

Technical paper N° 3/2017

Supporting elements for the

Mediterranean Natura 2000 review seminar

(2nd part: Fact sheets for "Low hanging fruits" habitats)

Luboš Halada, Alexandra Klimantová and Dominique Richard

02.11.2017

Authors' affiliation:

Luboš Halada, Institute of Landscape Ecology (SK) Alexandra Klimantová, Institute of Landscape Ecology (SK) Dominique Richard, Muséum national d'Histoire naturelle (FR)

EEA project manager:

Eleni Tryfon, European Environment Agency (DK)

ETC/BD production support:

Muriel Vincent, Muséum national d'Histoire naturelle (FR)

Context:

The Topic Centre has prepared this Technical paper in collaboration with the European Environment Agency (EEA) under its 2017 work programmes as a contribution to the EEA's work on Natura 2000 review seminars.

Citation:

Please cite this report as

Halada, L., Klimantová, A. and Richard, D., 2017. Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats). ETC/BD report to the EEA.

Disclaimer:

This European Topic Centre on Biological Diversity (ETC/BD) Technical Paper has not been subject to a European Environment Agency (EEA) member country review. The content of this publication does not necessarily reflect the official opinions of the EEA. Neither the ETC/BD nor any person or company acting on behalf of the ETC/BD is responsible for the use that may be made of the information contained in this report.

©ETC/BD 2017 ETC/BD Technical paper N° 3/2017 European Topic Centre on Biological Diversity c/o Muséum national d'Histoire naturelle 57 rue Cuvier 75231 Paris cedex, France Phone: + 33 1 40 79 38 70 E-mail: <u>etc.biodiversity@mnhn.fr</u> Website: <u>http://bd.eionet.europa.eu/</u>

Contents

1	Introduction	. 4
2	Fact sheets for LHF habitat types	5
	1520 Iberian gypsum vegetation (<i>Gypsophiletalia</i>)	5
	2150 Atlantic decalcified fixed dunes (Calluno-Ulicetea)	9
	3150 Natural eutrophic lakes with <i>Magnopotamion</i> and <i>Hydrocharition</i> - type vegetation	.12
	3230 Alpine rivers and their ligneous vegetation with Myricaria germanica	.16
	3240 Alpine rivers and their ligneous vegetation with Salix elaeagnos	.19
	3250 Constantly flowing Mediterranean rivers with Glaucium flavum	.23
	3280 Constantly flowing Mediterranean rivers with <i>Paspalo-Agrostidion</i> specie and hanging curtains of <i>Salix</i> and <i>Populus alba</i>	es .27
	4010 Northern Atlantic wt heaths with Erica tetralix	.31
	4030 European dry heaths	.34
	5140 Cistus palhinhae formations on maritime wet heaths	.38
	5220 Arborescent matorral with <i>Zyziphus</i>	.41
	5320 Low formation of <i>Euphorbia</i> close to cliffs	.45
	5430 Endemic phryganas of the Euphorbio-Verbascion	.49
	6520 Mountain hay meadows	.53
	8240 Limestone pavements	.56
	9180 <i>Tilio-Acerion</i> forests of slopes, screes and ravines	.60
	9430 Subalpine and montane <i>Pinus uncinata</i> forests (* if on gypsum or limestone)	.64
	9510 Southern Apennine Abies alba forests	.68
	9560 Endemic forests with <i>Juniperus</i> spp	.71
	91L0 Illyrian oak-hornbeam forests (<i>Erythronio-Carpinion</i>)	.76
	91M0 Pannonian-Balkanic turkey oak-sessile oak forests	.80
3	Template for reporting on Member States perspectives	83

1 Introduction

The following fact sheets describe 23 habitat types from the Mediterranean biogeographical region selected as "Low Hanging Fruits' habitats according to the methodology described in the document entitled "Supporting elements for the Mediterranean review seminar, 1st part: core document".

The following information is provided for each habitat:

- Summary: A summary of main features described in the following sections
- Habitat description: as reflected in Manual of Habitats interpretation
- Distribution in the Mediterranean region and coverage by Natura 2000 network: as reported by Member States in their 2013 report (covering the period 2007-2012)
- Biogeographical conservation status assessment: as reported by Member States in their 2013 report (covering the period 2007-2012) and available at: http://bd. Eionet.europar.eu/article17/reports2012
- Pressures, threats and proposed measures: as reported by Member States in their 2013 report (covering the period 2007-2012)
- Reason for selection as 'Low Hanging Fruit' habitat in the Mediterranean region: outcome of an analysis of the parameters which could rapidly improve
- Priority conservation measures needed: outcome of an expert judgment analysis
- Links: link to the relevant page on the Art 17 portal: <u>https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/</u>

2 Fact sheets for LHF habitat types

1520 Iberian gypsum vegetation (Gypsophiletalia)

Selected for first round of Biogeographical Seminar

Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain. The habitat is in the Mediterranean biogeographic region widespread in Spain; it occurs also in Cyprus. Almost whole habitat area is located in Spain.

Improvement of habitat structure in Spain is needed. The main measures should include establishment of protected sites and legal protection of habitats. The policy for gypsum-rich areas must implement both the protection of mining-free, natural reserves and suitable restoration strategies for quarries when extraction activities come to an end. Farming, unsuitable reforestation, urban development and new infrastructure are also important negative factors. Indeed, their impact on gypsum surfaces is or can become more dramatic than that of quarrying and therefore they should be addressed by the respective measures like sustainable grassland management, adaptation of forest management spatial development regulation.

Habitat description

Garrigues occupying gypsum-rich soils of the Iberian peninsula, usually very open and floristically characterised by the presence of numerous gypsophilous species. Characteristic syntaxa are *Lepidion subulati, Gypsophilion hispanicae* and *Thymo-Teucrion verticillati*.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain. It occurs also in Cyprus. The rather low representation of the habitat in Natura 2000 sites (ca 33 %) is due to area of this habitat in Natura 2000 sites in Spain.

Natura 2000 sites in the Mediterranean region							
Country	Habitat area /km ² /	Coverage /%/	Number of sites				
Cyprus	0.00133	21	1				
Spain	796	33	148				
Total	796	33	149				

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain. Cyprus reported favourable conservation status. On the level of biogeographical region, two parameters (Range, Area) were assessed as favourable, other two (Structure and Functions; Future prospect) as unfavourable – inadequate. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – inadequate. This change is not genuine, it is due to different methods used (Spain), and better data (Cyprus).

Treated	l data i	from M	/lembe	er State	es re	ports											
MS		Ra	inge (kn	1 ²)			Ar	ea		Struct	& Futur	e Overall asses.					
	Surfac	e % N	IS Tre	end R	ef.	Surface	% MS	Trend	Ref.	func.	prosp	Curr. C	S Qual	ifier Pre	v. CS	Nat.	of ch.
CY	7.5	i0 0	-		7.50	0.01	0	0	0.01	FV	FV	FV			U1		b1
ES	12131	2 10	0 0) ≈12	1312	2390	100	x	≈23 <mark>9</mark> 0	UI	U1	Ul	x		x		c1
EU Biog	eograp	hical a	ssessr	nent an	d pro	posed o	orrecti	ons									
MS/FI127	Surface	Range	Trend	Ref	Surfa	Area	Trend	Ref	Struct.	Future	Curr. CS	Qualifier	Prev. CS	Nat of c	6	Targe	:t 1
110/2027	Juliace	Concl.	iichd	1001.	Julia	Concl.	incita	1001.	func.	prosp.	Concl.	Quanner	Concl.	ival. of c	Co	ntrib.	Туре
EU27	121320	0	0	121320	23	90 0	х	2390	2XA	2XA	MTX	x	XX	no	100	D	-
respectiv structure previous Countrie	ve Mei and conse s; Conc	nber functio rvatio	State State ons; F n stat	compa uture us; Nat ion; Ta	red pros c. of rget	to who p. – fu ch. – n <u>1: - targ</u>	le Biog ture p ature	geogra rospeo of cha f the E	aphical ct; Cur inge; E U 2020	Regio r. CS - U27: a D Biodi	n; Ref. - curre ssessm versity	 refer nt cons ent on Strategy 	ence v servatio the lev y.	alue; Son station of a	truct us; P II EU	x fi rev. Me	unc CS – mber
Conserv	ation s	tatus	FV	Favou	rable	e U1	Unfav	ourabl	e - inac	lequate	e U2	Unfavo	urable -	bad	XX	Unkn	own
Trend	C) = sta	ble; +	= incr	ease	; - = deo	crease	; x = u	nknow	/n							
Qualifie	r =	stabl	e; + p	ositive;	- ne	gative;	x unk	nown									
Nature o	e of a – genuine change; b – change due to better data or improved knowledge; b2 – due to taxonom						iomic										
change	r	review; c1 – due to different methods to measure or evaluate; c2 - due to different thresholds use;															
	С	l - no i	nform	ation a	bout	t nature	e of ch	ange;	e - due	to les	s accura	ate or a	bsent d	lata; nc	- no	char	ıge
Target 1	A	۰ fav	ourab	le asse	ssme	ents; B	- impr	oved a	assess.	; C - d	eteriora	ted ass	sessme	nts; D -	unf	avou	rable
contribu	tion a	and unknown assessments that did not change; E - assessments that became unknown.															

Pressures, threats and proposed measures

Cyprus reported only two pressures: forest and plantation management and use, and paths, tracks, cycling tracks. Spain reported a broad range of pressures; the most important ones are annual crops for food production, perennial non-timber crops, forest planting on open ground (native trees), open cast mining. Other important pressures are modification of cultivation practices, irrigation, restructuring agricultural land holding, urbanised areas, human habitation, and industrial or commercial areas.

Code	Pressure name	CY	ES
A02	Modification of cultivation practices		М
A04.01	Intensive grazing		L
A06.01	Annual crops for food production		Н
A06.02	Perennial non-timber crops		Н
A07	Use of biocides, hormones and chemicals		L
A08	Fertilisation		L
A09	Irrigation		М
A10	Restructuring agricultural land holding		М

Pressure name	CY	ES
Forest planting on open ground (native trees)		Н
Forest and Plantation management & use	Н	
Open cast mining		H
Wind energy production		L
Paths, tracks, cycling tracks	М	
Urbanised areas, human habitation		М
Industrial or commercial areas		М
Motorised vehicles		L
FFC	Forest planting on open ground (native trees) Forest and Plantation management & use Open cast mining Wind energy production Paths, tracks, cycling tracks Urbanised areas, human habitation Industrial or commercial areas Motorised vehicles	Foressure name C1 Forest planting on open ground (native trees) Image: Comparison of the second

Legend:Low intensityMMedium intensityHHigh intensity

According to both countries, establishment of protected areas/sites, and legal protection of habitats and species are the most important measures. Other important measures are maintaining grasslands and other open habitats, specific single species or species group management measures, restoring/improving forest habitats, adapt forest management.

Code	Measure name	CY	ES
2.0	Other agriculture-related measures		Μ
2.1	Maintaining grasslands and other open habitats		Н
3.0	Other forestry-related measures		Μ
3.1	Restoring/improving forest habitats		Μ
3.2	Adapt forest management		Μ
4.0	Other wetland-related measures		L
4.2	Restoring/improving the hydrological regime		L
6.0	Other spatial measures		Μ
6.1	Establish protected areas/sites	H	Н
6.3	Legal protection of habitats and species	Н	Н
7.0	Other species management measures		M
7.4	Specific single species or species group management measures		H

Legend: Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Alpine region, habitat reached the LHF score 3.00. This habitat type was classified as LHF especially because, to reach improvement, the change from unknown to improving trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach a change in conservation status category. The habitat type was included as LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Spain) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Spain is needed. The main measures should include establishment of protected sites and legal protection of the habitat. Mining activities are the most harmful menace for this habitat (Martínez-Hernández et al. 2011). The policy for gypsum-rich areas must implement both the protection of mining-free, natural reserves and suitable restoration strategies for quarries when extraction activities come to an end. The only way to mitigate the

7 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

impact of mining is to plan and monitor exploitations appropriately and subsequently carry out ecological restoration programmes). The restoration strategies should rely on the high colonising potential of some gypsophytes, they clearly tend to recover their former populations in an autogeneous primary succession process, a fact which reveals the extraordinary resilience of this habitat. The widely used technique of covering the quarry squares after the end of exploitation with top soil seems to promote vegetation very different from the aboriginal gypsicolous ones (Mota et al. 2004) and thus should be avoided. Farming, unsuitable reforestation, urban development and new infrastructure are also important negative factors (Martínez-Hernández et al. 2011). Indeed, their impact on gypsum surfaces is or can become more dramatic than that of quarrying and therefore they should be addressed by the respective measures like sustainable grassland management, adaptation of forest management spatial development regulation.

Links

- https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Coastal+ha bitats&subject=1520®ion=MED
- Martínez-Hernández, F., Pérez-García, F.J., Garrido-Becerra, J.A., Mendoza-Fernández, A.J., Medina-Cazorla, J.M., Martínez-Nieto, M.I., Encarnació Merlo Calvente, M.E., Mota Poveda, J.F., 2011: The distribution of Iberian gypsophilous flora as a criterion for conservation policy. - Biodiversity Conservation 20: 1353–1364

Mota J.F., Sola A.J., Jiménez-Sánchez M.L., Pérez-García F.J, Merlo M.E., 2004: Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. - Biodiversity and Conservation 13: 1797–1808.

2150 Atlantic decalcified fixed dunes (Calluno-Ulicetea)

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Portugal. The habitat is in the Mediterranean biogeographic region widespread in Portugal and it occurs also in Spain. Based on distribution map, the main part of the habitat area is located in Portugal (size of the habitat area not specified in the Article 17 report from 2013)

Improvement of habitat structure and increase of habitat area are needed. The main measures should include regulation/management of natural resources exploitation, regulation of urbanisation and tourism expansion, management of water abstraction. Other important measures are adapting forest management, establishment of protected sites, and legal protection of habitats and species, to develop practices of sustainable exploration of the psamophile pine forest, combining the reduction of the fire risks and the preservation of this habitat, control of illegal dumping of rubbish, debris, and control of exotic weeds. The habitat restoration should be incorporated to broader recovery of dunes.

Habitat description

Decalcified dunes of France, Belgium and Britain, colonised by heaths of the alliances *Calluno-Genistion* or *Ulicion minoris*, and of Iberia, colonised by heaths of the alliance *Ericion umbellatae*.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Portugal. It occurs also in Spain. The overall representation of the habitat in Natura 2000 sites cannot be calculated because of missing data from Portugal. Almost the whole national habitat area (98 %) is located in Natura 2000 sites in Spain.

Natura 2000 sites in the Mediterranean region						
Country	Habitat area /km ² /	Coverage /%/	Number of sites			
Portugal	709	N/A	12			
Spain	35	98	4			
Total	744	n/a	16			

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Portugal. This conclusion was reached despite favourable status in Spain. On the level of biogeographical region, two parameters (Range, Area) were assessed as favourable, Structure and Functions as unfavourable – inadequate and Future prospect as unknown. The overall conservation status for the region has not been changed from previous reporting.

Treated	l data	from N	lember S	states re	ports											
MS		Range (km ²)				A	rea		Struct &	Future		o	werall ass	es.		
	Surfa	ce % N	AS Trend	Ref.	Surface	% MS	Trend	Ref.	func.	prosp	Curr. C	S Quali	fier Pre	v. CS	Nat.	of ch.
ES	2203.	22 14.	6 0	≈2203. <mark>2</mark> 2	35.55	100	0	≈35.55	FV	FV	FV		2	IX	с	:1
PT	129	00 85.	.4 0	≈12900) N/A	N/A	0	0 ≈		XX	Ul	-	I	Л	n	10
EU Biog	eograp	hical a	ssessmer	nt and pr	oposed c	orrectio	ons									
MS/FU27	Surface	Range	Trend	Ref Su	face Area	Trend	Ref	Struct.	Future	Curr. CS	Qualifier	Prev. CS	Nat of c	h	Targe	et 1
1415/12/02/	Surface	Concl.	irend	Ker. Su	Conci		iter.	func.	prosp.	Concl.	Quanner	Concl.	ival. of c	Con	trib.	Туре
EU27	15103	1	1	15103	0	0	x	2GD	2GD	MTX	-	U1	nc	I)	
respectiv structure previous Countrie	ve Me e and conse s; Con	mber functio ervatio cl. – co	State co ons; Fut n status; onclusior	mpared ure pro ; Nat. o [.] n; Targeí	to who sp. – fu f ch. – n : 1: - targ	le Biog ture p lature get 1 o	geogra rospeo of cha f the E	aphical ct; Cur inge; E U 2020	Region r.CS – U27:as)Biodiv	i; Ref. curre sessm ersity S	 referent referent<	ence va ervatio the lev /.	alue; Si n statu rel of al	truct a is; Pr II EU	& fu ev. Mer	unc CS – mber
Conserv	ation	status	FV F	avourab	le U1	Unfav	ourabl	e - inad	lequate	U2	Unfavou	ırable -	bad	XX U	nkn	own
Trend	() = sta	ble; + =	increas	e; - = de	crease	; x = u	nknow	'n							
Qualifie	lifier = stable; + positive; - negative; x unknown															
Nature o	of a – genuine change; b – change due to better data or improved knowledge; b2 – due to taxonom						omic									
change	r	review; c1 – due to different methods to measure or evaluate; c2 - due to different thresholds use;														
	(d - no i	nformat	ion abo	ut natur	e of ch	ange; (e - due	to less	accura	ite or ak	osent d	ata; nc	- no c	:han	nge
Target 1		A - fav	ourable	assessm	ients; B	- impr	oved a	assess.;	; C - de	teriora	ted ass	essmer	nts; D -	unfa	vou	rable
contribu	tion a	and unknown assessments that did not change; E - assessments that became unknown.														

Pressures, threats and proposed measures

Spain and Portugal reported some pressures; the most important are invasive non-native species, water abstractions from groundwater, and groundwater abstractions for agriculture. Other important pressures are sand and gravel quarries, roads, paths and railroads, urbanised areas, human habitation.

Code	Pressure name	ES	РТ
A11	Agriculture activities not referred to above		М
B02	Forest and Plantation management & use	L	
B02.03	Removal of forest undergrowth	L	
C01.01.01	Sand and gravel quarries		Μ
D01	Roads, paths and railroads		Μ
E01	Urbanised areas, human habitation		Μ
H05.01	Garbage and solid waste		L
101	Invasive non-native species		Н
J02.01	Landfill, land reclamation and drying out, general		Μ
J02.07	Water abstractions from groundwater	H	
J02.07.01	Groundwater abstractions for agriculture	Н	
K02	Biocenotic evolution, succession	L	
K02.01	Species composition change (succession)	L	

Both countries presented regulating/management exploitation of natural resources on land, as an important measure. The management of water abstraction, and other spatial measures seem to be also very important. Other important measures are adapting forest management, establishment of protected areas/sites, legal protection of habitats and species.

