP model output. 

Comparing the CHIMERE with both resolutions of CHIMERE+QUARK, one can see somewhat 
better agreement of the CHIMERE+QUARK with the measurements compared to the pure CHIMERE 
in the urban background and urban traffic areas. The CHIMERE+QUARK in 125x125 m resolution 
gives better results compared to CHIMERE+QUARK in 1x1 km for urban traffic areas, but not for the 
background areas, neither rural nor urban background. This is in line with the fact that the QUARK 
kernel method adds a traffic contribution on top of background concentrations (Section 3.2). Next to 
this, it should be noted that the CHIMERE+QUARK shows only slightly better agreement with the 
measurement compared to the pure CHIMERE in terms of bias; both model outputs are 
underestimated. This can be explained by uncertainties in emission inventories (especially road traffic 
emissions) and by the fact that for NO2 which behaves as a local pollutant, concentrations are quite 
difficult to predict with chemistry-transport models’ resolution (even with QUARK-like corrections). 
Since there is no use of data assimilation or data fusion with the measurements in the experiments 
conducted with CHIMERE nor CHIMERE+QUARK and presented in this report, underestimation of 
concentration maps is not corrected.  

4.2.2 Inclusion of ‘CHIMERE with QUARK applied’ model output in mapping  

For all individual map layers, i.e. rural background, urban background, urban traffic, we compared the 
mapping variants using EMEP, CHIMERE and CHIMERE+QUARK model outputs. Be it noted that 

Table 4.4 Comparison of model outputs against measurement values showing 
RMSE, RRMSE, bias, R2 and linear regression from the scatter plots, NO2 
annual mean 2010. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE bias  R2 regr. eq.
(E) model EMEP, cc. 50x50 km 5.4 47.1% -3.3 0.520 y = 0.569x + 1.7
(C) model CHIMERE (as used in SHERPA tool), cc. 7x7 km 4.8 41.8% -0.8 0.542 y = 0.805x + 1.4
(Q) model CHIMERE + QUARK, aggregated into 1x1 km 4.6 40.3% -0.8 0.589 y = 0.867x + 0.7

(Q - o) model CHIMERE + QUARK, original 125x125 m 4.8 41.4% -0.8 0.569 y = 0.853x + 0.9

RMSE RRMSE bias  R2 regr. eq.
(E) model EMEP, cc. 50x50 km 16.3 67.4% -14.5 0.251 y = 0.387x + 0.4
(C) model CHIMERE (as used in SHERPA tool), cc. 7x7 km 10.9 44.9% -4.0 0.466 y = 1.137x - 7.4
(Q) model CHIMERE + QUARK, aggregated into 1x1 km 10.2 41.9% -2.1 0.470 y = 1.127x - 5.2

(Q - o) model CHIMERE + QUARK, original 125x125 m 10.1 41.7% -2.5 0.487 y = 1.148x - 6.1

RMSE RRMSE bias  R2 regr. eq.
(E) model EMEP, cc. 50x50 km 33.1 82.7% -30.4 0.168 y = 0.178x + 2.6
(C) model CHIMERE (as used in SHERPA tool), cc. 7x7 km 22.0 54.9% -15.6 0.231 y = 0.514x + 2.4
(Q) model CHIMERE + QUARK, aggregated into 1x1 km 20.2 50.5% -12.8 0.226 y = 0.509x + 5.2

(Q - o) model CHIMERE + QUARK, original 125x125 m 19.7 49.2% -10.9 0.243 y = 0.584x + 4.6

model output urban traffic areas

rural background areasmodel output

model output urban background areas
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from now on, the CHIMERE+QUARK aggregated into 1x1 km2 is used, as described in Section 3.2. 
The analysis is based on 2010 data as modelling data were readily available. 

As the basic variant, we used the current methodology (Horálek et al., 2017c) supplemented with the 
satellite data in the rural and urban background areas, based on the recommendation of Section 4.1. As 
default model the EMEP is used in this variant. We label this variant as (CE). This variant was 
compared with the same variants, but now using CHIMERE resp. CHIMERE+QUARK model outputs 
instead of the EMEP model output; we label these variants as (CC) and (CQ). 

Next to this, we examined several additional variants, by selection of the supplementary data through a 
stepwise regression and backwards elimination (Section 2.2). The set of the supplementary variables 
has been selected in two by three variants, i.e. containing and not containing the land cover parameters 
among the supplementary data – using either EMEP, CHIMERE or CHIMERE+QUARK model 
outputs. Like in Section 4.1, the reason for the examination of the variants without containing the land 
cover parameters is that CLC2006 data is not available for the entire mapping area (see Section 3.4) 
and to cover these areas might be needed. The variants selected on all supplementary data by the 
backward stepwise procedure are called as ‘alternative’ and labelled as (AE), (AC) and (AQ). The 
variants not containing land cover are labelled as (NE), (NC) and (NQ). 

The set of supplementary parameter data tested on suitability for inclusion in the linear regression 
model included – apart from the variant model output – the similar set of variables like in Section 3.2. 
Note that all are in 1x1 km2 default mapping resolution. The set consists of: 

- EMEP or CHIMERE or CHIMERE+QUARK model output 
- altitude:  - 1x1 km grid altitude 

- floating average of circle radius 5 km around 1x1 km2 grid cell  
- meteorological parameters:  - wind speed  

- temperature  
- surface net solar radiation  
- relative humidity  

- population density  
- road data (as ratio of 1x1 km grid influenced by traffic represented by buffers around roads): 

- for road type class 1 (coded T1_buffer75m) 
- for road type class 2 (coded T2_buffer75m) 
- for road type class 3 (coded T3_buffer50m) 
- for road type classes 1–3 together (coded T123_buffer) 

- land cover type (as ratio of 1x1 km2 grid and of radius 5 km):   
- HDR (coded HDR_1km and HDR_5km_r) 
- LDR (coded LDR_1km and LDR_5km_r) 
- IND (coded IND_1km and IND_5km_r) 
- TRAF (coded TRAF_1km and TRAF_5km_r) 
- UGR (coded UGR_1km and UGR_5km_r) 
- AGR (coded AGR_1km and AGR_5km_r) 
- NAT (coded NAT_1km and NAT_5km_r) 

- satellite data OMI 

In the selecting procedure applied on all supplementary data sources including land cover, exactly the 
same set of variables as in use at the current method were nominated for rural background areas. Thus, 
the alternative variants (AE), (AC) and (AQ) were not further examined for this type of areas, being 
the same as the variants (CE), (CC) and (CQ). A slightly different set of variables is nominated for 
urban background and urban traffic areas. As a result, for the rural background six variants were 
selected for comparison on their performance, while nine variants were for selected for the urban 
background and urban traffic areas. For the overview of all the mutually compared method variants, 
see Table 4.5. 
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Wherever possible, we kept at the selection of the supplementary data the set of variables identical for 
all three models involved at both the ‘alternative’ and ‘no LC data’ variants. However, in some cases 
one or two variables are flagged as statistically not significant and thus are dropped from the linear 
regression model. 

Table 4.6 presents the supplementary variables ultimately nominated and applied, including their 
relevant statistical performance parameters at both the multiple linear regression and the subsequent 
interpolation by ordinary kriging of its residuals. 

Table 4.5 List of mutually compared variants of the mapping method 

Lab. Variant 
Description 

Area type EM. CH. CH.
+Q. 

Alti-
tude 

Meteo  Pop. 
dens. 

Road 
data 

Land 
cover 

Sat. 
OMI 

(CE) Current, 
EMEP 

Rur. backgr.   +   -   -     +    +    +    -    +   + 

Urb. backgr.   +   -   -   +    +    +    +    +   + 

Urban traffic   +   -   -   +    +    -    -    +   - 

(CC) Current, 
CHIMERE 

Rur. backgr.   -     +   -   +    +    +    -    +   + 

Urb. backgr.   -   +   -   +    +    +    +    +   + 

Urban traffic   -   +   -   +    +    -    -    +   - 

(CQ) 
Current,  
CHIMERE 
+QUARK 

Rur. backgr.   -   -   +   +    +    +    -    +   + 

Urb. backgr.   -   -   +   +    +    +    +    +   + 

Urban traffic   -   -   +   +    +    -    -    +   - 

(AE) Alternative,  
EMEP 

Urb. backgr.   +   -   -   +    +    +    +    + (b)   + 

Urban traffic   +     -   -   - (a)    +    - (a)    - (a)    + (b)   + 

(AC) Alternative,  
CHIMERE 

Urb. backgr.   -   +   -   +    +    +    +    + (b)   + 

Urban traffic   -   +     -   - (a)    +    - (a)    - (a)    + (b)   + 

(AQ) Alternative, 
CHIM.+Q. 