Code	Measure name	ES	РТ
1.2	Measures needed, but not implemented		NA
3.2	Adapt forest management		М
4.3	Managing water abstraction	Н	
6.0	Other spatial measures		Н
6.1	Establish protected areas/sites	М	
6.3	Legal protection of habitats and species	М	
7.1	Regulation/ Management of hunting and taking	L	
7.4	Specific single species or species group management measures	Μ	
8.2	Specific management of traffic and energy transport systems	Μ	
9.1	Regulating/Management exploitation of natural resources on land	Μ	Н

Legend: L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 2150 reached the LHF score 3.22. This habitat type was classified as LHF especially because, to reach improvement, the change from stable to improving trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of quite significant representation of the habitat in Natura 2000 sites and the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Portugal) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure and functions in Portugal is needed. The main measures should include regulation/management of natural resources exploitation, regulation of urbanisation and tourism expansion, management of water abstraction. Other important measures are adapting forest management, establishment of protected sites, and legal protection of habitats and species, to develop practices of sustainable exploration of the psamophile pine forest, combining the reduction of the fire risks and the preservation of this habitat, control of illegal dumping of rubbish, debris, and control of exotic weeds. The habitat restoration should be incorporated to broader recovery of dunes.

Links

- https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Dunes+habi tats&subject=2150®ion=MED
- ICNB: * Dunas fixas descalcificadas atlanticas (Calluno-Ulicetea). Plano Sectorial da Rede Natura 2000, 5 pp. - http://www.icnf.pt/portal/pn/biodiversidade/rn2000/resource/docs/rn-planset/hab/hab-2150

3150 Natural eutrophic lakes with *Magnopotamion* and *Hydrocharition* - type vegetation

	Selected for first round of Biogeographical Seminar
Х	Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of four countries (Greece, Spain, Italy, and Portugal). The habitat is in the Mediterranean biogeographic region widespread in Spain and Italy; it occurs also in Portugal, France, Greece, and Cyprus. Around 47 % of the habitat area is located in Spain.

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is sufficient. Further improvement could be reached by improving habitat structure in Italy and Portugal and increase of the habitat area by habitat restoration in Greece, Spain, and Italy. The main measures should include restoration or improvement of the water quality and hydrological regime, but because of the complexity of these issues, this task is quite demanding. Measures for reduction of water pollution from agriculture (fertilisation, use of biocides) are important; also measures for urban and industrial waste management and water abstraction reduction are relevant. Other proposed measures are establishment of protected sites and legal protection of habitat. Better information about habitat structure and functioning is needed in Spain.

Habitat description

Lakes and ponds with mostly dirty grey to blue-green, more or less turbid waters, particularly rich in dissolved bases (pH usually > 7), with free-floating surface communities of the *Hydrocharition* or, in deep, open waters, with associations of large pondweeds (*Magnopotamion*).

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain and Italy. It occurs also in Portugal, France, Greece, and Cyprus. The overall representation of the habitat in Natura 2000 sites seems to be high, the calculation is influenced by probably overestimated habitat area in Spain. The whole national habitat area is located in Natura 2000 sites in Cyprus, a large part also in Italy (96 %), Spain and France (67 %).

Natura 2000 sites in the Mediterranean region												
Country	Habitat area /km ² /	Coverage /%/	Number of sites									
Cyprus	0.05	100	1									
France	38	67	26									
Greece	0	0	29									
Italy	200	96	153									
Portugal	0	N/A	28									
Spain	328	127	254									
Total	566	104	491									

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of four countries (Greece, Spain, Italy, and Portugal). France reported unfavourable – bad conservation status, Cyprus indicated favourable status. On the level of biogeographical region, three parameters (Range; Area; Future prospect) were assessed as unfavourable – inadequate, the last one (Structure and Functions) as unknown. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – inadequate. This change is not genuine, it is due to different methods used (Spain, France, and Italy), and better data or improved knowledge (Cyprus).

Treated	data f	rom M	embe	r State	s re	ports										
MC		Ran	ige (km	2)			A	rea		Struct &	Future	6	Over	all asses.		
IVIS	Surfac	e %M	S Tre	nd Re	ef.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. CS	Qualifier	Prev. CS	Nat.	of ch.
CY		3 0	0		≈3	0.05	0	0	≈0.05	FV	FV	FV		XX	ł	51
GR	21.1	0 0	0	>2	1.10	21.10	3.9	0	>21.10	FV	U1	Ul	N/A	Ul		
ES	8585	3 45.4	+	>8:	5853	258	47.4	x	>258	XX	Ul	Ul	=	XX		:1
FR	1130	0 6	0	≈11	1300	56.70	10.4	0	≈56.70	U1	U2	U2		U1		21
IT	7120	0 37.6	0	>71	1200	208.63	38.3	0	>208.63	UI	UI	UI	-	FV	0	:1
PT	2090	0 11	0	≈2(0900	N/A	N/A	x	*	U1	FV	U1	-	FV		е
EU Bioge	EU Biogeographical assessment and proposed corrections															
		Range				Area			Struct	Future (urr CS		Pret: CS		Targe	et 1
MS/EU27	Surface	Concl.	Trend	Ref.	Surfa	Concl	Trend	Ref.	func.	prosp.	Concl.	Qualifier	Concl. Na	t. of ch.	ontrib.	Туре
EU27	189277	1	+ 3	>189277	5	44 2GD	x	>544	2GD	2GD	MTX		XX	no	С	121
Legend:	MS – I	Memb	er Sta	ate; Ov	eral	l asses-	Overa	all asse	essmen	t; % MS	– per	centage	of the s	urface a	area i	n the
respectiv	/e Mei	nber S	state	compa	ired	to who	ole Bio	geogra	aphical	Region	; Ref. ·	– refere	nce valu	e; Struc	t&t	unc
structure	e and	runctic	ons; F	uture	pros	sp. – ru	iture p	orospe	Ct; Curr	-127.00	currer		ervation s	status;	Prev.	- CS
Countrio	conse		i Sldi neluci	us; Na	t. OI raot	Cn r	ature	OI CIId	inge; Eu		Sessine Secity C	tratom	ne level		Jiviei	nber
Conson	s, com	$\frac{1}{1} - \frac{1}{10}$			i get			vourab	0 2020			Unfavou	rahlo - ha		Unkn	014/0
Trend		- stał	10·+	- incr			crease		inknow	n	02	omavou			UIIKII	Own
Oualifier		stahle	$r \rightarrow r$		· - n	ogative	·vunk	$\frac{1}{2}$								
Naturo o	f a		uine (change	,-n	- chang	, x uni o duo		or data	orimn	roved	knowled	100 h2 -	due to	tavon	omic
change	r r	eview.	c1 –	due to	, b diff	erent m	e uue hethod	ls to m	easure	or evalu	iate: c	2 - due 1	to differe	nt three	sholds	
		- no ir	nform	ation a	apor	it natur	e of ch	nange:	e - due	to less	accura	te or ab	sent data	: nc - nc	char	ige,
Target 1	A	favo	ourab	le asse	ssm	ents: B	- imp	roved a	assess.:	C - det	eriora	ted asse	ssments	. D - un	favou	rable
contribu	tion a	nd unl	know	n asses	sme	ents tha	t did n	ot cha	nge: F -	assess	nents	that bec	ame unk	nown		
									3-7-							

Pressures, threats and proposed measures

The Member Countries reported a broad range of pressures; the most important is pollution to surface waters, invasive non-native species, fertilisation, and modification of hydrographic functioning. Other important pressures are drying out, human induced changes in hydraulic conditions, soil pollution and solid waste, use of biocides, hormones and chemicals.

Code	Pressure name	CY	ES	FR	IT	PT
A01	Cultivation		Μ			
A02	Modification of cultivation practices		Μ			
A04	Grazing		L			
A05	Livestock farming and animal breeding (without grazing)		L			
A07	Use of biocides, hormones and chemicals			Μ	Μ	
A08	Fertilisation		Μ	H	Μ	
A09	Irrigation		Μ			
A10	Restructuring agricultural land holding		Μ			
D01	Roads, paths and railroads		Μ			
D03	Shipping lanes, ports, marine constructions			L		
E03	Discharges				Μ	
F01	Marine and Freshwater Aquaculture			L		
F02.03	Leisure fishing		Μ			
G05.01	Trampling, overuse		Μ			
H01	Pollution to surface waters (limnic & terrestrial, marine & brackish)	Μ	Н	н	Μ	
H01.01	Pollution to surface waters by industrial plants					L
	Diffuse pollution to surface waters due to agricultural and forestry					N/
101.05	activities					
	Diffuse pollution to surface waters due to household sewage and waste					
1101.08	waters					- L
H02	Pollution to groundwater (point sources and diffuse sources)		Μ			
H05	Soil pollution and solid waste (excluding discharges)				н	
H07	Other forms of pollution		Μ			
101	Invasive non-native species		Μ	н		Н
J02	Human induced changes in hydraulic conditions	L		н		
J02.01.03	Infilling of ditches, dykes, ponds, pools, marshes or pits				Μ	
J02.03.02	Canalisation				Μ	
J02.04	Flooding modifications	L				
J02.05	Modification of hydrographic functioning, general	L	н			L
J02.05.02	Modifying structures of inland water courses				Μ	
J02.07	Water abstractions from groundwater				Μ	
J02.15	Other human induced changes in hydraulic conditions				Μ	
K01	Abiotic (slow) natural processes			L		
K01.01	Erosion		Μ			
K01.02	Silting up		Μ			
K01.03	Drying out		н			
K02	Biocenotic evolution, succession		Μ	L		
K03	Interspecific faunal relations			L		
K04	Interspecific floral relations			Μ		
K05	Reduced fecundity/ genetic depression		М			

Legend: Low intensity M Medium intensity H High intensity

The establishment of protected areas/sites and legal protection of habitats and species are the most important proposed measures. Other important measures are restoring/improving water quality, restoring/improving the hydrological regime.

Code	Measure name	CY	ES	FR	IT	PT
1.2	Measures needed, but not implemented					NA
1.3	No measure known/ impossible to carry out specific measures			Μ		
2.0	Other agriculture-related measures		L			
2.2	Adapting crop production			Μ		
4.0	Other wetland-related measures		L			
4.1	Restoring/improving water quality		L	Μ	н	
4.2	Restoring/improving the hydrological regime		L	Μ	Н	
4.3	Managing water abstraction		L			
4.4	Restoring coastal areas		L			
6.1	Establish protected areas/sites	Н	Н		Н	
6.3	Legal protection of habitats and species	Н	Н		Н	
6.4	Manage landscape features		L			
8.1	Urban and industrial waste management	Μ	L			

Legend:

Low importance M Medium importance

High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 3150 reached the LHF score 8.58. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of significant representation of the habitat in Natura 2000 sites and the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is sufficient. Further improvement could be reached by improving habitat structure in Italy and Portugal and increase of the habitat area by habitat restoration in Greece, Spain, and Italy. The main measures should include restoration or improvement of the water quality and hydrological regime, but because of the complexity of these issues, this task is quite demanding. Measures for reduction of water pollution from agriculture (fertilisation, use of biocides) are important; also measures for urban and industrial waste management and water abstraction reduction are relevant. Other proposed measures are establishment of protected sites and legal protection of habitat. Better information about habitat structure and functioning is needed in Spain.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Freshwater +habitats&subject=3150®ion=MED

3230 Alpine rivers and their ligneous vegetation with Myricaria germanica

Х	

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of both Spain and France. The habitat occurs in the Mediterranean biogeographic region in France and Spain. Around 78% of the habitat area is located in France.

Improvement of the habitat structure and functioning in both France and Spain is needed. The main measures should be focused on maintenance of natural dynamics and natural hydrological regime and its restoration where changed as well as on control of gravel extraction. The relevant measures are exclusion of channel regulation, removal of eventual dykes, embankments, weirs and other structures modifying water regime, strict control of water abstraction. The regulation of natural resources exploitation is necessary, especially control or elimination of gravel extractions - including upstream parts. The habitat restoration is needed in Spain that reported smaller habitat area than the reference value. Better information about habitat range is needed in Spain.

Habitat description

Communities of low shrubby pioneers invading the herbaceous formations of 24.221 (Boreo-alpine stream gravel communities) and 24.222 (Montane river gravel communities) on gravel deposits rich in fine silt, of mountain and northern boreal streams with an alpine, summer-high, flow regime. *Myricaria germanica* and *Salix* spp. are characteristic (*Salici-Myricarietum*).

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in France and Spain. The overall representation of the habitat in Natura 2000 sites is high (ca 92 %) due to area of this habitat in Natura 2000 sites in Spain, where the whole and France with large part (92 %) of the national habitat area located in Natura 2000 sites.

Natura	Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km ² /	Coverage /%/	Number of sites									
France	7	92	7									
Spain	2.13	100	9									
Total	9	92	16									

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of both Spain and France. All parameters (Range; Area; Structure and Functions; Future prospect) were assessed as unfavourable – inadequate on the level of biogeographical region. The overall conservation status for the region has been changed against previous reporting from unfavourable – bad to unfavourable – inadequate. This change is not genuine, it is due to better data (France) and different methods used (Spain).

Treated	l data f	rom N	lember	States	repo	orts											
Mg		Rai	nge (km²)				Aı	ea		Struct	& Futur	e	(Overall a	sses.		
1415	Surfac	e % N	IS Trend	Ref.	Su	urface	%MS	Trend	Ref.	func.	prosp	Curr. C	S Qual	Qualifier Pro		Nat	. of ch.
ES	40	0 3.4	4 x	>4(00	2.13	21.9		>2.13	U1	Ul	U1	X	· [XX		c1
FR	1120	0 96 .	6 0	≈1120	0	7.60	78.1	0	≈7.60	U1	UI	Ul	-		U2	2 b1	
EU Biog	eograp	hical a	ssessme	ent and	prop	osed	correct	tions									
MS/FI127	Surface	Range	Trend	Paf S	urface	Area	Trend	Ref	Struct.	Future	Curr. CS	Qualifier	Prev. CS	Nat of	ch	Targe	et 1
1110/12/27	Juliace	Concl.	iichu .		andee	Concl	includ	iter.	func.	prosp.	Concl.	Quanner	Concl.	Ivat. 01	Ca	ontrib.	Туре
EU27	11600	1	x >]	1600	9.733	1	1.00	>9.733	0	0	MTX	141	U2	no		С	12
respectiv structure previous Countrie	e Mer and f conse s; Conc	nber : unction rvation :1. – co	State co ons; Fut n status onclusio	omparo cure pi s; Nat. n; Targ	ed to rosp. of cl get 1:	wnc – fu ח. – ו - tar	ole Bic iture p nature get 1 c	ogeogra prospe of cha of the E	apnica ct; Cur ange; E EU 202	r. CS U27: a 0 Biodi	on; Ref. – curre assessm iversity	– referent ent const nent on Strateg	rence v servatio the lev y.	value; on sta vel of	Struc tus; F all EL	rev. J Me	unc CS – mber
Conserv	ation s	tatus	FV	Favour	able	U1	Unfa	vourab	le - inad	dequat	e U2	Unfavo	urable ·	- bad	XX	Unkr	וסאח
Trend	0	= sta	ble; + =	increa	ase; -	= de	ecrease	e; x = ι	Inknov	vn							
Qualifie	r =	stabl	e; + pos	itive; -	neg	ative	; x unł	known									
Nature o	of a	– gen	iuine ch	ange;	b – c	hang	e due	to bet	ter dat	a or in	nproved	l knowl	edge; b	2 – du	ie to f	taxor	nomic
change	r	eview;	; c1 – dı	ue to d	iffere	ent m	nethoo	ls to m	easure	e or eva	aluate;	c2 - due	e to diff	ferent	thres	hold	s use;
	d	- no i	nformat	tion ab	out r	natur	e of cł	nange;	e - due	e to les	s accur	ate or a	bsent c	lata; n	c - nc	o cha	nge
Target 1	A	- favo	ourable	assess	smen	its; B	- imp	roved	assess.	; C - d	eterior	ated as	sessme	nts; D	- uni	favou	irable
contribu	tion a	nd un	known	assessi	ment	s tha	t did n	iot cha	nge; E	- asses	ssments	s that be	ecame	unkno	wn.		

Pressures, threats and proposed measures

Spain and France reported some pressures; both countries reported as important pollution to surface waters and invasive non-native species, but also mining and quarrying, sand and gravel extraction, human induced changes in hydraulic conditions, canalisation and water deviation, modification of hydrographic functioning. Other important pressures are fertilisation, roads, paths and railroads, flooding modifications.

Code	Pressure name	ES	FR
A04	Grazing		L
A08	Fertilisation		М
C01	Mining and quarrying		Н
C01.01	Sand and gravel extraction	H	
D01	Roads, paths and railroads	М	
D05	Improved access to site	L	
E01	Urbanised areas, human habitation		М
H01	Pollution to surface waters (limnic & terrestrial, marine & brackish)	L	М
101	Invasive non-native species	М	М
J02	Human induced changes in hydraulic conditions		Н
J02.03	Canalisation & water deviation	H	
J02.04	Flooding modifications	М	
J02.05	Modification of hydrographic functioning, general	H	
J02.11	Siltation rate changes, dumping, depositing of dredged deposits	L	
M01	Changes in abiotic conditions		L

Legend: Low intensity M Medium intensity H High intensity

Countries did not report specific measures to be implemented.

Code	Measure name	ES	FR
1.2	Measures needed, but not implemented	NA	
1.3	No measure known/ impossible to carry out specific measures		Μ

Legend: Low importance M Medium importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

H High importance

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 3230 reached the LHF score 4.26. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of significant representation of the habitat in Natura 2000 sites and the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (France) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure and functioning in both France and Spain is needed. The main measures should be focused on maintenance of natural dynamics and natural hydrological regime and its restoration where changed as well as on control of gravel extraction. The relevant measures are exclusion of channel regulation, removal of eventual dykes, embankments, weirs and other structures modifying water regime, strict control of water abstraction. The regulation of natural resources exploitation is necessary, especially control or elimination of gravel extractions - including upstream parts. The habitat restoration is needed in Spain that reported smaller habitat area than the reference value. Better information about habitat range is needed in Spain.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Freshwater +habitats&subject=3230®ion=MED

3240 Alpine rivers and their ligneous vegetation with Salix elaeagnos

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain and France. Habitat is in the Mediterranean biogeographic region widespread in Spain and France; it occurs also in Italy and Greece. Around 58% of the habitat area is located in France.

Improvement of habitat structure and functioning in Spain is needed. The main measures should include restoration or improvement of the hydrological regime and water quality, managing water abstraction, restoring coastal areas and legal protection of habitat Better information about habitat structure and functioning is needed in Spain and Italy.

Habitat description

Thickets or woods of, among others, *Salix* spp., *Hippophae rhamnoides*, *Alnus* spp., *Betula* spp., on stream gravels of mountain and northern boreal streams with an alpine, summer-high, flow regime. Formations of *Salix elaeagnos*, *Salix purpurea* ssp. *gracilis*, *Salix daphnoides*, *Salix nigricans* and *Hippophae rhamnoides* of higher gravel shoals in Alpine and peri-Alpine valleys.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain and France. It occurs also in Italy and Greece. The overall representation of the habitat in Natura 2000 sites is not very high (ca 45 %). It is mainly due to area of this habitat in Natura 2000 sites in France (27-36 %) and Greece. Larger national habitat area located in Natura 2000 sites is in Italy (70 %) and Spain (63).

Natura 2000 sites in the Mediterranean region												
Country	Habitat area /km ² /	Coverage /%/	Number of sites									
France	12-16	27-36	35									
Greece	0	0	3									
Italy	1.57	70	18									
Spain	19	63	74									
Total	33-37	45	130									

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain and France. Greece reported favourable and Italy unknown conservation status. Insufficient information on habitat structure and functioning is in Spain and Italy, both countries reported this parameter as unknown. On the level of biogeographical region, two parameters (Range; Area) were assessed as favourable, Future prospect as unfavourable – inadequate, Structure and Functions as unknown. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – inadequate. This change is not genuine, it is due to different methods (Spain), and better data used (France).

Treated	l data f	rom Me	ember	States r	eports										
MS		Rang	e (km²)			Are	ea		Struct &	& Future		0	verall asse:	3.	
1/10	Surface	e % MS	5 Trend	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Quali	fier Prev.	CS I	Nat. of ch.
GR	0.4	0	0	0.47	0.47	0.6	0	0.47	FV	XX	FV		FV		
ES	4178	56.8	+	≈41781	30	38.6	0	≈30	XX	U1	U1	=	XX	۲)	c1
FR	24400	33.2	0	≈24400	45	57.9	0	≈45	FV	UI	U1	=	FV	I)	b1
IT	7400	10.1	0	≈7 <mark>4</mark> 00	2.23	2.9	0	≈2.23	XX	XX	XX		F٦		d
EU Biogeographical assessment and proposed corrections															
1.00.001.000		Range .			Area			Struct.	Future	Curr. CS	0.110	Prev. CS		1	farget 1
MS/EU27	Surface	Concl.	Irend R	ei. Suri	Concl	irend	Ker.	func.	prosp.	Concl.	Qualifier	Concl.	Nat. of ch.	Conti	rib. Type
EU27	73581	0	+ 73	3581	78 0	0	78	2XA	2XA	MTX	=	XX	no	D	=
Legend: respectiv structure previous	MS – N ve Men e and f conser	1embe nber St unctior vation	r State ate con ns; Futu status;	; Overa mpared ure pro Nat. o	ll asses- to who sp. – fu f ch. – r	Overa ole Bio iture p nature	all asso geogr prospe of cha	essmei aphica ect; Cu ange; I	nt; % N Il Regic rr. CS EU27: a	/IS – pe on; Ref. – curre assessm	rcentag – refer ent cons nent on	e of th ence v ervatic the lev	e surfac alue; Str on status vel of all	e are uct & s; Pro EU I	ea in the & func ev. CS – Member
Countrie	s; Conc	. – cor	clusion	; Targe	t 1: - tar	get 1 o	of the l	EU 202	0 Biodi	iversity	Strategy	y.			
Conserva	ation st	atus	FV F	avourab	le U1	Unfav	vourab	le - ina	dequate	e U2	Unfavo	urable -	bad X	X U	nknown
Oualifie	r =	= stable	e; + =	tive: - n	e; - = ue egative	· x unk	x = 0		NII						
Nature o	of a	– genu	ine cha	inge; b	- chang	e due t	to bet	ter dat	a or im	proved	knowle	edge; b	2 – due 1	to ta	xonomic
change	re	view; (:1 – du	e to dif	ferent m	nethod	s to m	neasure	e or eva	aluate;	c2 - due	e to diff	erent th	resho	olds use;
	d	- no in	formati	on abo	ut natur	e of ch	ange;	e - du	e to les	s accur	ate or a	bsent d	lata; nc -	no c	hange
Target 1	A tion a	- favo nd unki	urable a	assessm	ents; B	impi - n bib t	roved	assess	.; C - d	eterior	ated ass that be	sessme	nts; D - I	unfav v	vourable
551101100				5565511		c ulu li	01010		45565	Sincita		.cume (

Pressures, threats and proposed measures

The member countries reported some pressures; the most important are invasive non-native species, irrigation, sand and gravel extraction, renewable abiotic energy use, human induced changes in hydraulic conditions, canalisation and water deviation. Other important pressures are pollution to surface waters, roads, paths and railroads, urbanised areas, human habitation, cultivation, fertilisation, use of biocides, hormones and chemicals.

Code	Pressure name	ES	FR	IT
A01	Cultivation	М		
A07	Use of biocides, hormones and chemicals	М		
A08	Fertilisation	М		
A09	Irrigation	Н		
A10	Restructuring agricultural land holding	М		
B01	Forest planting on open ground	М		
C01	Mining and quarrying		М	
C01.01	Sand and gravel extraction	H		
C03	Renewable abiotic energy use		Н	
D01	Roads, paths and railroads	М	М	
D01.04	Railway lines, TGV			М
D02	Utility and service lines		М	
D05	Improved access to site	М		
E01	Urbanised areas, human habitation	М	L	
E02	Industrial or commercial areas		L	
F02.03	Leisure fishing	М		
G01	Outdoor sports and leisure activities, recreational activities		М	
G01.02	Walking, horse riding and non-motorised vehicles			L
G02	Sport and leisure structures	М		
G02.08	Camping and caravans	М		
H01	Pollution to surface waters (limnic & terrestrial, marine & brackish)	М	М	
101	Invasive non-native species	L	Н	
J02	Human induced changes in hydraulic conditions		Н	
J02.03	Canalisation & water deviation	H		
J02.04	Flooding modifications	М		
J02.05	Modification of hydrographic functioning, general	М		
J02.11	Siltation rate changes, dumping, depositing of dredged deposits	М		
K01.01	Erosion	M		
K02	Biocenotic evolution, succession		Μ	
M01	Changes in abiotic conditions		Μ	

Legend: Low intensity M Medium intensity H High intensity

All three countries consider other wetland-related measures as important. According to Italy, legal protection of habitats and species is the most important proposed measures. Other important measures are managing water abstraction, restoring coastal areas, restoring/improving the hydrological regime and water quality, and other spatial measures.

Code	Measure name	ES	FR	IT
4.0	Other wetland-related measures	L	М	М
4.1	Restoring/improving water quality	L		
4.2	Restoring/improving the hydrological regime	L		
4.3	Managing water abstraction	L		
4.4	Restoring coastal areas	L		
6.0	Other spatial measures			Μ

21 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Code	Measure name	ES	FR	IT
6.3	Legal protection of habitats and species			Н
7.2	Regulation/ Management of fishery in limnic systems	L		
7.4	Specific single species or species group management measures	L		
8.1	Urban and industrial waste management	L		

Legend: L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 3240 reached the LHF score 4.45. This habitat type was classified as LHF especially because, to reach improvement, the change from stable to improving trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Spain) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure and functioning in Spain is needed. The main measures should include restoration or improvement of the hydrological regime and water quality, managing water abstraction, restoring coastal areas. Because of the complexity of these issues, this task is quite demanding – it includes measures like control of water abstraction or irrigation, elimination of water deviation, removal of the flow regulating structures, control of grazing, fertilisation and chemicals use in agriculture. The removal of invasive species, removal and prevention of waste disposal, regulation of sport and recreational activities are other supporting measures. The legal protection of habitat is in this respect helpful, facilitating and supporting all mentioned measures. Better information about habitat structure and functioning is needed in Spain and Italy.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Freshwater +habitats&subject=3240®ion=MED

3250 Constantly flowing Mediterranean rivers with Glaucium flavum

Х	

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain, France, and Italy. The habitat is in the Mediterranean biogeographic region widespread in Spain and Italy; it occurs also in Portugal, France, and Greece. In Italy is located around 44 % of the habitat area and in Spain around 43%.

Improvement of the habitat structure in Italy is needed. Further improvement could be reached by improving structure and functioning in Portugal, Spain, and France. The main measures should include establishment of protected sites, legal protection of habitat, restoration or improvement of the hydrological regime, regulating exploitation of natural resources. The habitat restoration is needed in all countries that reported smaller habitat area than the reference value: Spain and France. Better information about habitat range and area is needed in Portugal.

Habitat description

Communities colonising gravel deposits of rivers with a Mediterranean, summer-low regime, with formations of the *Glaucion flavi*. The habitat is typical by the alternation of flooding and marked summer dryness.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain and Italy. It occurs also in Portugal, France, and Greece. The overall representation of the habitat in Natura 2000 sites is ca 64 %. Whole national habitat area is located in Natura 2000 sites in France, large part also in Spain (68 %).

Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km ² /	Coverage /%/	Number of sites								
France	59	100	27								
Greece	0	0	1								
Italy	93	47	51								
Portugal	5.6	N/A	3								
Spain	130	68	141								
Total	287	64	223								

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain, France, and Italy. Portugal reported unfavourable – bad and Greece favourable conservation status. The knowledge on habitat range and area is not sufficient in Portugal. On the level of biogeographical region, the parameter Range was assessed as favourable while other three parameters (Area; Structure and Functions; Future prospect) as unfavourable – inadequate. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – inadequate. This change is not genuine, it is due to different methods used (Spain and Italy).

Treated	data	from N	lembe	er S	tates r	eports									
MS		Rai	ige (km	2)			Area				Future		Ove	rall asses.	
1913	Surfa	e % N	IS Tre	end	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. CS	Qualifie	r Prev. C	S Nat. of ch.
GR	0.0	9 0	()	0.09	0.09	0	0	0.09	FV	XX	FV		FV	
ES	9693	3 50.	6 -	e s	≈96933	190	42.6	0	>190	U1	U1	U1	= 1	XX	c1
FR	145(0 7.6	5 ()	≈14500	58.60	13.1	0	>58.60	U1	Ul	U1	=	U1	nc
IT	8010	0 41.	8 ()	≈80100	197.55	44.3	0	≈197.55	U1	Ŭ1	U1		FV	c1
PT	1(0 0.1)	x	N/A	N/A	0	x	U2	XX	U2	=	U2	nc
EU Biogeographical assessment and proposed corrections															
MS ELD7	Surface	Range	Trand	Pat	e cure	Area	Trand	Pof	Struct.	Future C	Curr. CS	Ouglifier	rev. CS	at of ch	Target 1
1015(E02)	Sullace	Concl.	ITend	Rei	1. 30112	Concl.		Kel.	func.	prosp.	Concl.	Quanner	Concl.	C	Contrib. Type
EU27	191633	1	+	1915	33 4	46 1	0	>446	2XA	2XA	MTX	-	XX	no	C -
Legend:	MS –	Memb	er Sta	ate;	Overa	ll asses	- Over	all ass	essmen	t; % MS	5 – per	centage	of the	surface	area in the
respectiv	e Me	mber S	State	con	npared	l to wh	ole Bio	ogeogr	aphical	Region	; Ref.	– refere	nce valu	ue; Stru	ct & func
structure	and	functio	ons; F	utu	ire pro	sp. – fi	uture	prospe	ect; Cur	r. CS –	currer	nt conse	rvation	status;	Prev. CS –
previous	conse	rvatio	n stat	us;	Nat. o	f ch. –	nature	of ch	ange; E	U27: as	sessm	ent on t	he level	of all E	U Member
Countries	s; Con	cl. – cc	onclus	ion;	Targe	t 1: - tar	get 1 d	of the	EU 2020) Biodiv	ersity S	Strategy.			
Conserva	ation s	tatus	FV	Fa	avourab	le U1	Unfa	vourat	ole - inad	lequate	U2	Unfavou	rable - ba	ad XX	Unknown
Trend	() = sta	ble; +	= i	ncreas	e; - = de	ecreas	e; x = I	unknow	'n					
Qualifier	- =	stabl	e; + p	osit	ive; - n	egative	e; x unl	known							
Nature o	fa	– gen	nuine	chai	nge; b	– chang	ge due	to bet	ter data	a or imp	roved	knowled	lge; b2 -	- due to	taxonomic
change	r	eview	; c1 —	due	e to dif	ferent n	nethoo	ds to m	neasure	or eval	uate; c	2 - due t	o differ	ent thre	sholds use;
	C	l - no i	nform	natio	on abo	ut natui	re of cl	nange;	e - due	to less	accura	te or ab	sent dat	a; nc - n	o change
Target 1	A	A - fav	ourab	le a	ssessn	nents; B	- imp	roved	assess.;	; C - de	teriora	ted asse	ssments	s; D - un	favourable
contribut	tion a	and unknown assessments that did not change; E - assessments that became unknown.													

Pressures, threats and proposed measures

The member countries reported a broad range of pressures. Three out of four countries highlighted sand and gravel extraction as the most important one. Other highly important pressures are urbanised areas, human habitation, mining and quarrying, renewable abiotic energy use, soil pollution and solid waste (excluding discharges), human induced changes in hydraulic conditions, canalisation and water deviation.

Code	Pressure name	ES	FR	IT	РТ
A01	Cultivation	М			
A07	Use of biocides, hormones and chemicals	M		Μ	
A08	Fertilisation	M		Μ	
B02	Forest and Plantation management & use		L		
C01	Mining and quarrying		Н		
C01.01	Sand and gravel extraction	Н		Μ	Н
C03	Renewable abiotic energy use		Н		
D01	Roads, paths and railroads	M			Μ
D02	Utility and service lines		L		
D05	Improved access to site	Μ			
E01	Urbanised areas, human habitation	Н		М	
E03	Discharges		L	Μ	
E05	Storage of materials		М		
F02.03	Leisure fishing	M			
G01	Outdoor sports and leisure activities, recreational activities				L
G01.03	Motorised vehicles				Μ
G02	Sport and leisure structures	M			
H01	Pollution to surface waters (limnic & terrestrial, marine & brackish)	M		Μ	
H05	Soil pollution and solid waste (excluding discharges)			H	
101	Invasive non-native species	Μ	М		
J02	Human induced changes in hydraulic conditions		Н		
J02.02.01	Dredging/ removal of limnic sediments	Μ			
J02.03	Canalisation & water deviation	Н			
J02.04	Flooding modifications	M			
J02.05	Modification of hydrographic functioning, general	М		Μ	
J02.05.02	Modifying structures of inland water courses				Μ
J02.11	Siltation rate changes, dumping, depositing of dredged deposits	М			
K01.01	Erosion	М			
K02	Biocenotic evolution, succession		М		

Legend: L Low intensity M Medium intensity H High intensity

The establishment of protected areas/sites, and legal protection of habitats and species are the most important proposed measures. Other important measures are restoring/improving the hydrological regime, other spatial measures, regulating/management exploitation of natural resources on land.

Code	Measure name	ES	FR	IT	РТ
1.2	Measures needed, but not implemented				NA
1.3	No measure known/ impossible to carry out specific measures		Μ		
2.2	Adapting crop production	Μ			
3.1	Restoring/improving forest habitats	L			
4.0	Other wetland-related measures	Μ			
4.1	Restoring/improving water quality	Μ	М		
4.2	Restoring/improving the hydrological regime	Н	М		
4.3	Managing water abstraction	L			
4.4	Restoring coastal areas	L			

25 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Code	Measure name	ES	FR	IT	РТ
6.0	Other spatial measures	М		Н	
6.1	Establish protected areas/sites	Н		Н	
6.3	Legal protection of habitats and species	Н		Н	
6.4	Manage landscape features	Μ			
7.0	Other species management measures	Μ			
7.4	Specific single species or species group management measures	Μ			
8.1	Urban and industrial waste management	Μ			
9.1	Regulating/Management exploitation of natural resources on land	M			Н

Legend:

L Low importance M Medium importance H High importance

Reason for selection Fruit" "Low (LHF) habitat the as Hanging in Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 3250 reached the LHF score 16.18. This habitat type was classified as LHF especially because, to reach improvement, the change from declining to stable trend within the category U1 (unfavourableinadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of quite significant representation of the habitat in Natura 2000 sites and the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is needed. Further improvement could be reached by improving structure and functioning in Portugal, Spain, and France. The main measures should include establishment of protected sites, legal protection of habitat, restoration or improvement of the hydrological regime, regulating exploitation of natural resources. The habitat is strongly linked to the torrential dynamics, and the protection of the hydrosystem and its dynamics is crucial, it is important to avoid the watercourse regulation. In case of exploitation in neighbouring riparian forests, all necessary precautions should be taken to avoid deterioration of this habitat. The habitat restoration is needed in all countries that reported smaller habitat area than the reference value: Spain and France. For residual, linear habitats, possible restoration work can be undertaken by reconstructing the habitat behind the habitat line, by taking plant material in situ. Better information about habitat range and area is needed in Portugal.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Freshwater +habitats&subject=3250®ion=MED

Anonymous: Végétation pionnière des rivières méditerranéennes à Glaucière jaune et Scrophulaire des chiens. https://inpn.mnhn.fr/site/natura2000/habitat/3250/cahiers-habitats

3280 Constantly flowing Mediterranean rivers with *Paspalo-Agrostidion* species and hanging curtains of *Salix* and *Populus alba*

Selected for first round of Biogeographical Seminar

Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain. The habitat is in the Mediterranean biogeographic region widespread in Spain and Italy; it occurs also in Portugal, France, and Greece. Around 65% of the habitat area is located in Spain.

Improvement of the habitat structure in France and Spain is needed. The main measures should include establishment of protected sites, legal protection of habitat, restoring or improving the water quality and hydrological regime, and other wetland-related measures. The objective should be to maintain natural dynamics of the watercourse and to regulate/remove any human activity changing this dynamics. The reduction of the pollutant load of the water courses should be achieved mainly through the reinforcement of the treatment of domestic and agro-livestock effluents and the adoption of good agricultural practices, in particular as regards the use of fertilizers. The maintenance of extensive agricultural and pastoral practices, the control of ecological succession, and the removal of invasive species is an important measure as well. Better information about habitat area is needed in Spain.

Habitat description

Nitrophilous annual and perennial grass and sedge formations of the alluvial banks of large Mediterranean rivers, with *Paspalum paspaloides*, *P. vaginatum*, *Polypogon viridis* (= *Agrostis semiverticillata*), *Cyperus fuscus*, and hanging curtains of *Salix* spp. and *Populus alba*.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain and Italy. It occurs also in Portugal, France, and Greece. The overall quite low representation of the habitat in Natura 2000 sites (ca 44 %) is due to lower area of this habitat in Natura 2000 sites in Spain (29 %) and absence of data from Portugal. The whole national habitat area is located in Natura 2000 sites in France, a large part also in Italy.

Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km²/	Coverage /%/	Number of sites								
France	16	100	26								
Greece	0	0	20								
Italy	66	96	128								
Portugal	13	N/A	27								
Spain	70	29	102								
Total	165	44	303								

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain. This conclusion was reached despite favourable status in Greece, Italy, and Portugal. France reported unfavourable – bad conservation status. The habitat area is insufficiently known in Spain. On the level of biogeographical region, Range was assessed as favourable, other two parameters (Structure and Functions; Future prospect) as unfavourable – inadequate and Area as unknown. The overall conservation status for the region has not been changed from previous reporting.