Urb. backgr.   -   -   +   +    +    +    +    + (b)   + 

Urban traffic   -   -   +     - (a)    +    - (a)    - (a)    + (b)   + 

(NE) No LC data, 
EMEP 

Rur. backgr.   +   -   -     +    +    +    +    -   + 

Urb. backgr.   +   -   -   - (a)    +    +    +    -   + 

Urban traffic   +   -   -   - (a)    - (a)    +    +    -   + 

(NC) No LC data,  
CHIMERE 

Rur. backgr.   -     +   -   +    +    +    +    -   + 

Urb. backgr.   -   +   -   - (a)    +    +    +    -   + 

Urban traffic   -   +   -   - (a)    - (a)    +    +    -   + 

(NQ) 
No LC data ,   
CHIMERE 
+QUARK 

Rur. backgr.   -   -   +   +    +    +    +    -   + 

Urb. backgr.   -   -   +   - (a)    +    +    +    -   + 

Urban traffic   -   -   +   - (a)    - (a)    +    +    -   + 

(a) Not included by the backward stepwise selecting procedure  (b) Alternative set of land cover data 
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Table 4.6 Parameters of the linear regression models and of the ordinary kriging 
(nugget, sill, range) of NO2 annual average for 2010 in rural background, 
urban background and urban traffic areas for different method variants 

rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr. urb. b. urb. tr. urb. b. urb. tr.
coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 11.53 24.71 31.86 9.23 21.71 30.93 9.53 20.14 31.12 17.10 36.27 22.24 35.41
a1 (EMEP model) 0.466 0.214 0.530 0.227 0.342
a2 (CHIM. model) 0.251 0.276 0.265 0.502 0.157
a3 (CH.+Q. model) 0.261 0.276 0.260
a4 (altitude_1km) -0.0111 -0.0078 -0.0219 -0.0115 -0.0137 -0.0305 -0.0086 -0.0088 -0.0242 -0.0140 -0.0170
a5 (altitude_5km_r) 0.0086 0.0062 0.0185 0.0093 0.0106 0.0234 0.0064 0.0061 0.0166 0.0153 0.0157
a6 (wind speed) -1.591 -3.084 -2.117 -1.240 -1.954 -1.581 -1.284 -1.803 -1.718 -2.960 -2.522 -2.107 -2.065
a7 (s. solar rad.) 0.644 n. sign.
a8 (pop. d. * 1000) 1.854 0.200 1.793 0.109 1.474 0.145
a9 (T1_buffer75m) 13.103 n. sign. 12.01 9.88
a10 (T2_buffer75m) 7.90 7.08
a11 (T123_buffer)
a12 (AGR_1km) -0.0462 -0.0572 -0.0466 -0.0547 -0.0526
a13 (HDR_1km) 0.0658 0.0434
a14 (NAT_1km) -0.0511 -0.0531 -0.0457
a15 (AGR_5km_r) -0.0064 -0.0078
a16 (LDR_5km_r) 0.0136 0.0106 0.0319 0.0067 0.0050 0.0298 0.0075 0.0062 0.0303 0.0110 0.0238 0.0041 0.0206
a17 (HDR_5km_r) 0.0214 0.0363 0.0185 n. sign. 0.0213 0.0305 0.0184
a18 (NAT_5km_r) -0.0036 -0.0026 -0.0028 -0.0098 -0.0070
a19 (satellite OMI) 0.760 1.045 1.261 0.627 1.247 0.752 1.281 0.809 0.766 1.023
adjusted R2 0.74 0.51 0.32 0.73 0.56 0.32 0.73 0.55 0.32 0.53 0.33 0.59 0.33
st. err.  [µg.m-3] 3.18 5.82 12.00 3.24 5.47 11.97 3.23 5.55 11.96 5.67 11.98 5.32 11.93
nugget 9 18 99 9 18 99 8 19 102 16 103 16 103
sill 10 28 154 11 25 151 11 27 150 28 155 25 153
range  [km] 710 150 100 700 150 90 680 150 90 150 90 150 90

urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr.
coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 21.16 33.42 11.12 20.20 23.81 8.15 17.65 23.81 8.66 16.47 23.76
a1 (EMEP model) 0.494 0.277 0.692
a2 (CHIM. model) 0.305 0.278 0.337
a3 (CH.+Q. model) 0.251 0.176 0.318 0.272 0.327
a4 (altitude_1km) -0.0133 -0.0109 -0.0115 -0.0084
a5 (altitude_5km_r) 0.0127 0.0062 0.0079 0.0047
a6 (wind speed) -1.948 -1.856 -1.729 -2.502 -1.202 -1.689 -1.260 -1.435
a7 (s. solar rad.) n. sign.
a8 (pop. d. * 1000) 2.11 0.44 0.25 1.74 0.17 n. sign. 1.61 0.22 n. sign.
a9 (T1_buffer75m) n. sign. 19.47 17.71 n. sign.
a10 (T2_buffer75m) 4.50
a11 (T123_buffer) 12.88 19.10 12.11 17.30 7.88 11.67
a12 (AGR_1km) -0.0460
a13 (HDR_1km) 0.0490
a14 (NAT_1km)
a15 (AGR_5km_r) -0.0069
a16 (LDR_5km_r) 0.0053 0.0211
a17 (HDR_5km_r) 0.0193
a18 (NAT_5km_r) -0.0078
a19 (satellite OMI) 0.868 1.046 0.897 1.294 0.842 1.263 0.835 1.064 1.233 0.989 1.314
adjusted R2 0.57 0.33 0.72 0.45 0.23 0.73 0.54 0.27 0.72 0.53 0.26
st. err.  [µg.m-3] 5.40 11.89 3.31 6.17 12.81 3.25 5.62 12.40 3.29 5.70 12.50
nugget 18 104 10 18 97 8 19 98 9 20 104
sill 26 152 11 32 175 10 27 161 11 29 165
range  [km] 150 90 680 130 90 680 150 90 680 170 90

linear regr. model 
+ OK of its 
residuals

linear regr. model 
+ OK of its 
residuals

(CQ) curr., CH.+Q.(CE) current, EMEP (CC) curr., CHIMERE (AE) alt., EMEP (AC) alt., CHIM.

(NE) no LC, EMEP (NQ) no LC, CHIMERE (NQ) no LC, CH.+Q.(AQ) alt., CH+Q

 
Note: Dark grey indicates variables not considered in the variant of the linear regression model. Light grey 
indicates variables not selected in the variant by the selecting procedure. 
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Comparison by cross-validation  

Table 4.7 presents the mapping results of all variants, with their different sets of supplementary data 
that are mutually compared by means of the ‘leave one out’ cross-validation (Section 2.3), separate for 
the rural background, urban background and urban traffic areas. The table highlights the statistics of 
each combination of variant and type of area and provides the level of best performance by including a 
colour ranking: the darker the green marking, the better performance). 

To guarantee comparability between the different variants and models, a common domain has been 
considered in the scatter plot comparison, namely the smaller modelling domain of the CHIMERE and 
CHIMERE+QUARK models. This secures that only the data from measurement stations, which are 
covered by all the models are taken into account. 

Like in Section 4.1, for all types of areas the variants not containing the land cover parameters show 
poorer results compared to the variants containing land cover, which is in agreement with Horálek et 
al. (2017b) and confirms the relevance of the inclusion of land cover in the mapping methodology. 

Table 4.7 Comparison of different method variants of spatial interpolation showing 
RMSE, RRMSE, bias, R2 and linear regression from the cross-validation 
scatter plots of NO2 annual mean predicted values, 2010. Units: µg.m-3 
except RRMSE and R2. 