Treated	l data	from I	Nemb	er S	itates re	ports											
MC		Ra	ange (k	m ²)			Ar	ea		Struct &	Future	(01	rerall ass	es.		
1015	Surfa	ce % M	AS Ti	rend	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. CS	S Qualif	ier Pre	v. CS	Nat.	of <mark>ch</mark> .
GR	44.	30 0		0	44.30	44.30	11.9	0	44.30	FV	XX	FV		F	V		
ES	589	88 32	.2	+	≈58988	242	65.2	x	≈242	U1	U1	U1	=	X	x	c	1
FR	168	00 9.	2	0	≈16800	16.10	4.3	0	≈16.10	U1	U2	U2		τ	Л	ł	1
IT	735	00 40	.1	0	≈73500	68.89	18.6	0	≈68.89	FV	FV	FV		F	v		
PT	340	00 18	.5	0	≈34000	N/A	N/A	÷	<	FV	FV	FV	ī	F	V		
ELL Biod	eogra	hicala	ccase	men	t and pr	onosed	orrecti	ons					-		_		
LO Diog	cogia	-		-	t and pr	oposeu	Joneou		_							Target 1	
MS/EU27	Surface	Range Concl.	Trend	Re	ef. Surf.	ace Area Concl	Trend	Ref.	Struct. func.	Future C prosp.	Curr. CS Concl.	Qualifier	Prev. CS Concl.	Nat. of ch	Cor	ntrib.	Type
EU27	183332	0	÷	≈183	3332 3	371 2GD	+		2GD	2GD	MTX		Ul	nc		С	-
Legend:	MS –	Meml	oer St	tate;	: Overal	l asses-	 Overa	all asse	essmen	t; % MS	5 – per	centage	e of the	e surfa	ce ar	ea ii	n the
respectiv	ve Me	mber	State	e con	npared	to who	le Bio	geogra	aphical	Region	; Ref.	– refere	ence va	lue; St	ruct	& fi	ınc
structure	e and	functi	ons;	Futu	ure pros	sp. – fu	iture p	orospeo	ct; Cur	r. CS –	currei	nt conse	ervatio	n statu	ıs; P	rev.	CS –
previous	cons	ervatio	on sta	itus;	Nat. of	⁻ ch. – r	nature	of cha	inge; E	U27: as	sessm	ent on f	the leve	el of al	I EU	Mei	nber
Countrie	s; Cor	icl. – c	onclu	sion;	; Target	1: - tar	get 1 o	f the E	U 2020) Biodiv	ersity S	Strategy					
Conserva	ation	status	F١	V Fa	avourab	le <mark>U1</mark>	Unfav	/ourabl	e - inad	equate	U2	Unfavou	irable -	bad	XX	Jnkn	own
Trend		0 = sta	ble; -	+ = i	ncrease	e; - = de	crease	e; x = u	nknow	'n							
Qualifie	r	= stab	le; + p	oosit	tive; - n	egative	; x unk	nown									
Nature o	of	a – gei	nuine	cha	nge; b -	- chang	e due t	to bett	er data	a or imp	roved	knowle	dge; b2	2 – due	to t	axon	omic
change		review	r; c1 -	- due	e to diff	erent m	ethod	s to m	easure	or eval	uate; c	2 - due	to diffe	erent th	nresh	nolds	use;
		d - no	inforr	natio	on abou	ut natur	e of ch	ange;	e - due	to less	accura	te or ab	sent da	ata; nc	- no	char	ige
Target 1		A - favourable assessments; B - improved assess.; C - deteriorated assessments; D - unfavourable															
			ouru		assessm	ents; B	- impi	oveu a	assess.;	; C - det	teriora	ted asse	essmen	ts; D -	unta	avou	rable

Pressures, threats and proposed measures

The member countries reported a broad range of pressures; the most important are sand and gravel extraction, invasive non-native species, urbanised areas, human habitation, other urbanisation, industrial and similar activities, soil pollution and solid waste, water abstractions from surface waters. Other important pressures are use of biocides, hormones and chemicals, fertilisation, discharges, pollution to surface waters, modification of hydrographic functioning, and erosion.

Code	Pressure name	ES	FR	IT	PT
A01	Cultivation	M			
A04	Grazing	M			
A04.01	Intensive grazing				Μ
A07	Use of biocides, hormones and chemicals	M		Μ	
A08	Fertilisation	M		Μ	
A09	Irrigation	M			
A10	Restructuring agricultural land holding	M			
B01.02	Artificial planting on open ground (non-native trees)			Μ	
C01	Mining and quarrying		М		
C01.01	Sand and gravel extraction	Н		Μ	
C03	Renewable abiotic energy use		Μ		
D01	Roads, paths and railroads	M			
D01.02	Roads, motorways			Μ	
D01.05	Bridge, viaduct			Μ	
D02	Utility and service lines	M			
D05	Improved access to site	M			
E01	Urbanised areas, human habitation	Н			
E01.02	Discontinuous urbanisation			Μ	
E03	Discharges		М	Μ	
E05	Storage of materials		L		
E06	Other urbanisation, industrial and similar activities		Н		
F02.03	Leisure fishing	M			
G02	Sport and leisure structures	M			
H01	Pollution to surface waters (limnic & terrestrial, marine & brackish)	M		Μ	
H05	Soil pollution and solid waste (excluding discharges)			н	
101	Invasive non-native species		Н	Μ	
J02	Human induced changes in hydraulic conditions		Н		
J02.03	Canalisation & water deviation	н			
J02.03.02	Canalisation			Μ	
J02.04	Flooding modifications	M			L
J02.05	Modification of hydrographic functioning, general	M		Μ	L
J02.05.02	Modifying structures of inland water courses			Μ	
J02.06	Water abstractions from surface waters	Н			
J02.11	Siltation rate changes, dumping, depositing of dredged deposits	M			
K01.01	Erosion	M		Μ	
K02.01	Species composition change (succession)				Μ
К04	Interspecific floral relations		L		

Legend:

Low intensity

M Medium intensity H High intensity

The establishment of protected areas/sites, and legal protection of habitats and species are the most important proposed measures. Other important measures are management of landscape features, restoring/improving water quality, restoring/improving the hydrological regime, and other wetlandrelated measures.

Code	Measure name	ES	FR	IT	PT
1.2	Measures needed, but not implemented				NA

29 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Code	Measure name	ES	FR	IT	PT
2.2	Adapting crop production	Μ			
3.0	Other forestry-related measures	L			
3.1	Restoring/improving forest habitats	Μ			
4.0	Other wetland-related measures	Μ		М	Н
4.1	Restoring/improving water quality	Н	Μ		
4.2	Restoring/improving the hydrological regime	Н	Μ		
4.3	Managing water abstraction	Μ			
4.4	Restoring coastal areas	L			
6.0	Other spatial measures	Μ		М	
6.1	Establish protected areas/sites	н		н	
6.3	Legal protection of habitats and species	н		н	
6.4	Manage landscape features	Н			
7.0	Other species management measures	Μ			
7.2	Regulation/ Management of fishery in limnic systems	L			
7.4	Specific single species or species group management measures	Μ			
8.1	Urban and industrial waste management	Μ			
9.1	Regulating/Management exploitation of natural resources on land	Μ			
Legend:	Low importance M Medium importance H High importance				

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 3280 reached the LHF score 5.97. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (France) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in France and Spain is needed. The main measures should include establishment of protected sites, legal protection of habitat, restoring or improving the water quality and hydrological regime, and other wetland-related measures. The objective should be to maintain natural dynamics of the watercourse and to regulate/remove any human activity changing this dynamics. The reduction of the pollutant load of the water courses should be achieved mainly through the reinforcement of the treatment of domestic and agro-livestock effluents and the adoption of good agricultural practices, in particular as regards the use of fertilizers. The maintenance of extensive agricultural and pastoral practices, the control of ecological succession, and the removal of invasive species is an important measure as well. Better information about habitat area is needed in Spain.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Freshwater +habitats&subject=3280®ion=MED

Anonymous: Rivières permanentes méditerranéennes du *Paspalo-Agrostidion* avec rideaux boisés riverains à Salix et Populus alba. https://inpn.mnhn.fr/site/natura2000/habitat/3280/cahiers-habitats

4010 Northern Atlantic wt heaths with Erica tetralix

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Portugal. The habitat is in the Mediterranean biogeographic region distributed only in Portugal.

Increase of the habitat area by habitat restoration is needed in Portugal. Besides restoration, traditional forms of management remain a key requirement for the habitat maintenance within a wider heathland complex. These practices combine to stop succession to woodland once areas were cleared; with balanced grazing as the main management concept while additional or complementary measures such as controlled burning or cutting are recommended to be applied much more restrictively (Hampton 2008).

Habitat description

North Atlantic wet heath is a natural or more commonly semi-natural habitat of humid, peaty or semipeaty character. The habitat is dominated by dwarf shrub species and usually occurs on acidic, nutrient-poor substrates, such as shallow peats (<0.5m) or sandy soils with impeded drainage. Wet heath generally has a water table that is above or at ground level for at least some of the year.

The community includes mixtures of *Erica tetralix* (cross-leaved heath), *Trichophorum cespitosus* (deer grass), *Calluna vulgaris* (heather) and *Molinia caerulea* (purple moor-grass), and in some cases over an under-storey of mosses, often including carpets of *Sphagnum* species (bog mosses) (Hampton 2008).

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in Mediterranean biogeographical region only in Portugal. The habitat is not very well represented in the Natura 2000 network - ca 24 % of its habitat area is located in Natura 2000 sites.

Natura 2000 sites in the Mediterranean region								
Country	Habitat area /km ² /	Coverage /%/	Number of sites					
Portugal	2-4	16-32	3					
Total	2-4	24	3					

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate. Portugal assessed Range as favourable, other three parameters (Area; Structure and Functions; Future prospect) as unfavourable – inadequate. The overall conservation status for the region has not been changed from previous reporting.

Treated	l data f	rom M	ember	State	s repor	ts												
MS		Range	e (km ²)			A	rea		Struct	& Futur	e	Overall asses.						
1015	Surfac	e 🕺 M	S Trend	Ref.	Surface	% MS	Trend	Ref.	func.	prosp	p. Curr. CS Quali		ifier Prev	Prev. CS Nat.		of ch.		
PT	130	0 100	0	x	12.60	100		>12.60	U1	Ul	U1		l	/1	nc			
EU Biog	eograp	hical as	sessme	ent and	i propos	ed corr	ections											
		Range			Area	1 . .	Dec	Struct.	Future	Curr. CS	0.110	Prev. CS			Targe	et 1		
MS/EUZ/	Surrace	Concl.	Irend R.	er. Suri	Conc	l. Irena	ReI.	func.	prosp.	Concl.	Quaintier	Concl.	Nat. of cr	Cor	ntrib.	Туре		
EU27	1300	00	0		13 00	-	>13	0	00	MTX	100	Ul	nc	1	С	120		
respectiv structure previous Countrie	ve Men e and f conser s; Conc	nber Stunction vation I. – cor	tate co ns; Fut status nclusior	mpare ure pi ; Nat. n; Targ	ed to w rosp. – of ch get 1: - t	hole B future - natur arget 1	iogeog prosp e of cl of the	graphic pect; Cu hange; EU 202	al Regi urr. CS EU27: 20 Biod	on; Re – curr assessi diversit	f. — refe ent cor ment or y Strates	servation the legy.	value; S on stati vel of a	truct us; P II EU	: & fi rev. Me	unc CS – mber		
Conserva	ation s	atus	FV F	avoura	able <mark>l</mark>	J1 Unf	favoura	ıble - ina	adequa	te U2	Unfav	ourable	- bad	XX	Unkn	iown		
Trend	0	= stab	le; + =	increa	ase; - =	decrea	se; x =	unkno	wn									
Qualifier	r =	stable	; + posi	tive; -	negati	ve; x ui	nknow	n										
Nature o	of a	– genu	ine cha	ange;	b – chai	nge du	e to be	etter da	ita or ii	mprove	d know	ledge; b	o2 – due	e to t	axor	nomic		
change	re	eview;	c1 – du	e to d	ifferent	metho	ods to I	measur	e or ev	valuate	; c2 - du	e to dif	ferent t	hres	nold	s use;		
	d	- no in	format	ion ab	out nat	ure of	change	e; e - du	ie to le	ss accu	rate or a	absent	data; nc	- no	char	nge		
Target 1	A	- favo	urable	assess	sments;	B - im	proved	asses	s.; C - (deterio	rated as	sessme	ents; D -	unf	avou	irable		
contribu	tion a	nd unk	nown a	ssessr	ments t	hat did	not ch	ange; E	E - asse	essment	ts that b	ecame	unknow	/n.				

Pressures, threats and proposed measures

Portugal reported several pressures and threats; the most important is modification of hydrographic functioning. Other important pressures are intensive grazing, trampling, overuse, burning down, water abstractions from surface waters, water abstractions from groundwater.

Code	Pressure name	РТ
A04.01	Intensive grazing	М
G05.01	Trampling, overuse	M
J01.01	Burning down	Μ
J02.05	Modification of hydrographic functioning, general	Н
J02.06	Water abstractions from surface waters	Μ
J02.07	Water abstractions from groundwater	М

Legend: Low intensity M Medium intensity H High intensity

32 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Maintaining grasslands and other open habitats, and other wetland-related measures are considered as important proposed measures.

Code	Measure name	РТ
2.1	Maintaining grasslands and other open habitats	Н
4.0	Other wetland-related measures	Н

Legend: L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 4010 reached the LHF score 8.91. This habitat type was classified as LHF especially because, to reach improvement, the change from declining to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Area) in one country (Portugal) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, increase of the habitat area by habitat restoration is needed in Portugal. Besides restoration, traditional forms of management remain a key requirement for the habitat maintenance within a wider heathland complex. These practices combine to stop succession to woodland once areas were cleared; with balanced grazing as the main management concept while additional or complementary measures such as controlled burning or cutting are recommended to be applied much more restrictively (Hampton 2008).

Links

Hampton M. (2008): Management of Natura 2000 habitats. 4010 Northern Atlantic wet heaths with *Erica tetralix*. - European Commission, Technical Report 2008 08/24, 26 pp.

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Heath+%26 +scrub&subject=4010®ion=MED

4030 European dry heaths

Х

Selected for first round of Biogeographical Seminar

Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain and France. Habitat is in the Mediterranean biogeographic region widespread in Spain; it occurs also in Portugal, France, and Italy. Around 97% of the habitat area is located in Spain. Improvement of the habitat structure in Spain is needed. Further improvement could be reached by improving habitat structure and functioning in France. The main measures should include maintaining grasslands and other open habitats, legal protection of habitat, and establishment of protected sites. Grazing represents the most important measure for maintenance of this habitat type, where suitable, combined with the traditional way of fire management. These measures should be sufficient to stop the habitat area decrease and they could be funded from the Rural Development Programme (CAP), where several instruments are applicable – agri-environmental measures, Less Favourable Areas scheme, greening measures, high nature value farming. Better information about habitat structure and functioning is needed in Spain, Italy, and Portugal.

Habitat description

Mesophile or xerophile heaths on siliceous, podsolic soils in moist Atlantic and sub-Atlantic climates of plains and low mountains of Western, Central and Northern Europe. There are five sub-types: Sub-montane *Vaccinium-Calluna* heaths, Sub-Atlantic *Calluna-Genista* heaths, Atlantic *Erica-Ulex* heaths, Ibero-Atlantic *Erica-Ulex-Cistus* heaths, Boreo-Atlantic *Erica cinerea* heaths.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain. It occurs also in Portugal, France, and Italy. The overall quite low representation of the habitat in Natura 2000 sites (ca 42 %) is due to area of this habitat in Natura 2000 sites in Spain (41 %). The whole national habitat area is located in Natura 2000 sites in France and Italy.

Natura 2000 sites in the Mediterranean region									
Country Habitat area /km²/ Coverage /%/ Number of si									
France	112	100	24						
Italy	55	100	54						
Portugal	0	N/A	42						
Spain	2,298	41	193						
Total	2,465	42	313						

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain and France. Portugal reported favourable and Italy unknown conservation status. On the level of biogeographical region, two parameters (Range; Area) were assessed as favourable, Structure and Functions as unknown, and Future prospect as unfavourable – inadequate. The overall conservation status for the region has been changed against previous reporting from unfavourable – bad to unfavourable – inadequate. This change is not considered genuine, it is due to different methods used (Spain).

Treated	data	from M	/lembe	r State	s rep	orts												
MS		Ra	nge (km	2)			A	rea		Struct &	Future	e Overall asses.						
1015	Surfa	ce % N	IS Trer	nd Re	f. S	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Quali	fier Pr	ev. CS	Nat.	of ch.	
ES	1844	02 68.	3 0	≈184	402	5663	97.1	x	≈5663	XX	U1	Ul			XX	1	c1	
FR	181	00 6.	0	≈18	100	111.60	1.9	0	≈111.60	Ul	U1	UI	-		U1	1	nc	
IT	229	00 8.:	5 0	≈22	900	55.06	0.9	0	≈55.06	XX	XX	XX			FV	6	d	
PT	447	00 16	5 0	≈44	700	N/A	N/A	0	<	XX	FV	FV			FV			
EU Biog	eograp	ohical a	ssessm	nent and	l prop	osed o	orrecti	ons		.1.:								
METIDZ	Surface	Range	Trand	Paf	S	Area	Trand	Def	Struct.	Future	Curr. CS	Curr. CS	Outline	Prev. CS	Not of	ala	Targe	et 1
1VI5/E027	Surface	Concl.	Irend	Rei.	Surrace	Concl	Trend	Rei.	func.	prosp.	Concl.	Quaimer	Concl.	INAL OI	Co	ntrib.	Туре	
EU27	270102	0	0 8	≈270102		0	x		2GD	2GD	MTX	=	U2	no		D		
Legend:	MS –	Memb	per Sta	te; Ove	erall	asses-	Overa	all asse	essmen	t; % MS	S – per	centag	e of the	e surfa	ace a	rea i	n the	
respectiv	ve Me	mber	State of	compa	red t	o who	ole Bio	geogra	aphical	Region	; Ref.	– reter	ence va	alue; S	struct	: & fi	unc	
structure	e and	functi	ons; Fi	uture	prosp). — tu	iture p	prospe	ct; Curi	r. CS –	currer	nt cons	ervatio	n stat	us; F	'rev.	<u> </u>	
previous	cons	ervatio	n stati	us; Nat	. of (ch. – r	nature	of cha	inge; El	U27: as	sessme	ent on	the lev	el of a	all EU	Me	mber	
Countrie	s; Cor	icl. – co	onclusi	on; Tar	get 1	.: - tar	get 1 o	of the E	U 2020) Biodiv	ersity S	Strategy	/.					
Conserv	ation	status	FV	Favou	rable	U1	Unfav	vourabl	le - inad	equate	U2	Unfavoi	urable -	bad	XX	Unkn	iown	
Trend		0 = sta	ble; +	= incre	ease;	- = de	crease	e; x = u	inknow	n								
Qualifie	r	= stabl	e; + pc	ositive;	- ne	gative	; x unk	nown										
Nature o	of	a – ger	nuine c	hange;	; b – (chang	e due t	to bett	er data	i or imp	oroved	knowle	dge; b2	2 – du	e to t	axor	nomic	
change		review	; c1 – c	due to	diffe	rent m	ethod	s to m	easure	or eval	uate; c	2 - due	to diffe	erent	thres	holds	s use;	
		d - no i	nform	ation a	bout	natur	e of ch	ange;	e - due	to less	accura	te or al	osent da	ata; no	c - no	char	nge	
Target 1		A - fav	ourabl	e asses	ssme	nts; B	- impr	roved a	assess.;	C - de	teriora	ted ass	essmer	nts; D	- unf	avou	irable	
contribu	ition	and ur	knowr	n asses	smen	its tha	t did n	ot cha	nge; E -	assessi	ments	that be	came u	nknov	vn.			