RMSE RRMSE bias  R2 regr. eq.
(CE) current, EMEP (EMEP, alt., w. sp, pop. d., LC, sat.) 3.1 26.8% 0.1 0.753 y = 0.773x + 2.7
(CC) current, CHIMERE (CHIM., alt., w. sp., pop. d., LC, sat.) 3.1 26.8% 0.1 0.754 y = 0.774x + 2.6
(CQ) curr., CHIM.+QUARK (CH+Q, alt., w.sp., pop.d., LC, sat.) 3.1 26.6% 0.1 0.758 y = 0.779x + 2.6
(NE) no LC, EMEP (EMEP, alt., w. sp, pop. d., road, sat.) 3.2 27.7% 0.0 0.737 y = 0.761x + 2.8
(NC) no LC, CHIMERE (CHIM., alt., w. sp, pop. d., road, sat.) 3.1 26.7% 0.1 0.755 y = 0.776x + 2.6
(NQ) no LC, CHIM.+QUARK (CH+Q, alt., w.sp., pop.d., sat.) 3.1 27.3% 0.1 0.744 y = 0.769x + 2.7

RMSE RRMSE bias  R2 regr. eq.
(CE) current, EMEP (EMEP, alt., w.sp., pop.d., road, LC, sat.) 5.2 21.4% 0.0 0.605 y = 0.636x + 8.8
(CC) current, CHIM. (CHIM., alt., w.sp., pop.d., road, LC, sat.) 5.0 20.7% 0.0 0.631 y = 0.638x + 8.8
(CQ) curr., CHIM.+QUARK (CH+Q., alt., w.sp., pop.d., LC, sat.) 5.1 20.9% 0.0 0.622 y = 0.631x + 9.0
(AE) altern., EMEP (EM., alt., w.sp., s.s.r., pop.d., road, LC, sat.) 5.1 21.1% 0.1 0.619 y = 0.636x + 8.9
(AC) altern., CHIMERE (CHIM., alt., w.sp., pop.d., road, LC, sat.) 4.9 20.2% 0.0 0.648 y = 0.660x + 8.3
(AQ) altern., CHIM.+Q. (CH+Q., alt., w.sp., pop.d., road, LC, sat.) 5.0 20.6% 0.0 0.636 y = 0.650x + 8.5
(NE) no LC, EMEP (EMEP, w. sp., pop. dens., road, sat.) 5.6 22.9% 0.1 0.550 y = 0.576x + 10.4
(NC) no LC, CHIMERE (CHIM., w. sp., pop. dens., road, sat.) 5.2 21.4% 0.0 0.606 y = 0.611x + 9.5
(NQ) no LC, CHIM.+QUARK (CH+Q, w. sp., pop. d., road, sat.) 5.3 21.7% 0.0 0.594 y = 0.602x + 9.7

RMSE RRMSE bias  R2 regr. eq.
(CE) current, EMEP (EMEP, alt., wind speed, LC) 10.6 26.4% 0.0 0.477 y = 0.499x + 20.0
(CC) current, CHIMERE (CHIM., alt., wind speed, LC) 10.5 26.3% 0.0 0.482 y = 0.503x + 19.9
(CQ) current, CHIMERE+QUARK (CH.+Q., alt., wind speed, LC) 10.6 26.4% 0.0 0.484 y = 0.504x + 19.9
(AE) alternative, EMEP (EMEP, wind speed, LC, sat.) 10.5 26.2% 0.0 0.472 y = 0.501x + 20.0
(AC) alternative, CHIMERE (CHIM., wind speed, LC, sat.) 10.5 26.1% 0.0 0.476 y = 0.513x + 19.5
(AQ) alternative, CHIM.+QUARK (CH.+Q., w. speed, LC, sat.) 10.4 26.1% 0.0 0.475 y = 0.514x + 19.5
(NE) no LC, EMEP (EMEP, pop. dens., road, sat.) 11.2 28.1% 0.1 0.405 y = 0.446x + 22.3
(NC) no LC, CHIMERE (CHIM., road, sat.) 10.8 27.0% 0.0 0.446 y = 0.470x + 21.2
(NQ) no LC, CHIMERE+QUARK (CH.+Q., road, sat.) 11.0 27.5% 0.0 0.427 y = 0.457x + 21.7

spatial interpolation variant + supplementary data used urban traffic areas

rural background areasspatial interpolation variant + supplementary data used

spatial interpolation variant + supplementary data used urban background areas
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By comparing the results of the three models applied in the mapping process, i.e. variants using 
EMEP, CHIMERE and CHIMERE+QUARK, one observes at the rural areas quite similar outcomes 
with a very small improvement when using the CHIMERE+QUARK data in the case of the current 
method, and slight improvement when using the pure CHIMERE model in the case of the method with 
no land cover.  

At the urban background and urban traffic areas, slight improvement of variants using CHIMERE and 
CHIMERE+QUARK models as supplementary data source is observed, compared to variants with the 
use of EMEP model. Surprisingly, the application of the CHIMERE+QUARK does not improve 
mapping results, when compared to the variants with the pure CHIMERE model. Even, in the urban 
background areas, the variants using pure CHIMERE give slightly better results compared to 
CHIMERE+QUARK. The reason probable is that a large part of the spatial variability has already 
been captured by the currently used set of supplementary data. It must be noted here however 
that the aggregation of the QUARK 125x125 m2 model output to 1x1 km largely flattens out the road-
side gradients introduced by the kernel methodology.  

In the urban background and urban traffic areas, the alternative variants (AE), (AC) and (AQ) give 
slightly better results compared to the current variants (CE), (CC) and (CQ). 

Comparison of point measurement values with the predicted grid value  

Next to the above presented cross-validation, a simple comparison was made between the point 
observation values and interpolated predicted 1x1 km grid values, for variants (CE), (CC) and (CQ). 
This point-grid comparison indicates to what extent the predicted value of a grid cell represents the 
corresponding measurement values at stations located in that cell.  

The comparison has been made primarily for the separate rural, separate urban background and 
separate urban traffic map layers at 1x1 km resolution. Besides, the comparison has been done also for 
the merged background layer and the final merged map. Table 4.8 presents the results of this 
comparison. 

One can see that the final combined map in 1x1 km resolution is representative for rural and urban 
background areas, but not for urban traffic areas. 

By comparing the results of the three models applied in the mapping process, i.e. variants (CE), (CC) 
and (CQ), one can see slightly better results for variants using CHIMERE and CHIMERE+QUARK, 
i.e.  (CC) and (CQ), compared to the variant using EMEP, i.e. (CE). The variants (CC) and (CQ) give 
similar results. 
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Conclusion  

From the above, one can conclude that the application of the QUARK kernel method on the model 
used in the mapping does not necessarily lead to an improvement of mapping results at the presently 
used 1x1 km2 resolution. 

Next to this, it can be recommended to consider in the routine mapping the alternate set of the 
supplementary variables in the urban background and urban traffic areas, in dependence to the analysis 
results in the actual year. 

Mapping results 

Map 4.1 presents the combined final map as a result of the merging of the rural background, urban 
background and urban traffic map layers created by means of the current methodology using EMEP 
model, i.e. variant (CE). 

Table 4.8 Statistical indicators from the scatter plots for the predicted grid values 
from separate (rural, urban background or urban traffic) map layers and 
final combined map versus the measurement point values for rural, 
urban background and urban traffic stations for NO2 annual average 
2010 

RMSE RRMSE bias R2 lin. r. equation
grid prediction, 1x1 km rural background map layer 2.9 25.2% 0.1 0.781 y = 0.786x + 2.54
grid prediction, 1x1 km merged background map layer 3.5 30.6% 0.6 0.708 y = 0.826x + 2.57
grid prediction, 1x1 km final merged map 3.6 31.4% 0.7 0.700 y = 0.836x + 2.54
grid prediction, 1x1 km rural background map layer 2.8 24.3% 0.0 0.796 y = 0.794x + 2.42
grid prediction, 1x1 km merged background map layer 3.1 27.0% 0.4 0.757 y = 0.802x + 2.70
grid prediction, 1x1 km final merged map 3.2 27.7% 0.5 0.747 y = 0.811x + 2.66
grid prediction, 1x1 km rural background map layer 2.8 24.0% 0.0 0.802 y = 0.799x + 2.35
grid prediction, 1x1 km merged background map layer 3.1 26.7% 0.5 0.765 y = 0.816x + 2.59
grid prediction, 1x1 km final merged map 3.2 27.5% 0.6 0.755 y = 0.825x + 2.56

RMSE RRMSE bias R2 lin r. equation
grid prediction, 1x1 km urban background map layer 3.9 16.1% 0.0 0.778 y = 0.730x + 6.55
grid prediction, 1x1 km merged background map layer 4.5 18.7% -0.3 0.700 y = 0.724x + 6.37
grid prediction, 1x1 km final merged map 4.9 20.3% 1.0 0.670 y = 0.756x + 6.92
grid prediction, 1x1 km urban background map layer 4.0 16.6% 0.0 0.767 y = 0.713x + 6.99
grid prediction, 1x1 km merged background map layer 4.5 18.5% -0.4 0.707 y = 0.721x + 6.41
grid prediction, 1x1 km final merged map 4.8 19.9% 1.0 0.680 y = 0.759x + 6.84
grid prediction, 1x1 km urban background map layer 4.1 16.8% 0.0 0.761 y = 0.707x + 7.12
grid prediction, 1x1 km merged background map layer 4.5 18.6% -0.3 0.703 y = 0.715x + 6.60
grid prediction, 1x1 km final merged map 4.9 20.2% 1.0 0.674 y = 0.753x + 7.00