Pressures, threats and proposed measures

The member countries reported a broad range of pressures; the most important seems to be fire and fire suppression, burning down, invasive non-native species, renewable abiotic energy use, abandonment of pastoral systems, and lack of grazing. Other important pressures are forest planting

Code	Pressure name	ES	FR	IT	PT
A01	Cultivation	L			
A02	Modification of cultivation practices		Μ		
A04	Grazing	Μ	L		
A04.03	Abandonment of pastoral systems, lack of grazing				Н
A05	Livestock farming and animal breeding (without grazing)	Μ			
B01	Forest planting on open ground	Μ	Μ		
B01.02	Artificial planting on open ground (non-native trees)	L		Μ	
B02	Forest and Plantation management & use	Μ			
B02.03	Removal of forest undergrowth			Μ	
B03	Forest exploitation without replanting or natural regrowth	Μ			
B07	Forestry activities not referred to above	Μ			
C03	Renewable abiotic energy use		L	Н	
D01	Roads, paths and railroads	Μ	L		Μ
D01.02	Roads, motorways			Μ	
D02	Utility and service lines	L			
D02.01	Electricity and phone lines			Μ	
D06	Other forms of transportation and communication		L		
E01	Urbanised areas, human habitation	L	L		Μ
E01.02	Discontinuous urbanisation			Μ	
E01.03	Dispersed habitation			L	
E02	Industrial or commercial areas	L	L		
E03	Discharges	L			
E03.03	Disposal of inert materials			Μ	
E04	Structures, buildings in the landscape		L		
F04	Taking / Removal of terrestrial plants, general			L	
F06	Hunting, fishing or collecting activities not referred to above	Μ			
G01	Outdoor sports and leisure activities, recreational activities	Μ	L		
G01.03	Motorised vehicles			Μ	
G01.03.02	Off-road motorized driving	L			
G05.01	Trampling, overuse				Μ
101	Invasive non-native species				Н
J01	Fire and fire suppression	Μ	Μ		Н
J01.01	Burning down			Μ	Н
К02	Biocenotic evolution, succession		Μ		
K02.01	Species composition change (succession)			L	Μ
К03	Interspecific faunal relations		L		
К04	Interspecific floral relations		L		
К05	Reduced fecundity/ genetic depression	М			
L09	Fire (natural)	Μ			
M01	Changes in abiotic conditions	L			

on open ground, artificial planting on open ground (non-native trees), grazing, roads, paths and railroads.

Legend: Low intensity M Medium intensity H High intensity

The legal protection of habitats and species, other spatial measures are the most important proposed measures. Other important measures are maintaining grasslands and other open habitats, establishment protected areas/sites.

Code	Measure name	ES	FR	IT	ΡΤ
1.2	Measures needed, but not implemented				NA
2.0	Other agriculture-related measures	L	M		

Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats) 36
Code	Measure name	ES	FR	IT	PT
2.1	Maintaining grasslands and other open habitats	Μ	Μ		L
2.2	Adapting crop production	L	Μ		
3.0	Other forestry-related measures	L	Μ		
3.1	Restoring/improving forest habitats	Μ			
3.2	Adapt forest management	Μ			
4.0	Other wetland-related measures	L			
6.0	Other spatial measures	Μ			Н
6.1	Establish protected areas/sites	Μ		Μ	
6.3	Legal protection of habitats and species	Н		Μ	
6.4	Manage landscape features	L			
7.4	Specific single species or species group management measures	M			

Legend:

Low importance M Medium importance

H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 4030 reached the LHF score 9.46. This habitat type was classified as LHF especially because, to reach improvement, the change from stable to improving trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Spain) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Spain is needed. Further improvement could be reached by improving habitat structure and functioning in France. The main measures should include maintaining grasslands and other open habitats, legal protection of habitat, and establishment of protected sites. Grazing represents the most important measure for maintenance of this habitat type, where suitable, combined with the traditional way of fire management. These measures should be sufficient to stop the habitat area decrease and they could be funded from the Rural Development Programme (CAP), where several instruments are applicable – agri-environmental measures, Less Favourable Areas scheme, greening measures, high nature value farming.

Better information about habitat structure and functioning is needed in Spain, Italy, and Portugal.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Heath+%26 +scrub&subject=4030®ion=MED

5140 Cistus palhinhae formations on maritime wet heaths

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Portugal. The habitat occurs in the Mediterranean biogeographic region only in Portugal.

For the improvement of the overall conservation status in the Mediterranean biogeographical region, it is necessary to stop the decline of the area in Portugal. To reach further improvement, improvement of the habitat structure and increase of the habitat area by restoration is needed. It is recommended to restrict access to the sites and provide appropriate protection and to improve connectivity between habitat patches. Other proposed measures include prohibition of land use change, control of waste disposal, establishment of network of micro-reserves for this habitat and scientific study of the habitat. Better information about habitat range and area is needed.

Habitat description

Low scrub and garrigue formations of the dolomitic tableland, karsts, sands and terra-rosas, rich in endemic species (*Ulicetum erinacei, Genisto triacanthi-Cistetum palhinhae*).

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs only in Portugal. The information on Natura 2000 percentual coverage is not available.

Natura	Natura 2000 sites in the Mediterranean region									
Country	Habitat area /km ² /	Coverage /%/	Number of sites							
Portugal	45	N/A	2							
Total	45	N/A	2							

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Portugal. Portugal assessed three parameters (Area; Structure and Functions; Future prospect) as unfavourable – inadequate, the last one (Range) as unknown. The overall conservation status for the region has not been changed from previous reporting.

MS		Rang	e (km ²))			Area	а		Struct &	Struct &	k Future		Overall asses.		all asses.	
1915	Surfac	e %M	IS Tre	end	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Quali	fier Prev.	CS Nat	. of ch	
PT	130	0 100		x	x	N/A	100	1 22	>	UI	U1	U1		UI		nc	
EU Biog	eograp Surface	Range	Trend	men Ref.	t and surface	ce Area	d corre	Ref.	Struct.	Future	Curr. CS	Qualifier	Prev. CS	Nat. of ch.	Targ	et 1	
		Conci	- SMD - STAR	1.124.00	1.000000	Conci			runc.	prosp.	Conci.	100 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0	Conci.		Contrib.	Тур	
EU2/	1300	00	X			00	1.000		00	00	MIX	-	01	nc	0	-	

countries, co	mines, concision, raiger i. taiger i or the 2020 bloaversity strategy.									
Conservation	status	FV	Favourable	U1	Unfavourable ·	- inadequate	U2	Unfavourable - bad	XX	Unknown
Trend	0 = stabl	<pre>i = stable; + = increase; - = decrease; x = unknown</pre>								
Qualifier	= stable;	+ pos	sitive; - nega	tive;	x unknown					
Nature of	a – genui	ine cł	nange; b – cł	ange	due to better	data or impr	oved	knowledge; b2 – d	ue to	taxonomic
change	review; c	1 – d	ue to differe	nt me	ethods to mea	sure or evalu	iate; d	2 - due to different	thres	holds use;
	d - no inf	orma	ition about n	ature	e of change; e ·	- due to less a	iccura	ate or absent data; r	nc - nc	o change
Target 1	A - favou	irable	e assessmen	:s; B -	- improved as	sess.; C - dete	eriora	nted assessments; D) - un	favourable
contribution	and unkr	nown	assessment	s that	did not chang	e; E - assessm	nents	that became unkno	wn.	

Pressures, threats and proposed measures

Portugal reported several pressures; the most important ones are trampling, and overuse, paths, tracks, cycling tracks, motorised vehicles. Other important pressures are car parks and parking areas, urbanised areas, human habitation, structures, buildings in the landscape, sport and leisure structures, landfill, land reclamation and drying out.

Code	Pressure name	PT
D01.01	Paths, tracks, cycling tracks	H
D01.02	Roads, motorways	L
D01.03	Car parks and parking areas	М
E01	Urbanised areas, human habitation	М
E04	Structures, buildings in the landscape	М
G01.03	Motorised vehicles	Н
G02	Sport and leisure structures	М
G05.01	Trampling, overuse	Н
H05.01	Garbage and solid waste	L
J02.01	Landfill, land reclamation and drying out, general	М

Legend: Low intensity M Mediun

The other spatial measures are the most important proposed measures. Portugal informed also that there are measures needed, but not implemented.

Code	Measure name	PT
1.2	Measures needed, but not implemented	NA
6.0	Other spatial measures	Н

Legend: Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 5140 reached the LHF score 6.67. This habitat type was classified as LHF especially because, to reach improvement, the change from declining to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Area) in one country (Portugal) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, it is necessary to stop the decline of the area in Portugal. To reach further improvement, improvement of the habitat structure and increase of the habitat area by restoration is needed. It is recommended to restrict access to the sites and provide appropriate protection and to improve connectivity between habitat patches. Better information about habitat range and area is needed.

Portugal proposed in the Sectorial plan (ICNB) these measures:

- Intermit changes to land use in the area of habitat occupancy.
- Interdict the transit of people, vehicles and domestic animals in the area of occupation of the habitat.
- Reinforce inspection on the deposition of residues in the area of habitat occupancy.
- Promote the inclusion of this habitat in integrated micro-reserves networks to be created.
- Promote scientific studies on habitat.

Disclose the importance of habitat for conservation.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Sclerophyll ous+scrubs&subject=5140®ion=MED

ICNB: 5140* Formaçoes de Cistus palhinhae em charnecas maritimas. – Plano Sectorial da Rede Natura 2000, 5 pp. http://www.icnf.pt/portal/pn/biodiversidade/rn2000/resource/docs/rn-plan-set/hab/hab-5140

5220 Arborescent matorral with Zyziphus

	Selected for first round of Biogeographical Seminar
Х	Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - bad due to assessment of both Spain and Italy. Habitat occurs in the Mediterranean biogeographic region in Spain and Italy. Almost the whole habitat area is located in Spain.

Improvement of the habitat structure in Spain is needed. Further improvement could be reached by improving the habitat structure and functioning as well as by increasing habitat range in Italy. The main measures should address main threats and thus adaptation of agriculture is needed: decrease fertilisation, control of water abstraction from groundwater, grazing and cultivation. Control of invasive species should include eradication campaigns of the genus *Agave* in areas of this habitat. It is necessary to identify fragmented formations that can be interconnected to create areas with an adequate minimum extent, including degraded areas of this habitat whose could be restored. Other human activities should be regulated: urbanisation, outdoor sport and recreational activities. The habitat restoration is needed in both Spain and Italy as they reported smaller habitat area than the reference value.

Habitat description

Pre-desert deciduous scrub of *Periploca laevigata, Lycium intricatum, Asparagus stipularis, A. albus, Withania frutescens* with tall *Zyziphus lotus,* confined to the arid Iberian South-west under a xerophytic thermo-Mediterranean bio-climate; corresponds to the mature phase or climax of climatophile and edapho-xero-psammophile vegetation series (*Periplocion angustifoliae: Ziziphetum loti, Zizipho-Maytenetum europaei, Mayteno-Periplocetum*).

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in Spain and Italy. The habitat occurrence is indicated by Cyprus as well, but there is a lack of information. The overall low representation of the habitat in Natura 2000 sites (ca 10 %) is due to area of this habitat in Natura 2000 sites in Spain and also very small habitat area (0.02 km^2) in Italy. A large part of the national habitat area is located in Natura 2000 sites in Italy (78 %).

Natura	Natura 2000 sites in the Mediterranean region								
Country	Habitat area /km ² /	Coverage /%/	Number of sites						
Cyprus	N/A	N/A	11						
Italy	0.02	78	3						
Spain	54	10	42						
Total	54	10	56						

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - bad due to assessment of both Spain and Italy. Italy reported all parameters as unfavourable – bad. On the level of biogeographical region, two parameters (Range; Area) were assessed as unfavourable – inadequate, other two (Structure and Functions; Future prospect) as unfavourable – bad. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – bad. This change is considered not genuine, it is due to different methods used by both countries.

Treated	l data	from N	/emb	er St	ates re	ports											
Mg		Ra	nge (km	2)			A	rea		Struct &	Future		C	overall as	ses.		
1/13	Surfa	ce % N	AS Tre	end	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Quali	ifier Pre	ev. CS	Nat.	of ch.
ES	1480	00 95	.5 () a	÷14800	545.55	100	x	>545.55	U2	U2	U2			xx		c1
IT	70	00 4.	5		>>700	0.02	0	10	>>0.02	U2	U2	U2	-		U1	c1	
EU Biog	eograp	hical a	issess	ment	and pro	posed	correc	tions									
MS ET 127	Surface	Range	Trand	Daf	Surfa	Area	Trand	Dof	Struct.	Future	Curr. CS	Qualifier	Prev. CS	Not of	de	Targe	et 1
MS/EO2/	Sullace	Concl.	ITena	Rel	. Sullad	Concl	:	Rei.	func.	prosp.	Concl.	Quanner	Concl.	INAL OF C	C	ontrib.	Туре
EU27	15500	1	0	>1550	00 54	6 1	x	>546	2XA	2XA	MTX	32	XX	no		С	2
respecti [,] structure previous Countrie	ve Me e and conse s; Con	mber functi ervatic cl. – co	State ons; F on stat	com Futur tus; I sion;	pared re pros Nat. of Target	to wh p. – f ch. – 1: - ta	ole Bio uture nature rget 1 (ogeog prospo of ch of the	raphical ect; Cur lange; E EU 2020	Region r.CS- U27:a DBiodiv	n; Ref. - curre ssessm /ersity	– refer nt cons ent on Strategy	ence v servatic the lev y.	alue; S on stat vel of a	itruc us; f II EL	t & f [•] rev. J Me	unc CS – mber
Conserv	ation	status	FV	Fav	vourabl	e <mark>U</mark>	L Unfa	avoural	ole - inac	lequate	U2	Unfavo	urable -	bad	XX	Unkr	Iown
Trend	() = sta	ıble; +	= ir	ncrease	e; - = d	ecreas	e; x =	unknow	/n							
Qualifie	r :	= stab	le; + p	ositi	ve; - ne	egative	e; x un	knowr	ו								
Nature o	of a	a – gei	nuine	chan	nge; b –	- chang	ge due	to be	tter data	a or im	proved	knowle	edge; b	2 – du	e to f	taxor	nomic
change	I	review	r; c1 –	due	to diffe	erent r	netho	ds to n	neasure	or eva	luate; o	:2 - due	to diff	erent t	hres	hold	s use;
	(d - no	inform	natio	n abou	t natu	re of c	hange	; e - due	to less	accura	te or a	bsent d	lata; no	: - nc) chai	nge
Target 1	. /	A - fav	ourab	ole as	ssessm	ents; E	3 - imp	proved	assess.	; C - de	eteriora	ited ass	essme	nts; D	- unf	avou	irable
contribu	ition a	and ur	nknow	n ass	sessme	nts tha	at did r	not cha	ange; E	- assess	sments	that be	came u	unknov	vn.		

Pressures, threats and proposed measures

Spain and Italy reported several pressures. According to both countries cultivation is medium intensive threat. The most important pressures are fertilisation, urbanised areas, human habitation, groundwater abstractions for agriculture, changes in abiotic conditions. Other important pressures are grazing, livestock farming and animal breeding (without grazing), roads, paths and railroads, outdoor sports and leisure activities, recreational activities.

Code	Pressure name	ES	IT
A01	Cultivation	М	М
A04	Grazing	М	
A05	Livestock farming and animal breeding (without grazing)	М	
A08	Fertilisation	H	
B01.02	Artificial planting on open ground (non-native trees)		L
C01	Mining and quarrying		L
D01	Roads, paths and railroads	М	
D01.02	Roads, motorways		L
E01	Urbanised areas, human habitation	H	
E01.02	Discontinuous urbanisation		Μ
F03	Hunting and collection of wild animals (terrestrial)	L	
G01	Outdoor sports and leisure activities, recreational activities	М	
G01.03	Motorised vehicles		L
H06.01	Noise nuisance, noise pollution		L
J01.01	Burning down		Μ
J02.07.01	Groundwater abstractions for agriculture	Н	
M01	Changes in abiotic conditions	Н	

Legend: Low intensity

M Medium intensity H High intensity

According to Spain adapting crop production, other agriculture-related measures, and other spatial measures are the most important proposed measures. Other important measures are maintaining grasslands and other open habitats, restoring/improving forest habitats. Italy states that measures are needed, but not implemented.

Code	Measure name	ES	IT
1.2	Measures needed, but not implemented		NA
2.0	Other agriculture-related measures	Н	
2.1	Maintaining grasslands and other open habitats	М	
2.2	Adapting crop production	Н	
3.1	Restoring/improving forest habitats	Μ	
6.0	Other spatial measures	Η	
6.4	Manage landscape features	L	

Legend:

Low importance M Medium importance

H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 5220 reached the LHF score 90.89. This habitat type was classified as LHF especially because, to reach improvement, the change from declining to stable trend within the category U2 (unfavourable-bad) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Spain) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Spain is needed. Further improvement could be reached by improving the habitat structure and functioning as well as by increasing habitat range in Italy. The main measures should address main threats and thus adaptation of agriculture is needed: decrease fertilisation, control of water abstraction from groundwater, grazing and cultivation. Control of invasive species should include eradication campaigns of the genus Agave in areas of this habitat. It is necessary to identify fragmented formations that can be interconnected to create areas with an adequate minimum extent, including degraded areas of this habitat whose could be restored (Tirado 2009). Other human activities should be regulated: urbanisation, outdoor sport and recreational activities. Habitat restoration is needed in both Spain and Italy as they reported smaller habitat area than the reference value.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Sclerophyll ous+scrubs&subject=5220®ion=MED

Tirado, R., 2009. 5220 Matorrales arborescentes con Ziziphus (*). - In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Ministerio de Medio Ambiente, y Medio Rural y Marino. 68 p.

http://www.jolube.es/Habitat_Espana/documentos/5220.pdf

5320 Low formation of *Euphorbia* close to cliffs

Х

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain and United Kingdom. France reported unfavourable – bad conservation status. The habitat is in the Mediterranean biogeographic region widespread in Italy; it occurs also in France, Spain, Portugal, and United Kingdom (Gibraltar). Around 93% of the habitat area is located in Italy.

For the improvement of the overall conservation status in the Mediterranean biogeographical region, increase of the habitat area by habitat restoration in France is needed. Further improvement could be reached by improving of the habitat structure in France. The main measures should include legal protection of habitats and species, restoration of coastal areas; management of landscape features, and other spatial measures. In frequently visited areas with public access, to limit the possibilities for rambling off-piste walkers. Needed is also control of rapidly growing invasive species such as species of genus *Carpobrotus* or *Pennisetum*. Better information about habitat structure and functioning is needed in Portugal.