RMSE RRMSE bias R2 lin. r. equation
grid prediction, 1x1 km urban traffic map layer 7.8 19.4% 0.0 0.723 y = 0.636x + 14.57 
grid prediction, 1x1 km final merged map 17.0 42.4% -12.3 0.355 y = 0.340x + 14.11 
grid prediction, 1x1 km urban traffic map layer 7.7 19.3% 0.0 0.724 y = 0.647x + 14.16
grid prediction, 1x1 km final merged map 17.0 42.5% -12.5 0.371 y = 0.342x + 13.86
grid prediction, 1x1 km urban traffic map layer 7.9 19.6% 0.0 0.714 y = 0.642x + 14.37
grid prediction, 1x1 km final merged map 16.9 42.1% -12.3 0.375 y = 0.342x + 14.03

rural background stations

urban/suburban background stations

(CE)

(CC)

urban/suburban traffic stations

(CE)

(CC)

(CQ)

(CQ)

(CE)

(CC)

(CQ)
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Map 4.2 gives the same map created by means of the current method, but using CHIMERE (top) and 
CHIMERE+QUARK (bottom) models instead of EMEP, i.e. variants (CC) and (CQ). 

 

Map 4.1 Concentration map of NO2 annual average using EMEP model, 2010 
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Map 4.2 Concentration map of NO2 annual average using CHIMERE (top) and 
CHIMERE+QUARK (bottom) models, 2010 
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Map 4.3 shows an extract of the NO2 concentration maps covering the western Po valley using three 
different models EMEP (left), CHIMERE (middle) and CHIMERE+QUARK (right) in mapping, i.e. 
variants (CE), (CC) and (CQ). In the maps, one can see the elevated NO2 concentrations in large cities 
of Milan and Turin. In the variant using EMEP, the underlying 50x50 km2 grid is clearly visible. 
Similarly, although less notably, the underlying 7x7 km2 grid can be seen in the variant using 
CHIMERE. 
 

 
 
 

Map 4.3 Concentration map of NO2 annual average using EMEP (left), CHIMERE 
(middle) and CHIMERE+QUARK (right) models, 2010, western Po valley 
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5 Conclusion 
The paper examines the potential improvement of the ETC/ACM “regression – interpolation –
merging” mapping of NO2 using satellite data and model output with the QUARK kernel downscaling 
method applied. At first, the inclusion of the OMI satellite data has been tested. Next to this, the 
mapping variant using ‘CHIMERE-SHERPA with QUARK kernel applied’ model output has been 
examined and compared with the mapping variants using ‘CHIMERE-SHERPA’ and ‘EMEP’ model 
outputs.  

Additionally, Annex 2 discusses potential alternative coupling of the QUARK kernel method with the 
ETC/ACM mapping methodology. This method is not directly in line with the current mapping 
methodology, however it would allow for traffic scenario calculations. Next to this, Annex 2 discussed 
a potential refinement of the resolution in the map construction and suggests several approaches for 
such a refinement. 

Satellite data inclusion 

One can conclude that the inclusion of the satellite data provides improvement on the NO2 mapping 
methodology in the rural and urban background areas. Therefore, it is recommended to implement the 
satellite data in the routine methodology for the rural and urban background areas. This 
recommendation applies to OMI based satellite data product OMNO2d level 3, which is being 
produced by NASA at the regular basis, safely in advance of the time when the routine maps are to be 
constructed. The OMNO2d satellite data is available in 0.25°x0.25° (circa 20x20 km) resolution. 
When the TROPOMI satellite NO2 data is routinely produced, it will be a candidate for the use in 
routine mapping, due to its increased resolution of 7x7 km2. 

‘QUARK kernel method’ based model output use in mapping 

The use of the QUARK kernel based downscaling method model output in the ETC/ACM mapping 
have been examined. For doing this, we have compared the use of the ‘CHIMERE-SHERPA’ model 
output (original resolution 7x7 km2) and the ‘CHIMERE-SHERPA with QUARK applied’ model 
output (original grid resolution 125 x 125 m2, aggregated into the default mapping resolution of 1x1 
km2) in the mapping. Although the CHIMERE-SHERPA model outputs are not suitable for the routine 
use in the mapping due to their limited domain with Iceland and large parts of Scandinavia missing, 
their mutually comparison shows the influence of the QUARK kernel method application, which could 
be in principle applied on another model output as well (including the routinely used EMEP). 

Based on the comparison executed, it can be concluded that the application of QUARK method on the 
model used in the mapping does not lead to the improvement of the mapping results, at the presently 
used 1x1 km2 resolution.  

It must be noted however that the aggregation of the QUARK 125x125 m2 model output to 1x1 km2 
largely flattens out the road-side gradients introduced by the kernel methodology. As such this 
operation to some extent defeats the purpose of this high resolution methodology.  

Other potential developments 

Given the fact that the ETC/ACM maps are produced using the EMEP model output and new 10x10 
km EMEP data is available at EU-scale, it could be an interesting option to couple the QUARK kernel 
methodology with the EMEP data. The advantage of the EMEP model output compared to the 
CHIMERE-SHERPA is that it covers the whole mapping domain including northern Scandinavia and 
Iceland.  
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Additionally to potential improvements of the ETC/ACM mapping as examined in this paper, an 
alternative method for coupling of the QUARK kernel method with the ETC/ACM mapping could be 
explored, i.e. applying the QUARK method on the ETC/ACM maps as background concentrations 
instead of the CHIMERE or EMEP model outputs. This alternative method is not directly in line with 
the current method, as it does not directly integrate the traffic (or, in one of its variants, even 
urban/suburban background) measurements. However, it aims at different applications than the current 
mapping, namely at the scenario calculations. For such a case, its advantage is in a coherence in 
mapping between ETC/ACM (and thus EEA) maps and DG – ENV policy tool. 

For some purposes, it can be useful to refine the map resolution. For a potential refinement of the air 
quality maps into a 100x100 m2 resolution, several approaches could be examined, including the 
ETC/ACM “regression – interpolation –merging” mapping using land cover in 100x100 m2 resolution. 

All the comparisons in this paper have been performed based on the concentration based statistics 
(using cross-validation). Next to this, it would be instructive to see the differences between the 
variants in term of population exposure, i.e. to calculate the population exposure based on different 
mapping variants and to compare these results. The same would apply also for all potential maps in 
100x100 m2 resolution. 
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Annex 1  Overview of current and future 
satellite products of NO2  

As of end-2017 there are currently two major satellite instruments of relevance for the typical 
applications of the European spatially interpolated air quality mapping: OMI on the Aura platform and 
the GOME-2A/GOME-2B instruments onboard of the two MetOp platforms. In addition, the 
TROPOMI instrument onboard the Sentinel-5P platform has been launched in October 2017 and its 
data will be available at significantly higher spatial resolution and likely at higher accuracy.  

In satellite remote sensing, various products are generated ranging from raw to highly processed data. 
The processing applied to each product is described using levels, generally ranging from Level-0 to 
Level-4. Whereas Level-0 (raw data) and Level-1 (calibrated raw data) are not too useful for the end 
users, Level-2 products provide the geophysical variable (e.g. tropospheric column of nitrogen 
dioxide), given at the same irregular geometry of the satellite overpass (i.e. spatially irregular 
observations). Level-3 are generally products that provide the same variables as Level-2 but mapped 
on a uniform space-time grid scale (e.g. a regular latitude/longitude grid). Finally, Level-4 products 
combine Level-3 with some additional model output or other data sources to create a value-added 
dataset. 

Only Level-3 products are described here because of their general ease of use. Some more time-critical 
applications or comparisons with chemical transport models might require the use of swath-level 
products (Level-2). 