Habitat description

Low formations of *Helichrysum* (*H. italicum* ssp. *microphyllum*, *H. italicum* ssp. *italicum*) with spurges (*Euphorbia pithyusa*, i.a.), *Pistacia lentiscus*, *Camphorosma monspeliaca*, *Artemisia densiflora* or *Thymelaea passerina*, *T. hirsuta*, *T. tartonraira* in the immediate vicinity of sea cliffs, forming the transition between cliff vegetation or clifftop phryganas and thermo-Mediterranean scrub.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Italy. It occurs also in France, Spain, Portugal, and United Kingdom (Gibraltar). The overall low representation of the habitat in Natura 2000 sites (ca 36 %) is due to area of this habitat in Natura 2000 sites in Italy (21 %). Whole national habitat area is located in Natura 2000 sites in Portugal and United Kingdom.

Natura 2000 sites in the Mediterranean region										
Country	Habitat area /km²/	Coverage /%/	Number of sites							
France	20	N/A	15							
Italy	30	21	101							
Portugal	0.8	100	1							
Spain	3.41	41	8							
UK	0.8	100	1							
Total	55	36	126							

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain and United Kingdom. This conclusion was reached despite favourable status in Italy and Portugal. France reported unfavourable – bad conservation status of the habitat type. On the level of biogeographical region, three parameters (Range; Area; Structure and Functions) were assessed as favourable, the last one (Future prospect) as unfavourable – inadequate. The overall conservation status for the region has not been changed from previous reporting.

Treated	data	from I	/lem	ber S	states r	eports										
MIC		Range (km ²)				A	rea		Struct &	Future		Ov	erall asses	k		
IVI5	Surfa	ce % M	IS S	Trend	Ref.	Ref. Surface % MS Trend Ref. func.		prosp.	Curr. CS	G Qualifi	er Prev.	CS Na	t. of ch.			
ES	74:	51 24	7	0	x	8.40	5.6	0	x	FV	U1	Ul	x	U1		nc
FR	460	00 15	3	0	≈4600	N/A	N/A		>>	Ul	U2	U2		UI		b1
IT	1780	00 59	2	0	≈17800	140.98	93.4	0	≈140.98	FV	FV	FV		FV	6:	
PT	30	00 1		0	≈300	0.80	0.5	0	≈0.80	XX	FV	FV	ī .	UI		c1
UK		1 0		0	1	0.80	0.5	0	0.80	U1	U1	UI	- I	Ul	-	a
EU Biog	eograp	hical a	sses	smer	nt and pr	roposed	correc	tions				-11				
-		Panga				Ares		s		Future	Curr (15		Prate CS		Tar	get 1
MS/EU27	Surface	Concl.	Tren	d Re	ef. Surfa	ce Concl	Trend	Ref.	func.	prosp.	Concl.	Qualifier	Concl.	Nat. of ch.	Contrib.	Туре
EU27	30152	2GD	0		1	51 2GD	0	1	2GD	2GD	MTX	2	U1	nc	С	2
Legend:	MS –	Mem	oer S	State	; Overa	ll asses	- Over	all ass	essmen	t; % M	S – per	centage	e of the	surface	e area	in the
respectiv	/e Me	mber	Stat	e cor	mpared	l to wh	ole Bio	ogeogr	raphical	Regior	n; Ref.	– refere	ence val	lue; Str	uct & i	func
structure	e and	functi	ons;	Futu	ure pro	sp. – f	uture	prospe	ect; Cur	r. CS –	curre	nt conse	ervation	n status	; Prev	. CS –
previous	conse	ervatio	n st	atus;	Nat. o	f ch. –	nature	e of ch	ange; E	U27: as	sessm	ent on f	the leve	el of all	EU Me	ember
Countrie	s; Con	cl. – co	onclu	usion	; Targe	t 1: - tai	rget 1	of the	EU 2020) Biodiv	ersity S	Strategy				
Conserva	ation	status	F	FV Fa	avourab	ole U1	L Unfa	vourat	ole - inad	lequate	U2	Unfavou	irable - b	ad X	X Unk	nown
Trend	() = sta	ble;	+ = 1	increas	e; - = d	ecreas	e; x = (unknow	'n						
Qualifier	• =	= stab	e; +	posi	tive; - r	negative	e; x un	knowr	า							
Nature o	of a	a – gei	nuin	e cha	inge; b	– chang	ge due	to bet	ter data	a or imp	proved	knowle	dge; b2	– due t	o taxo	nomic
change	r	eview	; c1	– du	e to dif	ferent r	netho	ds to n	neasure	or eval	uate; c	2 - due	to diffe	rent thr	esholo	ls use;
	c	d - no	infor	rmati	on abo	ut natu	re of c	hange;	; e - due	to less	accura	te or ab	sent da	ta; nc -	no cha	inge
Target 1	/	A - fav	oura	able a	assessm	nents; E	3 - imp	roved	assess.;	; C - de	teriora	ted asse	essment	ts; D - ι	unfavo	urable
contribu	tion	and ur	and unknown assessments that did not change; E - assessments that became unknown.									that be	came ur	nknown		

Pressures, threats and proposed measures

The countries reported several pressures; the most important are invasive non-native species, urbanised areas, human habitation, and improved access to site, outdoor sports and leisure activities, recreational activities. Other important pressures are mining and quarrying, sport and leisure structures.

Code	Pressure name	ES	FR	IT	PT	UK
B01.02	Artificial planting on open ground (non-native trees)			L		
C01	Mining and quarrying		L	Μ		
C01.01	Sand and gravel extraction			Μ		
D01	Roads, paths and railroads		L			
D01.01	Paths, tracks, cycling tracks				Μ	
D01.02	Roads, motorways			Μ		
D03	Shipping lanes, ports, marine constructions		L			
D05	Improved access to site		н		Μ	
E01	Urbanised areas, human habitation	Н	Μ		L	
E01.02	Discontinuous urbanisation			Μ		
E01.03	Dispersed habitation			Μ		
E02	Industrial or commercial areas		Μ			
E03	Discharges		L			
E04	Structures, buildings in the landscape		Μ			
E05	Storage of materials		L			
G01	Outdoor sports and leisure activities, recreational activities		Н			
G01.03	Motorised vehicles			Μ		
G02	Sport and leisure structures		Μ		L	
G04.01	Military manouvres					Μ
G05.01	Trampling, overuse				Μ	
101	Invasive non-native species	Н	Н			
J01.01	Burning down			M		
K01.01	Erosion			M		
K02.01	Species composition change (succession)					Н

Legend:

L Low intensity

M Medium intensity H High intensity

Legal protection of habitats and species is the most important proposed measure. Other important measures are restoration of coastal areas; management of landscape features, and other spatial measures. According to France there is no measures needed for the conservation of the habitat/species.

Code	Measure name	ES	FR	IT	PT	UK
1.1	No measures needed for the conservation of the habitat/species		М			
1.2	Measures needed, but not implemented	NA			NA	Н
4.4	Restoring coastal areas		М	Μ		
6.0	Other spatial measures		М		Н	
6.3	Legal protection of habitats and species			Μ		Н
6.4	Manage landscape features		M			

Legend: L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 5320 reached the LHF score 31.73. This habitat type was classified as LHF especially because, to reach improvement, the change from declining to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Area) in one country (France) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, increase of the habitat area by habitat restoration in France is needed. Further improvement could be reached by improving of the habitat structure in France. The main measures should include legal protection of habitats and species, restoration of coastal areas; management of landscape features, and other spatial measures. In frequently visited areas with public access, to limit the possibilities for rambling off-piste walkers. Needed is also control of rapidly growing invasive species such as species of genus *Carpobrotus* or *Pennisetum*. Better information about habitat structure and functioning is needed in Portugal.

According to France there is no measure needed for the conservation of the habitat/species. This information is in contradiction with both three measures of medium importance proposed by France and with unfavourable – bad overall conservation status reported by France.

Links

Anonymous, 2012: Formations basses d'euphorbes près des falaises. http://www.paca.developpement-durable.gouv.fr/IMG/pdf/1_H5320_cle2b7578.pdf

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Sclerophyll ous+scrubs&subject=5320®ion=MED

Rodríguez, J., Traveset, A., 2009. 5320 Formaciones bajas de Euphorbia pythyusa próximas a acantilados. - In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 56 p.

5430 Endemic phryganas of the Euphorbio-Verbascion

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Spain and Italy. The habitat is in the Mediterranean biogeographic region distributed in Mediterranean islands. It is widespread in Sardinia (Italy) and Crete (Greece). It occurs also in Lampedusa, Linosa, Pantelleria (all Italy), Malta, and Balearic islands (Spain).

Improvement of the habitat structure in Italy is needed. The main measures should include establishment of protected sites, legal protection of habitat and management of landscape features. Also control of rapidly growing invasive species such as species of genus *Carpobrotus* or *Pennisetum* is needed. Better information about habitat range and area is needed in Spain.

Habitat description

Cushion-forming thermo-Mediterranean sclerophyllous formations, often thorny and summer deciduous. There are several sub-types: Mid-elevation phryganas of Crete, *Hypericum* phryganas, Italian *Sarcopoterium* phryganas, Sardinian *Genista acanthoclada* phrygana, Balearic clifftop phryganas, Cyrno-Sardian *Genista* phryganas, Pantelleria phrygana.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is distributed in Mediterranean islands. It is widespread in Sardinia (Italy) and Crete (Greece). It occurs also in Lampedusa, Linosa, Pantelleria (all Italy), Malta, and Balearic islands (Spain). Almost the whole national habitat area is located in Natura 2000 sites in Italy (98 %) and Malta (97 %).

Natu	Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km²/	Coverage /%/	Number of sites									
Greece	0	0	11									
Italy	121	98	43									
Malta	32	97	3									
Spain	2.88	35	25									
Total	156	37	82									

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Spain and Italy. This conclusion was reached despite favourable status in Greece and Malta. On the level of biogeographical region, two parameters (Range; Area) were assessed as favourable, other two (Structure and Functions; Future prospect) as unfavourable – inadequate. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – inadequate. This change is not genuine, it is due to different methods used (Spain and Italy).

-		Par	na (lm2)			Area					1	Ove	erall asses		
MS	Surfa	Na % M	IS Tran	d Paf	Surface	% MS	Trand	Paf	func.	Puture prosp.	Curr C	Oualifi	ar Prati (Na Na	t of ch
-	Sulla	70 141		u iter.	Surface	201010	itenu	iter.			Curr. C.	Quantik	er Trev. v		t of cit
GR	254.3	0.9	0	254.30	254.30	60.8	0	254.30	FV	XX	FV		FV		
ES	392	28 14.:	5 x	3	8.19	2	14	x	FV	U1	Ul	x	XX		c1
IT	2290	84.5	5 0	≈22900	122.75	29.3	0	≈122.75	U1	U1	Ul		FV		c1
MT	3	3 0.1	0	≈33	33	7.9	0	≈33	FV	FV	FV		XX		nc
EU Biog	eograp	hical a	ssessm	ent and p	proposed	correc	tions								
		Range			Area	6	[Struct.	Future (Curr CS		Prev. CS		Tarj	get 1
MS/EU27	Surface	Concl	Trend	Ref. Su	face Conc	L. Trend	Ref.	func.	prosp.	Concl.	Qualifier	Concl.	Nat. of ch.	Contrib.	Туре
EU27	27115	2GD	0		418 2GD	0		2GD	2GD	MTX	- (XX	no	С	
Legend:	MS –	Memb	er Stat	e; Over	all asses	- Over	all ass	essmen	nt; % MS	S – per	centage	e of the	surface	area	in the
respectiv	ve Me	mber S	State c	ompare	d to wh	ole Bio	ogeogi	raphical	Region	ı; Ref.	– refere	ence val	ue; Strı	ict &	func
structure	e and	functio	ons; Fu	iture pr	osp. – f	uture	prospe	ect; Cur	r. CS –	currei	nt cons	ervation	status;	Prev	. CS –
previous	conse	rvatio	n statu	is; Nat.	of ch. –	nature	e of ch	ange; E	U27: as	sessm	ent on t	the leve	l of all I	EU M	ember
Countrie	s; Con	cl. – co	onclusio	on; Targe	et 1: - ta	rget 1	of the	EU 2020) Biodiv	ersity S	Strategy	' .			
Conserv	ation s	status	FV	Favoura	ble U	1 Unfa	ivourat	ole - inad	lequate	U2	Unfavou	ırable - b	ad XX	Unk	nown
Trend	C) = stal	ble; + =	increa	se; - = d	ecreas	e; x =	unknow	/n						
Qualifie	r =	stabl	e; + po	sitive; -	negative	e; x un	knowr	1							
Nature o	of a	a – gen	uine cl	hange; b	– chan	ge due	to bet	ter data	a or imp	proved	knowle	dge; b2	– due te	o taxo	nomic
change	r	eview	; c1 – d	lue to di	fferent	netho	ds to n	neasure	or eval	uate; c	2 - due	to differ	ent thr	esholo	ds use;
	c	d - no i	nforma	ation ab	out natu	re of c	hange;	; e - due	to less	accura	te or ab	sent dat	ta; nc - i	no cha	inge
Target 1	. A	A - favo	ourable	e assess	ments; E	3 - imp	roved	assess.	; C - de	teriora	ted ass	essment	s; D - u	nfavo	urable
contribu	tion a	and un	known	assessn	nents th	at did r	not cha	ange; E	- assess	ments	that be	came un	known.		

Pressures, threats and proposed measures

The countries reported several pressures. Spain states continuous urbanisation, discontinuous urbanisation, dispersed habitation, trampling, overuse, problematic native species as the most important. Invasive non-native species were considered as medium intensive according to all three countries. Other important pressures are removal of terrestrial plants, general, cultivation, grazing, sand and gravel extraction.

Code	Pressure name	ES	IT	MT
A01	Cultivation		М	
A04	Grazing		М	L
B01.02	Artificial planting on open ground (non-native trees)		М	
C01	Mining and quarrying			М
C01.01	Sand and gravel extraction		М	
D01	Roads, paths and railroads			М
D01.02	Roads, motorways		М	

50 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Code	Pressure name	ES	IT	MT
E01.01	Continuous urbanisation	Н		
E01.02	Discontinuous urbanisation	H		
E01.03	Dispersed habitation	H	М	
E01.04	Other patterns of habitation	М		
E03	Discharges		М	
E03.03	Disposal of inert materials			L
F04	Taking / Removal of terrestrial plants, general		М	М
G01.03	Motorised vehicles		М	
G05.01	Trampling, overuse	H		М
101	Invasive non-native species	М	М	М
102	Problematic native species			Н
J01.01	Burning down		М	
K01.01	Erosion		M	
L09	Fire (natural)			М

Legend: Low intensity M Medium intensity H High intensity

Malta proposed establishment of protected areas/sites, legal protection of habitats and species, management of landscape features, regulation/management of hunting and taking as highly important. Italy informed that there are measures needed, but not implemented.

Code	M	easure name	ES	IT	MT				
1.2	Me	easures needed, b		NA					
6.1	Est	ablish protected a			Н				
6.3	Le	Legal protection of habitats and species							Н
6.4	Ma	anage landscape fe	eatur	es					Н
7.1	Re	Regulation/ Management of hunting and taking							Н
Legend:	L	Low importance	М	Medium importance	н	High importance			

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 5430 reached the LHF score 3.13. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) and better information from Spain is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is needed. The main measures should include establishment of protected sites, legal protection of habitat and management of landscape features. Also control of rapidly growing invasive species such as species of genus *Carpobrotus* or *Pennisetum* is needed (Rodríguez Pérez et Traveset 2009). Better information about habitat range and area is needed in Spain.

Links

- https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Sclerophyll ous+scrubs&subject=5430®ion=MED
- Rodríguez Pérez, J., Traveset, A., 2009. 5430 Matorrales de tipo frigánico endémicos de Euphorbio-Verbascion. - In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 53 p.

6520 Mountain hay meadows

Х

Selected for first round of Biogeographical Seminar

Selected using "Low hanging fruit" approach

Habitat summary

The habitat occurs in the Mediterranean biogeographical region in France only and its overall conservation status in the Mediterranean region is assessed as unfavourable - bad due to the habitat area far below the reference value.

For the improvement of the overall conservation status, stopping of the habitat area decrease in France is needed. Further improvement could be reached by habitat restoration. The restoration measures include removal of scrub, trees and dead herb biomass and start of mowing and grazing. The improving the conservation status of the habitat requires suitable management on large spatial scale and avoidance of intensive management. The most effective management is the combination of mowing once a year with subsequent grazing by small groups of cattle.

Habitat description

Species-rich mesophile hay meadows of the montane and sub-alpine levels (mostly above 600 metres) usually dominated by *Trisetum flavescens* and with *Heracleum sphondylium*, *Viola cornuta*, *Astrantia major*, *Carum carvi*, *Crepis mollis*, *C. pyrenaica*, *Bistorta major* (*Polygonum bistorta*), *Silene dioica*, *S. vulgaris*, *Campanula glomerata*, *Salvia pratensis*, *Centaurea nemoralis*, *Anthoxanthum odoratum*, *Crocus albiflorus*, *Geranium phaeum*, *G. sylvaticum*, *Narcissus poeticus*, *Malva moschata*, *Valeriana repens*, *Trollius europaeus*, *Pimpinella major*, *Muscari botryoides*, *Lilium bulbiferum*, *Thlaspi caerulescens*, *Viola tricolor* ssp. *subalpina*, *Phyteuma halleri*, *P. orbiculare*, *Primula elatior*, *Chaerophyllum hirsutum* and many others.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in the Mediterranean biogeographical region only in France with the habitat area of 54 km². The whole national habitat area is located in Natura 2000 sites.

Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km²/	Coverage /%/	Number of sites								
France	54	100	17								
Italy	N/A	N/A	2								
Total	54	100	19								

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

France reported unfavourable - bad overall conservation status of this habitat type. Only the parameter (Range) was assessed as favourable. Parameter Structure and Functions was assessed as unfavourable - inadequate and the last two parameters (Area and Future prospects) as unfavourable - bad. The overall conservation status for the region has not been changed from previous reporting.

Treated	l data f	rom M	embe	r Staf	es rej	ports											
MS		Rang	ge (km²)				Are	a		Struct &	& Future		C)verall ass	es.		
1415	Surfac	e % M	S Tre	nd R	ef. St	urface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Qual	ifier Pre	v. CS	Nat.	of ch.
FR	850	0 100	0	≈8	500	54	100		>>54	Ul	U2	U2		Ţ	J2	nc	
EU Biog	eograp	hical as	sessn	nent a	nd pro	posed	d corre	ctions	8.1								
N/C (E1107	0	Range	T1	D-6		Area		D .¢	Struct.	Future	Curr. CS	0.16.	Prev. CS	N		Targe	t 1
MS/EU2/	Surface	Concl.	Irend	Rei.	Surrace	Concl	: Irend	ReI.	func.	prosp.	Concl.	Quaimer	Concl.	INat. OI CI	Con	trib.	Туре
EU27	8500	00	0	≈8500	54	00	1 22	>>54	00	00	MTX	22	U2	nc	0	3	5.23
structure previous Countries	e one f and f conset s; Conc	function rvation	ns; Fu statu nclusic	iture is; Na on; Ta	prosp t. of c rget 1	5 who . – fu :h. – i : - tar	uture nature get 1 c	orospeog orospe of ch of the	ect; Cu ange; EU 202	ar Regi irr. CS EU27: 20 Biod	– curre assessn liversity	ent con nent on Strateg	servation servation the le	on stati	us; Pr II EU	а п rev. Mei	CS – mber
Conserva	ation s	tatus	FV	Favoi	urable	U1	Unfa	voural	ole - ina	adequat	e U2	Unfavo	ourable	- bad	XX L	Jnkn	own
Trend	0	= stab	le; + =	incr	ease;	- = de	ecrease	e; x =	unkno	wn							
Qualifier	• =	stable	; + po	sitive	; - neg	gative	; x unl	knowr	۱								
Nature o	of a	– geni	uine cl	nange	; b – d	chang	e due	to be	tter da	ta or in	nprove	d knowl	edge; b	o2 – due	e to ta	axon	omic
change	re	eview;	c1 – d	ue to	differ	ent n	nethoo	ls to n	neasur	e or ev	aluate;	c2 - du	e to dif	ferent t	hresh	olds	; use;
	d	- no in	forma	ition a	about	natur	e of cl	nange	; e - du	e to le	ss accur	ate or a	absent o	data; nc	- no (char	ıge
Target 1	A	- favo	urable	e asse	ssmei	nts; B	- imp	roved	asses	s.; C - c	deterior	ated as	sessme	ents; D -	unfa	ivou	rable
contribu	tion a	nd unk	nown	asses	smen	ts tha	it did n	ot cha	ange; E	- asse	ssment	s that b	ecame	unknow	/n.		

Pressures, threats and proposed measures

France reported several pressures; the most important is fertilisation. Other important pressures are cultivation and biocenotic evolution, succession.

Code	Pressure name	FR
A01	Cultivation	Μ
A02	Modification of cultivation practices	L
A04	Grazing	L
A08	Fertilisation	Н
K02	Biocenotic evolution, succession	Μ

Legend: Low intensity M Medium intensity H High intensity

France considers maintaining grasslands and other open habitats, adapting crop production, and other agriculture-related measures as medium important.

Code	Measure name	FR
2.0	Other agriculture-related measures	М
2.1	Maintaining grasslands and other open habitats	М
2.2	Adapting crop production	Μ

Legend: Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 6520 reached the LHF score 3.00. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also all habitat area in France is located in Natura 2000 sites and the fact that the improvement of trend of only one parameter (Area) in one country (France) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, stopping of the habitat area decrease in France is needed. Further improvement could be reached by habitat restoration. The most effective way of maintaining the species structure of mountain hay meadows is the combination of mowing once a year with subsequent grazing. Grazing, however, should be done by small groups of cattle grazing the vegetation for a short time at the beginning of the growing season, and then after the first or second mowing (the autumn grazing of fresh grass). Mulching twice a year, while leaving the biomass on the site, is the preferred way of maintaining the meadows with a lower biomass production in lower altitudes, especially where the hay has no use. It is not suitable for grasslands in higher altitudes with frequent rains where decomposition of a large volume of biomass is slower. In case that the meadows are only mown, it is appropriate to fertilize them (Hegedüšová et al., 2011). The restoration measures include removal of scrub, trees and dead herb biomass and start of mowing and grazing.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Grasslands &subject=6520®ion=MED

Hegedüšová, K., Ružičková, H., Janák, M., 2011: Mountain hay meadows. - In: Šefferová Stanová, V., Plassman Čierna M. (eds.): Management models for grassland habitats. Daphne, Bratislava: 16-17.

8240 Limestone pavements

v

Selected for first round of Biogeographical Seminar

Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Portugal. The habitat occurs in the Mediterranean biogeographic region in Italy, France, and Portugal. Around 73% of the habitat area is located in Italy.

For the improvement of the overall conservation status in the Mediterranean biogeographical region, stopping habitat area decrease in Portugal is needed. Further improvement could be reached by habitat restoration and thus increasing of the habitat area in Portugal. The main measure is regulation of exploitation of natural resources, especially interdiction of quarrying in the area of habitat occurrence. Pasture management should be oriented to the maintenance of extensive grazing (ICNB). Other important measure is legal protection of habitat.

Habitat description

Regular blocks of limestone known as "clints" with loose flags separated by a network of vertical fissures known as "grykes" or "shattered pavements", containing more loose limestone rubble. The rock surface is almost devoid of overlying soils (considerably less than 50% cover) except for some patches of shallow skeletal or loessic soils, although more extensive areas of deeper soil occasionally occur; sometimes there is encroachment of peat. This morphology offers a variety of microclimates allowing the establishment of complex vegetation consisting of a mosaic of different communities. The fissures provide a cold humid microclimate where shade-tolerant vascular plants such as *Geranium robertianum* and *Ceterach officinale* occur, as well as formations of herbaceous species typical of calcareous woodland; the small pockets of soil are occupied by communities of *Mesobromion* (e.g. *Seslerio-Mesobromenion*); heath and scrub also occur (e.g. *Corylo-Fraxinetum*). Apart from areas of species rich scrub (generally *Prunetalia spinosae*), the ecosystem is maintained by grazing in some regions; this, combined with severe winds, means that isolated shrubs can only survive in prostrate growth form (e.g. *Dryas octopetala*); at the margins of ungrazed sites *Geranium sanguineum* occurs.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in Italy, France, and Portugal. The overall representation of the habitat in Natura 2000 sites is high (ca 99 %). The whole national habitat area is located in Natura 2000 sites in France and also in Italy.

Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km²/	Coverage /%/	Number of sites								
France	11	100	7								
Italy	31	100	33								
Portugal	0	N/A	5								
Total	42	99	45								

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Portugal. This conclusion was reached despite favourable status in France and Italy. On the level of biogeographical region, two parameters (Structure and Functions; Range) were assessed as favourable, other two (Future prospects; Area) as unfavourable – inadequate. The overall conservation status for the region has not been changed from previous reporting.

Treated	l data i	from N	1ember	Stat	es rep	orts											
1.10		Rai	nge (km²))			Ar	ea		Struct &	Future		C)verall as:	es.		
NI5	Surfac	ce % N	IS Tren	d R	tef. S	urface	% MS	Trend	Ref.	func.	prosp	Curr. C	S Quali	ifier Pre	v. CS	Nat.	of ch.
FR	150	00 7.7	0	×	1500	11,40	26.9	0	≈11.40	FV	FV	FV		1	V	nc	
IT	1130	00 57.	7 0	≈1	1300	31.01	73.1	0	≈31.01	FV	FV	FV			V		
PT	680	34.	7 0		x	N/A	N/A	82	>	FV	U1	Ul			J1	nc	
EU Biog	eograp	hical a	ssessm	ent a	nd prop	osed	correct	tions									
METINZ	S	Range	Trand	Def	Surferer	Area	Trand	Def	Struct.	Future	Curr. CS	Onelifium	Prev. CS	ev. CS		Targe	et 1
NI5/E027	Surface	Concl.	ITend	Rel.	Surface	Concl		Rei.	func.	prosp.	Concl.	Quanner	Concl.	INAL OF C	Co	ntrib.	Туре
EU27	19600	0	0 ≈	19600	42	2GD		>42	0	2GD	MTX	84	Ul	nc		С	12
Legend: respectiv structure previous	MS – I ve Mer e and conse	Memb mber : functio rvatio	er Stat State c ons; Fu n statu	e; Ov ompa iture s; Na	verall a ared to prosp it. of c arget 1	asses- o who . – fu :h. – r	Overa ole Bio uture p nature get 1 c	all asse ogeogra prospe of cha	essmer aphica ct; Cui ange; E	nt; % M I Regio rr. CS - EU27: a O Biodiv	IS – pe n; Ref. - curre ssessm	rcentag – refer ent cons ient on Strategy	e of th ence v ervation the lev	e surfa alue; S on stati vel of a	ce a truci us; F II EL	rea i t & fi Prev. I Me	n the unc CS – mber
Conserv	ation s	status	FV	Favo	urable	U1	Unfa	vourab	le - ina	dequate		Unfavo	, . urable -	bad	XX	Unkn	iown
Trend	C) = sta	ble; + =	incr	ease;	- = de	ecrease	e; x = u	Inknov	vn							
Qualifie	r =	stabl	e; + po	sitive	e; - neg	gative	; x unk	known									
Nature o	of a	a – gen	nuine cł	nange	e; b – o	chang	e due	to bet	ter dat	a or im	proved	l knowle	edge; b	2 – due	e to t	axor	omic
change	r	eview	; c1 – d	ue to	o differ	ent m	nethoo	ls to m	easure	e or eva	luate;	c2 - due	to diff	erent t	hres	hold	s use;
	C	d - no i	nforma	tion	about	natur	e of ch	nange;	e - due	e to less	accura	ate or al	osent d	lata; nc	- no	char	ıge
Target 1	A	A - fav	ourable	e asse	essmei	nts; B	- imp	roved	assess.	.; C - de	eteriora	ated ass	essme	nts; D -	unf	avou	rable
contribu	tion a	and un	known	asse	ssmen	ts tha	it did n	iot cha	nge; E	- assess	sments	that be	came ı	unknow	'n.		

Pressures, threats and proposed measures

The countries reported several pressures; the most important is mining and quarrying. Other important pressures are abandonment of pastoral systems, lack of grazing, sand and gravel quarries, renewable abiotic energy use, discharges, and skiing complex.

Code	Pressure name	FR	IT	PT
A04.03	Abandonment of pastoral systems, lack of grazing			Μ
C01	Mining and quarrying	Μ	н	

57 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Code	Pressure name	FR	IT	РТ
C01.01.01	Sand and gravel quarries			М
C03	Renewable abiotic energy use	Μ		
D01	Roads, paths and railroads	L		
D02	Utility and service lines	L		
E01	Urbanised areas, human habitation	L		
E02	Industrial or commercial areas	L		
E03	Discharges	Μ		
E04	Structures, buildings in the landscape	L		
E05	Storage of materials	L		
G01.04	Mountaineering, rock climbing, speleology		L	
G01.06	Skiing, off-piste		L	
G02.02	Skiing complex		М	
G05.01	Trampling, overuse		L	
K02.01	Species composition change (succession)			L
L04	Avalanche		L	

Legend: L Low intensity M Medium intensity H High intensity

The regulating/management exploitation of natural resources is the most important proposed measure. Another important measure is legal protection of habitats and species. According to France there is no measure known or it is impossible to carry out specific measures.

Code	Measure name	FR	IT	РТ
1.3	No measure known/ impossible to carry out specific measures	Μ		
2.1	Maintaining grasslands and other open habitats			L
6.3	Legal protection of habitats and species		М	
9.1	Regulating/Management exploitation of natural resources on land		Н	Н

Legend: L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 8240 reached the LHF score 1.00. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of quite significant representation of the habitat in Natura 2000 sites (up to 99 %) and the fact that the improvement of trend of only one parameter (Area) in one country (Portugal) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, stopping habitat area decrease in Portugal is needed. Further improvement could be reached by the habitat restoration and thus increasing of the habitat area in Portugal. The main measure is regulation of exploitation of natural resources, especially interdiction of quarrying in the area of habitat occurrence. Pasture management should be oriented to the maintenance of extensive grazing (ICNB). Other important measure is legal protection of habitat. According to France there is no measure known or it is impossible to carry out specific measures.

Links

- https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Rocky+habi tats&subject=8240®ion=MED
- ICNB: 8240 *Lajes calcarias. http://www.icnf.pt/portal/pn/biodiversidade/rn2000/resource/docs/rnplan-set/hab/hab-8240

9180 Tilio-Acerion forests of slopes, screes and ravines

Х

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of France and Italy. The habitat occurs in the Mediterranean biogeographic region in Italy, France, Spain, and Greece. Around 65% of the habitat area is located in Italy.

Improvement of the habitat structure in Italy is needed. Further improvement could be reached by habitat restoration and thus increasing of the habitat area in Italy. The main measures should include adaptation of forest management and restoring forest habitat. The measures should respect the soil protection and anti-erosion functions of the habitat and support them. The management interventions should be minimised and fine measures preferred. It is needed to replace clear-cuts by individual trees selection, the stands in extreme positions (steep relief, shallow soils, screes) should be excluded from management, the natural regeneration should be preferred, the dead wood should be left in stands. Other important measures include establishment of protected sites and legal protection of habitats and species. Better information about habitat area in France and habitat structure and functioning in Spain is needed.

Habitat description

Mixed forests of secondary species (*Acer pseudoplatanus, Fraxinus excelsior, Ulmus glabra, Tilia cordata*) of coarse scree, abrupt rocky slopes or coarse colluvions of slopes, particularly on calcareous, but also on siliceous, substrates (*Tilio-Acerion* Klika 55). A distinction can be made between one grouping which is typical of cool and humid environments (hygroscopic and shade tolerant forests), generally dominated by the sycamore maple (*Acer pseudoplatanus*) - sub-alliance *Lunario-Acerenion*, and another which is typical of dry, warm screes (xerothermophile forests), generally dominated by limes (*Tilia cordata, T. platyphyllos*) - sub-alliance *Tilio-Acerenion*. The habitat types belonging to the *Carpinion* should not be included here.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in Italy, France, Spain, and Greece. Quite a large proportion of the national habitat area is located in Natura 2000 sites in France (around 70%), a large part also in Spain, but there might be an overestimation of the habitat area in Natura 2000 sites.

Natura 2000 sites in the Mediterranean region												
Country	Habitat area /km²/	Coverage /%/	Number of sites									
France	40-50	62-77	42									
Greece	0	0	6									
Italy	71	31	81									
Spain	50	139	39									
Total	161-171	47	168									

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - inadequate due to assessment of France and Italy. The overall conservation status is favourable in Greece and unknown in Spain. Better knowledge of habitat area in France and habitat structure and functions in Spain is needed. On the level of biogeographical region, all four parameters (Range; Area; Structure and Functions; Future prospect) were assessed as unfavourable – inadequate. The overall conservation status for the region has not been changed from previous reporting.

Treated	l data i	from N	lembe	er Sta	ates re	ports									
MS		Rai	ige (km	(km ²)			A	rea		Struct &	Future		Ove	rall asses.	
1410	Surfac	e %N	IS Tre	nd	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	G Qualifie	r Prev. C	S Nat. of ch.
GR	2	3 0	0		23	23	6.6	0	23	FV	FV	FV		FV	
ES	3345	34.	9 x		33451	36	10.3	0	≈36	XX	XX	XX		XX	
FR	3190	0 33.	2 0) =	31900	65	18.5	x	x	FV	U1	U1	x	U1	nc
IT	3060	0 31.	9 0) 7	30600	227.09	64.7	0	>227.09	U1	FV	Ul		FV	c1
EU Biogeographical assessment and proposed corrections															
MS/EU27	Surface	Range Concl.	Trend	Ref.	Surfa	ce Area Concl	Trend	Ref.	Struct. func.	Future of prosp.	Curr. CS Concl.	Qualifier	Prev. CS Concl.	at. of ch.	Target 1
EU27	95974	1	0	>9597	4 3.	51 2XA	0		2XA	2XA	MTX	a (U1	nc	C -
Legend: respectiv structure previous	MS – ve Me e and conse	Memt mber functio rvatio	oer Sta State ons; F n stat	ate; (com utur us; 1	Overal pared e pro: Nat. of	l asses to wh sp. – f ch. –	- Over ole Bio uture nature	all ass ogeogi prospe of ch	essmen raphical ect; Cur ange; E	it; % M Regior r. CS – U27: as	S – per n; Ref. curre ssessm	rcentage – referent nt conse ent on	e of the ence valuervation the level	surface ue; Stru status; of all I	area in the ct & func Prev. CS – U Member
Countrie	s; Con	cl. – co	onclus	ion;	Target	1: - tai	get 1	of the	EU 2020) Biodiv	ersity S	Strategy			
Conserv	ation s	$\frac{1}{1}$		Fav	ourab	e U		avourat	ole - inad	lequate	02	Unfavol	irable - ba	ad XX	Unknown
Oualifie	r =	stabl	e: + p	ositi	ve: - n	egative	e: x un	knowr		/11					
Nature o	of a	i – ger	nuine	chan	ge; b -	- chang	ge due	to be	tter data	a or imp	proved	knowle	dge; b2 ·	- due to	taxonomic
change	r	eview	; c1 —	due	to diff	erent r	netho	ds to n	neasure	or eval	uate; d	2 - due	to differ	ent thre	esholds use;
	c	l - no i	nform	natio	n aboı	ıt natu	re of c	hange	; e - due	to less	accura	ite or ab	sent dat	a; nc - r	io change
Target 1	A	A - fav	ourab	le as	sessm	ents; E	8 - imp	proved	assess.;	; C - de	teriora	ited ass	essment	s; D - u	nfavourable
contribu	tion a	nd un	know	n ass	essme	ents tha	at did r	not cha	ange; E -	- assess	ments	that be	came un	known.	

Pressures, threats and proposed measures

The countries reported a broad range of pressures; the most important is grazing (reported by to Spain). Other important pressures are forest exploitation without replanting or natural regrowth,

Code	Pressure name	ES	FR	IT
A04	Grazing	Н		
A05	Livestock farming and animal breeding (without grazing)	M		
B01	Forest planting on open ground	M		
B01.02	Artificial planting on open ground (non-native trees)			Μ
B02	Forest and Plantation management & use		М	
B02.02	Forestry clearance			М
B03	Forest exploitation without replanting or natural regrowth	M		Μ
D01	Roads, paths and railroads	M	L	
D01.02	Roads, motorways			Μ
E03	Discharges		L	М
E06	Other urbanisation, industrial and similar activities	L		
F06	Hunting, fishing or collecting activities not referred to above	L		
G01	Outdoor sports and leisure activities, recreational activities	L		
G01.03	Motorised vehicles			М
G01.04	Mountaineering, rock climbing, speleology	L		
G02	Sport and leisure structures	L		
G02.02	Skiing complex	L		
H01	Pollution to surface waters (limnic & terrestrial, marine & brackish)			М
H06.01	Noise nuisance, noise pollution	L		
101	Invasive non-native species		L	L
J01.01	Burning down			М
J02	Human induced changes in hydraulic conditions		L	
J02.05.02	Modifying structures of inland water courses			M
K01	Abiotic (slow) natural processes		L	
K01.01	Erosion	L		
K02	Biocenotic evolution, succession		L	
K03.04	Predation	L		
K04	Interspecific floral relations	L		
K05	Reduced fecundity/ genetic depression	L		
L04	Avalanche	L		
L09	Fire (natural)	L		

roads, paths and railroads, livestock farming and animal breeding (without grazing), forest planting on open ground, pollution to surface waters, and burning down.

Legend:

Low intensity

M Medium intensity H High intensity

Adapting forest management, restoring/improving forest habitats are the most important proposed measures. Other important measures are establishment of protected areas/sites, legal protection of habitats and species, and other species management measures.