A1.1 Ozone Monitoring Instrument (OMI)  

The Ozone Monitoring Instrument (OMI) is based on the experiences acquired from both GOME and 
SCIAMACHY [Levelt et al., 2006]. It combines their advantages, measuring the complete spectrum in 
the UV/VIS wavelength range at a comparatively high spatial resolution of 13 km x 24 km, while 
providing daily global coverage. The OMI instrument is flying on the National Aeronautics and Space 
Administration's Earth Observing System Aura platform as part of the A-train constellation of 
satellites. In contrast to the other instruments mentioned here, which have equator crossing times 
around 10:00 local time, OMI has an equator crossing time of approximately 1:45 LST in the 
afternoon, and therefore probes the Earth's atmosphere under different conditions. Aura/OMI was 
launched in 2004 and has been continuously providing data. Beginning in June 2007, OMI has 
suffered from several row anomalies affecting the quality of the Level 1B and Level 2 data products. 
Level-3 products are produced after filtering for the affected anomalies. 

Two operational NO2 products are available for OMI: (1) the one using the Dutch DOMINO algorithm 
(available at temis.nl) and (2) the one produced by NASA. It is recommended using the one provided 
by NASA, and in particular the OMNO2d product, which is easiest to work with. The reason for this is 
that the Dutch OMI product used a combined retrieval and assimilation approach in which some of the 
necessary retrieval information (i.e. the stratospheric part of the slant column) is obtained by 
assimilating the observations into a model and using the model output. While the DOMINO algorithm 
results in reliable NO2 fields and has been validated thoroughly, for some applications it can be 
preferable to use a more “pure” satellite retrieval product that has not been previously assimilated into 
a model. Such a product is provided by NASA with its OMNO2 series of products, specifically the 
gridded Level-3 OMNO2d product. The actual OMNO2 product is Level-2 and provides swath-level 
retrievals of NO2 and includes all pixels from all overpasses. In contrast, OMNO2G and OMNO2d are 
Level-3 products and provide gridded maps of NO2 which only include a selection of the “best” 
retrievals filtered according to various criteria. The OMNO2d product [Bucsela et al., 2006, 2013] is 
produced once per day using all available orbits for that particular day and provides an average value 
of the “best” pixels from the individual orbits.  
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The OMNO2d data product is a Level-3 Gridded Product where pixel level data of good quality are 
binned and "averaged" into 0.25x0.25 degree global grids. This product contains variables estimating 
Total column NO2 and Total Tropospheric Column NO2, for all atmospheric conditions, and for sky 
conditions where cloud fraction is less than 30 percent. Details are available in the documents 
provided on the NASA GES DISC OMI site. 

 
A1.2 GOME-2 onboard of the MetOp platform 

The Global Ozone Monitoring Experiment-2 (GOME-2) is a scanning spectrometer onboard of the 
MetOp series of satellites. As a modified and improved successor of ERS-2's GOME instrument, 
GOME-2 measures in a spectral range of 240 nm to 790 nm with a varying spectral resolution between 
0.24 nm and 0.53 nm [Callies et al., 2000]. The spatial resolution of the instrument is 80 km x 40 km 
at nadir. There are two MetOP platforms, which each carry their own GOME-2 instrument: GOME-
2A is located on MetOp-A and has been providing data since 2007. GOME-2B is located on MetOp-B 
and has been providing data since 2013. 

 

Table A1.1 Description of NO2 satellite data from OMI  

Parameter Description 

Product Name OMNO2d 
Frequency Daily 
Overpass time ca. 13:30 LST 
Processing Level Level-3 

Data Access 

Through the various methods described at 
https://disc.gsfc.nasa.gov/datasets/OMNO2d_V003/summary 
 
A very simple method is to use the OPeNDAP service at:  
https://acdisc.gsfc.nasa.gov/opendap/HDF-
EOS5/Aura_OMI_Level3/OMNO2d.003/contents.html 
 

Data Format HDF5 

Table A1.2 Description of NO2 satellite data from GOME-2 

Parameter Description 

Product Name GOME2.L3.TropNO2.VCD. 
Frequency Daily 
Overpass time ca. 9:30 LST 
Processing Level Level-3 

Data Access 

DLR WDC-RSAT (World Data Center for Remote Sensing of the Atmosphere) 
http://wdc.dlr.de/data_products/SERVICES/GOME2NRT/no2tropo.php  
and   
http://wdc.dlr.de/php/indexer_r.php?dir_index=1&spec=TropNO2&url=/data_pr
oducts/SERVICES/GOME2NRT/archive.php (Registration required) 

Data Format NetCDF 

https://disc.gsfc.nasa.gov/datasets/OMNO2d_V003/summary
https://acdisc.gsfc.nasa.gov/opendap/HDF-EOS5/Aura_OMI_Level3/OMNO2d.003/contents.html
https://acdisc.gsfc.nasa.gov/opendap/HDF-EOS5/Aura_OMI_Level3/OMNO2d.003/contents.html
http://wdc.dlr.de/data_products/SERVICES/GOME2NRT/no2tropo.php
http://wdc.dlr.de/php/indexer_r.php?dir_index=1&spec=TropNO2&url=/data_products/SERVICES/GOME2NRT/archive.php
http://wdc.dlr.de/php/indexer_r.php?dir_index=1&spec=TropNO2&url=/data_products/SERVICES/GOME2NRT/archive.php
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A1.3 TROPOMI onboard of the Sentinel-5P platform 

The TROPOMI instrument [Veefkind et al., 2012] has been launched as the only payload of the 
Sentinel-5 Precursor mission, just 13 October 2017. The first test data for the TROPOMI validation 
team has been available in late 2017, while the operational data delivery is expected to start 
approximately in mid-2018. TROPOMI will provide NO2 maps (and other species) at an 
unprecedented 7 km x 7 km spatial resolution while covering the entire Earth surface every day. As 
such it will be the primary instrument to be used in future. 
 
 
A1.4 Use of NO2 satellite data in Copernicus Atmosphere Monitoring Service 

(CAMS) 

The Copernicus Atmosphere Monitoring Service (CAMS) operates the regional and the global 
atmospheric environmental services. 

CAMS regional and ensemble system 

The regional service provides daily 4-day forecasts of the main air quality species, analyses of the day 
before from seven atmospheric chemistry models and from the median ENSEMBLE calculated from 
the seven models. The regional service also provides a reanalyses, using the latest validated 
observation dataset available for assimilation.  

Seven models are interpolated on 0.1° x 0.1° grid over the European domain (25°W-45°E, 30°N-
70°N). Those models are: CHIMERE (INERIS, France), EMEP (MET Norway), EURAD-IM 
(University of Cologne, Germany), LOTOS-EUROS (KNMI and TNO, Netherlands), MATCH 
(SMHI, Sweden), MOCAGE (METEO-FRANCE, France), SILAM (FMI, Finland). ENSEMBLE is 
currently based upon a median value approach. According to CAMS (2016), three models includes 
NO2 satellite measurements in the data assimilation, namely 

• EMEP – intermittent 3d-var assimilation, NO2 columns from OMI; 
• EURAD-IM – intermittent 3d-var assimilation, NO2 column retrievals from AURA/OMI and  

METOP/GOME-2; 
• SILAM – intermittent 3d-var assimilation, vertically integrated columns from OMI in research 

mode 
 
Global CAMS services 

CAMS produces global services in real-time (NRT system), in a delayed-mode configurations (DM 
system), and as a reanalysis (REA system). CAMS (2018) provides an overview of the satellite data 
use. 

Global real-time analysis and forecast system (NRT system) 

• uses satellite data in its 4-dimensional variational (4D-Var) data assimilation system to 
constrain the initial atmospheric state. NO2 satellite measurements are used from OMI. Next to 
this, NO2 satellite observations from the instrument TROPOMI of the satellite Sentinel-5p are 
being considered to be implemented in the CAMS system in near future. 

Global delayed-mode analysis and forecast system (DM system) 

• no satellite data for NO2, although it uses satellite data for other pollutants in its 4-dimensional 
variational (4D-Var) data assimilation system to constrain the initial atmospheric state. 

https://atmosphere.copernicus.eu/cams-input-data#global_nrt_sat
https://atmosphere.copernicus.eu/cams-input-data#global_dm_sat
https://atmosphere.copernicus.eu/cams-input-data#global_rea_sat
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Global reanalysis (REA system) 

• uses satellite data in its 4-dimensional variational (4D-Var) data assimilation system to 
constrain the atmospheric state every 6 hours. NO2 satellite measurements are used from OMI 
and GOME-2. 
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Annex 2  QUARK kernel method and its potential 
integrating with ETC/ACM NO2 mapping  

In this annex we investigate the feasibility of the inclusion of the “QUARK (Quick Urban AiR quality 
using Kernels)” kernel method in EEA’s ETC/ACM mapping methodology. This kernel method has 
been derived by VITO in the recent DG-ENV project on improved tools for EU-wide NO2 exposure 
assessment (070201/2015/SER/717473/C.3), see Maiheu et al. (2017). The aim of this is to explore 
and assess the feasibility of this coupling and discuss some specific points of attention.  
 
In this note we first start with a brief description of the QUARK method, followed by a discussion on 
different ways of coupling or integrating this methodology with the current ETC/ACM “regression-
interpolation-merging” mapping of NO2, which is primarily based on air quality measurements at 
monitoring stations and in which land use regression is included. 
 
A2.1 QUARK kernel methodology description  

The methodology referenced in the title is based on a “bottom up” approach. Starting from coarse 
resolution background concentration grids (in which all relevant emissions are assumed to be 
represented), the concentration contributions from emissions for the sectors of interest (i.e. SNAP7, 
road traffic) are replaced by a higher resolution dispersion calculation, explicitly accounting for 
individual point or line emission sources. This method is described in detail in the scientific literature 
(Lefebvre et al., 2015, 2013, 2011).  

The objective is to explicitly factor in traffic emissions (SNAP7), being the dominant source sector for 
NO2 concentrations, at the level of line sources. Assuming that traffic emissions can be adequately 
attributed to line sources, air quality assessment usually uses  local scale dispersion model, often based 
on Gaussian or Lagrangian modelling principles, to generate resulting concentration patterns. 
However, a complete hour-by-hour high resolution calculation using such a model is unfeasible at EU-
scale. As we are mainly interested in the annual averaged concentration levels, a pre-existing database 
of dispersion patterns (kernels) for the roads having unit emission strength is generated. These kernels 
reflect the annual averaged dispersion characteristics in terms of specific parameters (wind speed, 
temperature, stability …) at a specific location. Afterwards, the kernels are scaled with the particular 
emissions of the line source and each contribution is added to a map. 

Kernels 

Dispersion kernels are annual averaged dispersion patterns of a single source (point source, line 
source,…) to which a unit emission strength is attributed. The calculation is typically performed by 
running a dispersion model hour-by-hour (e.g. Gaussian model such as IFDM used in Maiheu et al., 
2017) with a meteorological dataset of a full year, generating different dispersion patterns (illustrated 
below, see Figure A2.1) depending on the local meteorology. The emissions are modulated with a 
temporal pattern representing the diurnal cycle of traffic emissions. The resulting concentration field is 
rasterized (on a grid of 25 x 25 m2 in this case). 
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For the line source (roads) dispersion kernels, segments of 100m length at varying angles from the 
North-South axis in steps of 10° (i.e. at 18 different angles) have been chosen. Based on analysis of 
the variability of the wind field (using ECMWF data for the year 2010), 5602 distinct (in terms of 
meteorology) sets of kernels have been produced. In some flat regions (such as Belgium-The 
Netherlands) less distinct kernels have been computed compared to e.g. mountainous regions, where 
the meteorology is much more variable. For each of the 5602 distinct regions, the annual mean NOx 
concentration patterns belonging to the 18 standard sources, using a standard unit emission strength of 
1 kg/km/h, have been calculated and are stored in a kernel database, for further upscaling with the 
actual emission of the line segment. The dispersion simulation for such a standard line source is 
performed for a square area of 4x4 km² with the source centre in the middle. 4x4 km2 is taken as a 
distance at which the road contribution becomes negligible on top of the urban background. It is 
assumed that beyond the distance of 4 km the impact of an individual line segment of 100m can be 
neglected and is fully blended into the regional background. The kernels themselves are calculated at a 
resolution of 25x25 m2, see Figure A2.2. The IFDM (Immission Frequency Distribution Model), 
Gaussian dispersion model has been used to this end (Lefebvre et al., 2013, 2011). 

Figure A2.1 Annual average dispersion kernel for a 100 m line source, of emission 
strength 1 kg/km/hour, at an angle of 5° from the North-South axis in the 
Northern part of Denmark (left), resp. at an angle of 135° from the North-
South axis slightly north of Rome, Italy (right) 
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The reference road database was constructed based on the open transport map dataset 
(http://opentransportmap.info/) where only roads larger or equal to SecondClass roads were taken into 
account. The SNAP 7 sector emissions are distributed along these line sources, so that the sum of the 
line source emissions for every 7x7 km² cell, is equal to the total for the SNAP 7 sector for that cell. 
The coarse resolution emission data was obtained from E. Pisoni (JRC) and is the same data used for 
the CHIMERE 7x7 km2 runs which were performed for training the SHERPA model, developed by 
JRC4. The ‘road capacity*length in grid cell’ was used as a proxy for this reallocation of emissions. 
Note that as a result of the methodology, the proxy is only used to spread emissions within the 7x7 
km2 emission cells, not in between different cells. 

Creation of the European-wide map 
 
The generation of the EU-wide map follows the following steps. First, an EU wide high resolution grid 
at 125 x 125 m2 is constructed. For each 125 x 125 m2 grid cell, two variables are defined and 
initialized to 0. These variables will track the concentrations for NOx (C_NOx) and for NO2 (C_NO2) 
as passive pollutants during the calculations.   
 
The database of line sources as defined above is split into line segments of 100 m and according to its 
location and orientation each segment is connected to the specific kernel in the database. In the next 
step, for every of those road segments, the contribution of the corresponding kernel grid (4x4 km² at a 
                                                 
 
4 https://ec.europa.eu/jrc/en/news/sherpa-computational-model-better-air-quality-urban-areas  

Figure A2.2 Illustration of the 25 x 25 m2 resolution grid at which the kernels are 
effectively calculated, embedded in the 100 x 100 m2 model grid. In grey 
an example road segment is shown. Note that the kernel itself actually 
normally extends to 4x4 km2. 

 

http://opentransportmap.info/
https://ec.europa.eu/jrc/en/news/sherpa-computational-model-better-air-quality-urban-areas
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25x25 m² resolution) towards the European grid is derived. A loop over the relevant 125 m grid cells 
is performed and for each of those grid cells C_NOx and C_NO2 are calculated as follows (for all grid 
cells which receive a contribution of the line source under investigation): 
 
 C_NOx = C_NOx + E*kernel  (A2.1) 
 C_NO2 = C_NO2 + E*R*kernel (A2.2) 
 
Where kernel is an average over the 25m kernel cells that cover the 125x125m² grid cells, E is the 
emission of the line source in kg/km/hour, and R is the NO2 over NOx emission ratio assigned to that 
segment. At the end of this procedure, the 2D-arrays C_NOx and C_NO2 contain the concentrations of 
NOx and NO2 as if both were passive pollutants (no chemistry at the moment) and if no background 
concentrations of NOx and NO2 were present. 
 
When adding this local increment as calculated above to the background concentrations, a double 
counting of emissions should be avoided. Double counting arises from the fact that traffic emissions 
are present both in the regional background as well as in the high resolution contribution. To avoid this 
double counting, we average the local contribution over the background cell and subtract this result 
from the background before adding the local contributions at high resolution. This methodology has 
been demonstrated in Lefebvre et al. (2011). 
 
Up to here, no chemical interaction is taken into account between NOx and NO2. The latter one is the 
result of background contributions or directly emitted NO2. To account for the chemical equilibrium in 
the atmosphere a procedure similar to the one described in Düring et al. (2011) is followed, meaning 
that a chemical equilibrium between NO, O3 and NO2 at annual basis is imposed, with the equilibrium 
coefficient, dependant on meteorology and background O3 concentrations, given by:  
 

𝑟𝑟𝑗𝑗𝑗𝑗 =
[𝑂𝑂3][𝑁𝑁𝑁𝑁]

[𝑁𝑁𝑁𝑁2]  

 
where square brackets denote concentrations in mol/cm³. Both the amount of NOx and total oxidants 
Ox (Clapp and Jenkin, 2001) at the local scale (denoted with subscript l, whereas background 
concentrations are denoted with subscript b) can be derived as: 
 

[𝑁𝑁𝑁𝑁𝑥𝑥]𝑙𝑙 = 𝐶𝐶_𝑁𝑁𝑁𝑁𝑥𝑥_𝑡𝑡 
 

[𝑂𝑂𝑥𝑥]𝑙𝑙 = [𝑂𝑂3]𝑏𝑏 + 𝐶𝐶_𝑁𝑁𝑁𝑁2_𝑡𝑡 
 
Note that in the last equation the background O3 concentrations are used as these are the 
concentrations “before” the reaction. The subscript _t refers to the total (background + local) 
concentrations. The final NO2 concentrations are given by: 
 

[𝑁𝑁𝑁𝑁2]𝑓𝑓 =
(−𝑏𝑏 − √𝐷𝐷)

2
 

where  
−𝑏𝑏 = [𝑂𝑂𝑥𝑥]𝑙𝑙 +  [𝑁𝑁𝑁𝑁𝑥𝑥]𝑙𝑙 + 𝑟𝑟𝑗𝑗𝑗𝑗 

 
√𝐷𝐷 = �(−𝑏𝑏)2 − 4[𝑂𝑂𝑥𝑥]𝑙𝑙[𝑁𝑁𝑁𝑁𝑥𝑥]𝑙𝑙 

. 
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A2.2 Potential integration of the QUARK kernel method in the ETC/ACM 
mapping methodology 

Here we discuss how the QUARK method may be integrated in the ETC/ACM mapping methodology.  

QUARK EU-wide NO2 high resolution map as an additional proxy 

The QUARK EU-wide NO2 high resolution map may be used as an additional proxy in the ETC/ACM 
mapping spatial interpolation scheme, as examined in Chapter 4 for 2010 data of ‘CHIMERE-
SHERPA model with QUARK applied’. Below we discuss some of the advantages and disadvantages 
of this method, see Table A2.1. 

In general, this method poses no additional methodological challenges. The GIS map layer for 2010, 
which is available in EPSG3035 at 125 m resolution, was tested as an additional proxy (see main 
document). Since in the current multiple regression (resp. LUR) a large part of the spatial variability is 
taken away by the current proxy parameters, it is unclear to what extent the addition of the QUARK 
map would explain out of the box more spatial variability of the NO2 field in Europe, in addition to 
what is already captured by the correlation of the measurements to the current LUR. 

A number of improvements however are possible, which we will discuss briefly here.  
• Currently the QUARK model uses CHIMERE background concentrations, from which it 

effectively needs the NOx total, NO2 and O3 annual averages. Given the recent availability of 
EMEP 0.1° results (10 km), it may be an interesting option to explore coupling the QUARK 
downscaling methodology to the EMEP model and test this as a proxy in the ETC/ACM 
mapping methodology. The advantages would be that the EMEP model has data for the 
northern part of Scandinavia and for Iceland as well, contrary to the CHIMERE domain, as 
well as provides the necessary pollutant fields for the QUARK methodology to be used “as 
is”. A coupling to EMEP would however require a re-generation of the traffic emission 
databases on the road segments to match with the coarse resolution emissions used in the 
EMEP 0.1° grid.  

• Regarding the emission redistribution, an area where significant progress can be made would 
be the generation of a traffic emission redistribution at road segment level using 
OpenStreetMap/OpenTransportMap data. The redistribution of traffic emissions within the 
7x7 km grid cells currently uses road capacity as derived from the OpenTransportMap project 

Table A2.1 Advantages and disadvantages of ‘QUARK high resolution map 
integration in the ETC/ACM mapping as an additional proxy’ 

Method Advantages Disadvantages 

QUARK high 
resolution map 
as an additional 
proxy 

• Methodology in line with the current 
mapping methodology for the ETC.  

• Simplicity of integration, maps are 
used only as a proxy in the LUR part 
of the ETC/ACM approach. 
QUARK maps generated offline. 

• Unbiased estimation: the method 
starts from measurements for the 
mapping 
 

• The current LUR model already captures 
quite some of the spatial variability and 
includes information on the roads. Adding 
the QUARK map in the model essentially 
tests for its ability to predict the residuals 
from the current model, which may largely 
be statistical noise.  

• Spatial scale of the QUARK map is blurred 
by other proxies, even though the 
concentration increment is directly related 
to the emission contribution for the relevant 
sector. 

• When the QUARK map is resampled to 
1km resolution, much of the variation in the 
QUARK map is lost. 
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data. Further investigations into this redistribution, taking observations from traffic stations 
into account has the potential of improving the spatial correlation of the mapping.  

• Expansion of the kernels to national / regional level would be an interesting investigation to 
reduce the number of artefacts in the QUARK mapping methodology. A number of artefacts 
are present in the QUARK high resolution maps showing the underlying background 
concentration grid cell boundaries. Figure A2.3 illustrates this, showing the underlying 
CHIMERE 7x7 km2 pattern and rather sharp jumps in concentration between these grid cells. 
The artefacts are the result of the double counting correction methodology and traffic emission 
redistribution inside the 7x7 km2 grid cells. Since there is a difference in dispersion calculation 
between the kernel methodology and the CHIMERE model, the subtraction step at 7x7 km2 in 
the background correction subtracts the averaged local scale traffic contribution, which may 
not completely match with the original CHIMERE 7x7 km2 traffic contribution (due to the 
different dispersion methodology). Therefore, some jumps at the CHIMERE grid cell 
boundaries may be seen. These effects are not very substantial, however they do appear in the 
maps and are clearly visible in a similar way as other artefacts appear in the current 
ETC/ACM regression-interpolation-merging maps (connected to the EMEP coarse resolution 
pattern). 

 

A possible solution for reducing these artefacts could be the generation of dispersion patterns 
which span a whole region/country, taking into account the road network of the whole area as 
well as traffic emission redistribution factors. This would have to be combined with an 
interpolation scheme for the background concentrations. The additional benefit of having such 
region-wide dispersion patterns is that they would directly link to country/region based 
emission totals used in EU-wide integrated scenario assessments as well as greatly reducing 
the computation time required. Artefacts such as the ones visible above would in this case be 
restricted largely to the country/region borders.  

 
 

Figure A2.3 Some artefacts visible in the QUARK model coupled with the CHIMERE 
background concentrations 
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A2.3 Potential alternative coupling of the QUARK kernel method with the 
ETC/ACM mapping methodology 

Next to the approach discussed in Section A2.2, there is a second way of integrating the QUARK 
methodology with the ETC/ACM mapping, which is to use the ETC/ACM maps as background 
concentrations instead of e.g. the CHIMERE or EMEP maps. We mention here this alternative 
approach additionally, going beyond the basic scope of this paper, i.e. improvements of the current 
ETC/ACM method for mapping the NO2 concentrations. Even though this method is not directly in 
line with the current ETC/ACM approach, which is solely based on regression and interpolation of its 
residuals, this method may offer some interesting potential use cases such that, in our opinion, it 
deserves some attention here. Clearly this method is directly relevant for EU policy road traffic 
scenario assessment and the formulation of air quality abatement plans. Furthermore, some of the 
research questions associated with the investigation into this method would directly benefit also 
method discussed in Section A2.2. Table A2.2 summarizes advantages and disadvantages of this 
method. 
 

 
As was mentioned above, the usage of land use regression models as background concentrations for an 
urban dispersion modelling has been well documented and is frequently being applied in concrete 
EIA’s (Lefebvre et al., 2013). Such a method would capture the background concentrations well by 
deriving them from representative in-situ observations, but add the local, inner-city variability directly 
from traffic emission source dispersion modelling. This very local variability would essentially be 
difficult to capture by using the available monitoring data alone as the abundance of traffic monitoring 
sites is limited.  
 
It has to be noted that this type of model chain: a LUR based approach for the regional background in 
combination with a deterministic approach for the local sources is used both in the UK (PCM, see 
DEFRA, 2015) and in Belgium (RIO-IFDM, see Lefebvre et al., 2013) for official assessment maps. 
Major argument for such a hybrid approach is that concentration changes at the local scale are driven 
by local emission and local meteorology. Since in most regions only a handful of traffic stations are 
available to calibrate this contribution, it might be more accurate to rely on a deterministic approach 
than on a statistical one. 
 
Furthermore, with LUR models, there is a real danger of overfitting in case of limited number of 
measurements, representing a certain spatial scale. At EU-level, there is likely an adequate amount of 
background monitoring stations to capture the spatial variation at urban background level, however the 

Table A2.2 Advantages and disadvantages of ‘ETC/ACM maps as background 
concentrations instead of e.g. the CHIMERE or EMEP maps’ 

Method Advantages Disadvantages 

ETC/ACM 
maps as 
background 
concentrations 
instead of e.g. 
the CHIMERE 
or EMEP maps 

• Clearer contribution of the 
downscaled sectors, the rest is in 
background (LUR): spatial pattern 
more directly related to the 
emissions. 

• Dispersion patterns around key 
emission sources (traffic) may be 
more realistic 

• Allow for traffic scenario 
calculations 

• Coherence in mapping between: 
EEA maps and DG – ENV policy 
tool 

• More involved and computationally intense 
(though feasible as demonstrated by DG-
ENV project) 

• Needs to overcome some challenges  
research questions 

• No direct integration of traffic 
measurements 

• No direct integration of urban/suburban 
background measurements, if spatially 
aggregated 10x10 km ETC/ACM maps are 
used 
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amount of individual traffic stations within any given urban environment is maybe too limited to be 
able to calibrate the regression weights for proxies related to local road side increments. It was also 
shown that the inclusion of dispersion-like regression proxies significantly improves the LUR 
prediction modeling, however requiring several observation locations for each city to avoid overfitting 
(TRANSPHORM, 2010). 
 
In addition one has to be careful in comparing the obtained spatial R2 from a leaving one out cross 
validation. Even though in a cross validation the monitoring data is not taken into account in the 
interpolation of the residual, it is the monitoring data which determines what predictor variables 
should be used. This is why there is a natural tendency in LUR models for better spatial correlation 
with the monitoring sites.  
 
Clearly, there are a number of more challenging research questions involved, but also a number of 
interesting remarks to make here:  

• During the DG-ENV service contract, the kernel methodology was established using the 
CHIMERE 7x7 km2 background concentrations to start from. This in essence means that the 
background concentrations are averaged concentrations for the lowest model layer (typically 
~10 m high). The coupling therefore requires some way of taking this vertical distribution of 
the concentrations into account when downscaling to a 2 m concentration map, or at least an 
assessment of the sensitivity of the final map with respect to this (as was done in the NO2 
exposure project). As the ETC/ACM mapping directly starts from surface level concentration 
measurements, the final ETC/ACM assessment maps can be considered as representative for 
the surface level (albeit at coarse resolution) and no correction for the vertical distribution of 
concentrations should be required.   

• On the other hand, an interesting issue emerges regarding the emission double counting. When 
coupling the kernel methodology with CTM output, there is a clear need for an emission 
double counting correction as all the emissions are assumed present in the CTM background 
concentrations (albeit at lower resolution). However, when coupling with a LUR model, it is 
not entirely clear how to treat this double counting. It has to be investigated how well the 
ETC/ACM maps (be it the 1x1 km or the spatially aggregated 10x10 km versions) allow to 
capture the urban background and to what extent a double counting would be required (rather 
than a simple addition of the local traffic increment for NO2). An alternative would be to use 
the ETC/ACM background map layers, i.e. the maps without inclusion of the urban traffic 
layer.  

• The chemical balance between NO2, O3, NO, is clear in chemical transport models. However, 
as the ETC/ACM maps are generated independently from each other, there is no connection 
between the different pollutant maps in terms of chemistry. This is e.g. reflected in the 
absence of lower O3 concentration in urban environments (with high NOx) in VOC limited 
regions. Increased methodological consistency between the O3 and NO2 mapping could be a 
valuable addition.    

 

A2.4 Discussion on the spatial resolution and its influence on the exposure 
assessment 

The fitness for purpose of air quality assessments is an emerging topic which receives more and more 
attention, especially also within the frame of the FAIRMODE initiative. As a general principle, the 
spatial scale of an air quality assessment should be able to capture the spatial variability of the 
physical field it aims to represent. Large scale CTM-based assessments are for example not suited to 
assess concentrations inside street canyons as they cannot represent the spatial variability to that scale. 
Clearly, given the nature of dominant emission sources for NO2, the spatial variability is very high as 
illustrated by the map for Flanders below. We see that an assessment of the total area of exceedance 
strongly depends on the spatial resolution of the assessment (which was approximated by simple 
averaging of the NO2 concentration field). At a scale of 1 km we obtain only about 60 % of the total 
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area in exceedance of the 40 µg/m3 standard compared to what we obtain when taking the full 
resolution result into account.  

Figure A2.4 Illustration of the total area in exceedance of the 40 µg/m3 for a high 
resolution model assessment for Flanders (using the IFDM+OSPM model 
chain, (Lefebvre et al., 2013)) at different spatial scales. The IFDM model 
only contains the road contributions, the IFDM+OSPM chain adds the 
street canyon increment as well. It can be seen that at 1 km resolution, 
the model only captures about 60% of the total area in exceedance which 
would be obtained by a full resolution assessment. 

 

 
 



 
 
 

 
 
52 ETC/ACM Technical Paper 2017/14 

It should be noted that for population exposure purposes, it was shown in the DG-ENV project5, that 
the spatial scale at high resolution ( < 1 km) is not such a dominant source of uncertainty, given the 
current population datasets (for which the scale is also only of the order of 1 km). And hence an 
exposure assessment at 1 km spatial scale would be sufficiently fine. However, given a number of 
caveats regarding the sensitivity analysis in that report and the stronger dependence on spatial 
resolution in the presence of a cut-off, a spatial scale of 100 m was recommended for EU-wide NO2 
exposure assessment.  

It should be clear therefore that a higher spatial resolution than 1 km would be required especially 
around roads and strong point-sources to accurately capture the strong spatial gradients around the 
roads and hence provide for an accurate exceedance estimation. Special attention with respect to the 
street canyon increment in urban environments is required here, also in order to fully capture the 
spatial variability of NO2 concentrations inside cities.  

For reaching such a finer spatial scale, different approaches may be considered. In a context of the 
ETC/ACM mapping, a relevant approach could be the ETC/ACM mapping in 100 m resolution, using 
land cover data in 100 m resolution as a proxy; other proxy could be a downscaled model. In this 
context, the coupling of the QUARK downscaling methodology to the EMEP model as described in 
Section A2.2 could be relevant. An alternative approach could be the coupling of the QUARK method 
with the ETC/ACM mapping methodology as described in Section A2.3. Another potential 
methodology is geostatistical downscaling using techniques such as area-to-point kriging (Kyriakidis 
2004, Park, 2013). The SAMIRA project (http://samira.nilu.no) funded by the European Space 
Agency is currently exploring such methods for downscaling satellite data of air quality (Schneider et 
al., 2017). 

A2.5 Potential research questions list 

In light of the previous discussion, we briefly state here a list of priorities for a potential research plan 
regarding the integration of the QUARK methodology in the ETC/ACM mapping for NO2 and other 
issues discussed in this Annex 2. Clearly, to be in line with the current methodology of mapping, there 
may be a preference towards using the QUARK map as an additional proxy in the LUR. However, 
there are some synergies between both methods introduced in Sections A2.2 and A2.3, in the sense 
that particular research questions would advance the application of the QUARK model for both 
methods. These should be given priority. Concerning the below stated list, it should be mentioned that 
it is related to the issues discussed in this Annex 2 only. 
 

1. First and foremost, the road line-source data base determines to a large extent the spatial 
variability the QUARK model is able to capture with respect to the urban / traffic station 
concentrations. This would directly improve the spatial correlation of the LUR model (method 
discussed in Section A2.2), but would also benefit the application of the model in a scenario 
context (method discussed in Section A2.3). This could be attempted by extending the road 
network database (e.g. northern Scandinavia) and investigating if better proxies are available 
for the traffic intensity than the one that have been used until now. This investigation would 
include some optimization using information from traffic stations.  

 
2. Given the fact that the ETC/ACM maps are produced using the EMEP data and new 10x10 

km EMEP data is available at EU-scale, it could be an interesting option to couple the 
QUARK methodology to the EMEP data, analyzing the redistribution of the traffic emissions 
as well as the occurrence of artefacts. 
 

                                                 
 
5 EC, DG-ENV Service Contract 070201/2015/SER/717473/C.3 

http://samira.nilu.no/
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3. Given the spatial variability of NO2 concentrations, the impact of a higher resolution than 1 
km could be further researched based upon the QUARK maps at 100 m resolution. It was 
shown that the total area in exceedance depends significantly on the spatial resolution (see 
Figure A2.4). It would be instructive to repeat the analysis presented for Flanders at the 
European scale.  
 

4. For the ETC/ACM maps it was shown that the spatially aggregated 10x10 km data shows a 
bias for the urban background stations, whereas the 1x1 km does not. It would be interesting 
to investigate whether the kernel method could effectively resolve this bias when comparing to 
the measurements.  
 

5. Researching a methodology to ensure consistency between the O3 and NO2 as far as the 
chemistry is concerned could be a valuable addition to the mapping regarding a potential use 
of the maps based on the method of Section A2.3 in scenario calculations. 
 

6. For a potential refinement of the air quality maps into a 100x100 m resolution, several 
approaches could be examined, including the ETC/ACM mapping using land cover in 100 m 
resolution.  
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