Code	Measure name	ES	FR	IT
1.2	Measures needed, but not implemented	N/A		
3.0	Other forestry-related measures	L		
3.1	Restoring/improving forest habitats	М		H
3.2	Adapt forest management	L	М	H
6.0	Other spatial measures	L		
6.1	Establish protected areas/sites	Н		L
6.3	Legal protection of habitats and species	Н		
7.0	Other species management measures	Н		
7.4	Specific single species or species group management measures	M		
9.0	Other resource use measures	M		

Legend: Low importance

M Medium importance

H High importance

Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats) 62

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 9180 reached the LHF score 13.60. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) and better information from Spain and France are needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is needed. Further improvement could be reached by habitat restoration and thus increasing of the habitat area in Italy. The main measures should include adaptation of forest management and restoring forest habitat. The measures should respect the soil protection and anti-erosion functions of the habitat and support them. The management interventions should be minimised and fine measures preferred. It is needed to replace clear-cuts by individual trees selection, the stands in extreme positions (steep relief, shallow soils, screes) should be excluded from management, the natural regeneration should be preferred, the dead wood should be left in stands. Other important measures include establishment of protected sites and legal protection of habitats and species. Better information about habitat area in France and habitat structure and functioning in Spain is needed.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Forests&su bject=9180®ion=MED

9430 Subalpine and montane *Pinus uncinata* forests (* if on gypsum or limestone)

Selected for first round of Biogeographical Seminar

Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable -bad due to assessment of Spain. The habitat occurs in the Mediterranean biogeographic region in France and Spain. Around 62% of the habitat area is located in France.

Improvement of the habitat structure in Spain is needed. The main measures should include establishing of protected areas, adaptation of forest management, restoration or improvement of forest habitat, and legal protection of the habitat. The management of the habitat should preserve the habitat extent and the processes and dynamics that regenerate these forests and maintain their biodiversity. There is a need to apply management techniques that emulate the regime of natural disturbances in the opening of clearings. Forest regeneration should be protected from excessive pressure by herbivores, especially in relict populations with recruitment difficulties. Some areas must be preserved from any intervention for their integral conservation, monitoring and research. The regulation or elimination of other human activities is needed, too, especially urbanisation, mining, road building, sport and recreation, hunting.

Habitat description

Mountain pine (*Pinus uncinata*) forests, usually open and with a very developed shrubby understory, of the subalpine and montane levels; on limestone, gypsum or siliceous substrate in a cool or thermophile situation depending on the region. Sometimes mixed with *Pinus sylvestris*, more rarely with *Larix-Pinus cembra*. There are two major types: mountain pine forests of the western outer Alps, the Jura and Pyrenean ubacs, developed on siliceous or decalcified soils of the subalpine level with a predominately ericaceous undergrowth comprising *Rhododendron ferrugineum* (*Rhododendro-Vaccinion* p.), and xerocline mountain pine forests of the inner Alps, of the western outer Alps and the Jura, and of Pyrenean adrets, accompanied by a shrubby undergrowth in which *Rhododendron ferrugineum* (*Junipero-Pinion* p., *Erico-Pinion* p.).

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in France and Spain. The overall representation of the habitat in Natura 2000 sites is high, more precise calculation is not possible because of a large range reported by France. A large part of the national habitat area is located in Natura 2000 sites in Spain (95 %).

Natura	a 2000 sites in	n the Medit	erranean region
Country	Habitat area /km²/	Coverage /%/	Number of sites
France	2-60	3-100	9
Spain	35	95	21
Total	37-95	68	30

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - bad due to assessment of Spain. This conclusion was reached despite favourable status in France. On the level of biogeographical region, two parameters (Range; Area) were assessed as favourable, Structure and Functions as unfavourable – inadequate and the parameter Future prospect as unfavourable - bad. The overall conservation status for the region has been changed from previous reporting from unfavourable – inadequate to unfavourable – bad, but only due to different methods to measure or evaluate (Spain), and improved knowledge (France).

MS		Ran	ige (km ²)			Are	a		Struct &	Future	i.	C	verall	asses	43	
IVI5	Surfac	e % M	IS Tre	nd F	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Quali	ifier	Prev.	CS Nat	. of ch.
ES	841	3 34.9) 0	*	8413	37	38.1	0	≈37	U1	U2	U2			XX		c1
FR	1570	0 65.	0	≈1	5700	60	61.9	0	≈ <mark>6</mark> 0	FV	FV	FV		1	Ul		b1
EU Biog	jeograp	hical as	sessn	nent a	nd pr	oposed	correct	tions									
MS/FU27	Surface	Range	Trend	Ref	Surfa	Area	Trend	Ref	Struct.	Future	Curr. CS	Qualifier	Prev. CS	Nat	ofch	Targ	et 1
MOLOZY	ounace	Concl.	irena	1001.	June	Concl.		ICI.	func.	prosp.	Concl.	Quantier	Concl.	i val. v	or car.	Contrib.	Туре
EU27	24113	0	0	≈24113	8	97 0	0	≈97	2XA	2XA	MTX	38	UI	n	ò	C	1223
Legend:	MS – I	Vemb	er Sta	e; Ov	/eral	l asses-	Overa	ll asse	essme	nt; % N	1S – pe	ercentag	ge of th	ne su	rface	e area	in the
Legend: respectiv structure previous Countrie	MS – I ve Mer e and f conse es; Conce	Member S nber S functio rvatior cl. – co	er Sta tate c ns; Fu statu nclusio	e; Ov ompa iture is; Na on; Ta	veral ared pros it. of irget	l asses- to who sp. – fu ch. – n 1: - targ	Overa le Biog ture p ature get 1 of	II asse geogra rospe of cha f the E	essme aphica ct; Cu ange; EU 202	nt; % N al Regio Irr. CS · EU27: a 20 Biodi	1S – pe on; Ref. – curre assessm versity	ercentag – refe ent con nent on Strateg	ge of th rence v servation the least sy.	ne su value on st vel o	rface ; Str tatus f all	e area uct & f ; Prev. EU Me	in the func CS – ember
Legend: respectiv structure previous Countrie Conserv	MS – I ve Mer e and f s conse es; Conc ation s	Member S Tunctio rvatior cl. – co tatus	er Sta tate c ins; Fu statu nclusio FV	ce; Ov ompa iture is; Na on; Ta Favoi	veral ared pros it. of irget urabl	l asses- to who sp. – fu ch. – n 1: - targ e U1	Overa le Biog ture p ature get 1 of Unfav	II asse geogra rospe of cha f the E	essme aphica ct; Cu ange; EU 202 le - ina	nt; % N al Regio Irr. CS · EU27: a 20 Biodi Idequate	AS – pe on; Ref. – curre assessm versity = U2	ercentag – refe ent con nent on Strateg Unfavo	ge of th rence v servation the lead y.	ne su value on st vel o - bad	rface ; Str tatus f all	e area uct & f ; Prev. EU Me	in the func CS – ember
Legend: respective structure previous Countrie Conserv Trend	MS – I ve Mer e and f s conse es; Conce ation s	Vember S functio rvatior cl. – co tatus = stat	er Sta tate c ns; Fu statu nclusio FV ole; + =	e; Ov ompa iture is; Na on; Ta Favoi - incr	veral ared pros it. of arget urabl	l asses- to who sp. – fu ch. – n 1: - targ e U1 c; - = de	Overa le Biog ture p ature get 1 of Unfav crease	Il asse geogra rospe of cha f the E ourab ; x = u	essme aphica ct; Cu ange; EU 202 le - ina inknov	nt; % M al Regio Irr. CS EU27: a 20 Biodi Idequate Wn	AS – pe on; Ref. – curre assessm versity 2 U2	ercentag – refe ent con nent on Strateg Unfavo	ge of th rence v servatio the lev sy. ourable	ne su value on st vel o - bad	rface ; Str tatus f all X	e area uct & f ; Prev. EU Me X Unki	in the func CS – ember nown
Legend: respectiv structure previous Countrie Conserv Trend Qualifie	MS – I ve Mer and f conse s; Conc ation s 0 r =	Member S function rvatior cl. – co tatus = stak stable	er Sta tate c ns; Fu statu nclusio FV ole; + = c; + pc	e; Ov ompa iture is; Na on; Ta on; Ta <u>Favoi</u> <u>incr</u> sitive	veral ared pros it. of arget urabl rease ; - ne	l asses- to who sp. – fu ch. – n 1: - targ e U1 e; - = dec egative;	Overa le Biog ture p ature get 1 of Unfav crease x unk	Il asse geogra rospe of cha f the E ourab ; x = u nown	essme aphica ct; Cu ange; EU 202 le - ina inknov	nt; % M al Regio Irr. CS · EU27: a 20 Biodi Idequate Wn	4S – pe on; Ref. – curre assessm versity e U2	ercentag – refe ent con nent on Strateg Unfavo	ge of th rence v servatio the lev sy.	ne su value on st vel o - bad	rface ; Str tatus f all	e area uct & f ;; Prev. EU Me X Unk	in the func CS – ember nown
Legend: respective structure previous Countrie Conserv Trend Qualifie Nature o	MS – I ve Mer e and f conse s; Conc ation s ation s 0 r = of a	Member S function rvatior rvatior rvatior rvatior tatus = stable stable – gen	er Sta tate c ns; Fu nclusio FV ole; + = e; + pc uine c	e; Ov ompa iture is; Na on; Ta Favor Favor sitive hange	veral pros it. of irget urabl rease i; - ne e; b -	l asses- to who p. – fu ch. – n 1: - targ e U1 e; - = deu egative; - change	Overa le Biog ture p ature get 1 of Unfav crease x unkn e due t	Il asse geogra rospe of cha f the E ourab ; x = u nown o bett	essme aphica ct; Cu ange; EU 202 le - ina inknov	nt; % M al Regio Irr. CS - EU27: a 20 Biodi idequate wn ta or im	AS – pe on; Ref. – curre assessm versity e U2	ercentag – refe ent con hent on Strateg Unfavo	ge of th rence v servatio the let y ourable edge; b	ne su value on st vel o - bad	rface ; Str tatus f all x:	e area uct & f ;; Prev. EU Me X Unk	in the func CS – ember nown
Legend: respective structure previous Countrie Conserv Trend Qualifie Nature c change	MS – I ve Mer e and f conse s; Conce ation s 0 r = of a	Member S function rvation :1. – co tatus = stable stable – gen eview;	er Sta tate c ns; Fu statu nclusio FV ole; + = e; + pc uine c c1 - c	e; Ov ompa iture is; Na on; Ta Favor incr sitive hange lue to	veral ared pros it. of inget urabl cease c; - ne c; b - o diffe	l asses- to who sp. – fur ch. – n 1: - targ e U1 e; - = der egative; - change erent m	Overa le Biog ture p ature get 1 of Unfav <u>Crease</u> x unkn e due t ethods	Il asse geogra rospe of cha f the E ourab ; x = u nown o bett s to m	essme aphica ct; Cu ange; EU 202 le - ina inknov ter da easur	nt; % N al Regio Irr. CS - EU27: a 20 Biodi Idequate wn ta or im e or eva	AS – pe on; Ref. – curre assessm versity e U2 aprovec aluate;	ercentag – refe ent con hent on Strateg Unfavo d knowl c2 - duo	ge of th rence v servatio the lev yy. ourable edge; b e to diff	ne su value on st vel o - bad	rface ; Str tatus f all X due t	e area uct & f ; Prev. EU Me X Unkt	in the func CS – ember nown
Legend: respective structure previous Countrie Conserv Trend Qualifie Nature of change	MS – I ve Mere and f conse s; Conce ation s ation s of a of a d	Member nber S functio rvatior status = stat stable - gen eview; - no ir	er Sta tate c ns; Fu statu nclusio FV Pe; + pc uine c c1 - c aformatic	ce; Ov ompa iture is; Na on; Ta Favoi - incr sitive hange lue to ation a	veral pros it. of urabl cease c; - ne c; b - o diffe abou	l asses- to who sp. – fur ch. – n 1: - targ e U1 e; - e der egative; - change erent m it nature	Overa le Biog ture p ature get 1 of Unfav crease x unkn e due t e thods e of cha	Il asse geogra rospe of cha f the E rourab ; $x = u$ nown o bett s to m ange;	essme aphica ct; Cu ange; EU 202 le - ina inknov ter da easur e - du	nt; % N al Regio irr. CS - EU27: a 20 Biodi idequate wn ta or im e or eva e to les	AS – pe on; Ref. – curre assessm versity e U2 aprovec aluate; s accur	ercentag – refe ent con hent on Strateg Unfavo J knowl c2 - duo ate or a	ge of the rence v servation the lev yy. ourable burable burable burable burable	ne su value on st vel o - bad - bad	rface ; Str tatus of all x: due t nt thr nc -	e area uct & f ; Prev. EU Me X Unkt to taxo reshold no cha	in the func. CS - ember nown nomic ls use nge
Legend: respective structure previous Countrie Conserv Trend Qualifie Nature of change	MS – I ve Mere and fa conse as; Conc ation s of a f a f a f a r c f a r	Member S function rvatior rvatior tatus = stable - gen eview; - no ir - favo	er State cons; Functions; Functions not statument of the	e; Ov ompa iture is; Na on; Ta Favor incr sitive hange lue to ation a e asse	veral pros it. of urget urabl ease ; - ne ; b - o diffe abou	l asses- to who sp. – fu ch. – n 1: - targ e U1 e; - = deg egative; - change erent m it nature ents; B	Overa le Biog ture p ature get 1 of Unfav crease x unki e due t ethods e of cha - impr	Il asse geogra rospe of cha f the E ourab ; x = t nown o bett s to m ange; oved	essme aphica ct; Cu ange; <u>CU 202</u> le - ina inknov ter da easur e - du assess	nt; % N al Regio irr. CS - EU27: a 20 Biodi idequate wn ta or im e or eva e to les s.; C - d	45 – pe on; Ref. – curre assessm versity e U2 uprovec aluate; s accur eterior	rcentag – refe ent con hent on Strateg Unfavo d knowl c2 - duo ate or a ated as	ge of th rence v servation the lev y. burable - edge; b e to diff obsent of sessme	ne su value on st vel o - bad - bad	rfacco ; Str tatus f all X: due t tt thr nc - D - t	e area uct & f ;; Prev. EU Me X Unk co taxo reshold no cha unfavoi	in the func CS - ember nown nomic ls use; nge urable

Pressures, threats and proposed measures

The member countries reported a broad range of pressures. According to Spain, forestry clearance is the most important pressure. Both countries reported grazing, forest and plantation management and use, roads, paths and railroads, sport and leisure structures, and Introduced genetic material, GMO. Other important pressures are removal of dead and dying trees, forest exploitation without replanting or natural regrowth, hunting of wild animals, outdoor sports and leisure activities, recreational activities.

Code	Pressure name	ES	FR
A04	Grazing	М	М
A05	Livestock farming and animal breeding (without grazing)	М	
B02	Forest and Plantation management & use	М	L
B02.02	Forestry clearance	H	
B02.04	Removal of dead and dying trees	М	
B03	Forest exploitation without replanting or natural regrowth	М	
B06	Grazing in forests/ woodland		L
B07	Forestry activities not referred to above	М	
C01.04	Mines	L	
D01	Roads, paths and railroads	L	L
E01.03	Dispersed habitation	М	
E05	Storage of materials	L	
F03	Hunting and collection of wild animals (terrestrial)	М	
G01	Outdoor sports and leisure activities, recreational activities	М	
G02	Sport and leisure structures	М	L
H04	Air pollution, air-borne pollutants		L
103	Introduced genetic material, GMO	L	L
J01	Fire and fire suppression	М	
K01.01	Erosion	L	
K04	Interspecific floral relations	L	
L09	Fire (natural)	М	
M01	Changes in abiotic conditions	М	

Legend: L Low intensity M Medium intensity H High intensity

According to both countries restoring/improving forest habitats and adapting forest management are important proposed measures. Other important measures are the establishment of protected areas/sites, legal protection of habitats and species, specific single species or species group management measures.

Code	Measure name	ES	FR
3.0	Other forestry-related measures	М	
3.1	Restoring/improving forest habitats	М	М
3.2	Adapt forest management	М	М
6.0	Other spatial measures	М	
6.1	Establish protected areas/sites	Н	
6.3	Legal protection of habitats and species	M	
7.4	Specific single species or species group management measures	М	

Legend: L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 9430 reached the LHF score 2.11. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U2 (unfavourable-bad) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of quite significant representation of the habitat in Natura 2000 sites and the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Spain) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Spain is needed. The main measures should include establishing of protected areas, adaptation of forest management, restoration or improvement of forest habitat, and legal protection of the habitat. The management of the habitat should preserve the habitat extent and the processes and dynamics that regenerate these forests and maintain their biodiversity. It is recommended to carry out integrated and sustainable forest management respecting also accompanying forest tree species and the preservation of specific habitat features such as stumps, dead standing trees. There is a need to apply management techniques that emulate the regime of natural disturbances in the opening of clearings necessary for the regeneration and establishment of seedlings. Forest regeneration should be protected from excessive pressure by herbivores, especially in relict populations with recruitment difficulties. Some areas must be preserved from any intervention for their integral conservation, monitoring and research (Camarero 2009). The regulation or elimination of other human activities is needed, too, especially urbanisation, mining, road building, sport and recreation, hunting.

Links

Camarero, J. J., 2009. 9430 Bosques montanos y subalpinos de Pinus uncinata (en sustratos yesosos o calcáreos) (*). In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 64 pp. http://www.jolube.es/Habitat_Espana/documentos/9430.pdf

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Forests&su bject=9430®ion=MED

9510 Southern Apennine Abies alba forests

Х

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

Italy reported unfavourable - inadequate overall conservation status of this habitat type in Mediterranean biogeographical region. The habitat is in the Mediterranean biogeographic region distributed in Italy only.

Improvement of habitat structure and increase of the habitat area by habitat restoration in Italy are needed. The main measures are establishment of protected sites, legal protection of habitat and adaptation of forest management. The forest management adaptation should include elimination or reduction of some not sustainable practices like artificial forest planting using non-native trees, forest exploitation without replanting or natural regrowth, and removal of forest undergrowth. The control of human activities like roads, motorways, and skiing complex building, and generally urbanisation is also important.

Habitat description

Relict Abies alba woods associated with the beech forests of the Geranio versicolori-Fagion.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in Italy. The overall representation of the habitat in Natura 2000 sites is high (ca 75 %).

Nat	ura 2000 site	s in the Med	iterranean
		region	
Country	Habitat area /km ² /	Coverage /%/	Number of sites
Italy	31	75	12
Total	31	75	12

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

Italy reported unfavourable - inadequate overall conservation status of this habitat type in Mediterranean biogeographical region. Two parameters (Range; Future prospect) were assessed as favourable, other two (Structure and Functions Area) as unfavourable – inadequate. The overall conservation status for the region has been changed against previous reporting from favourable to unfavourable - inadequate, but this change is considered not genuine, due to different methods to measure or evaluate.

Treated	l data f	irom M	ember s	States	reports											
Mg		Rang	ge (km²)			Ar	ea		Struct	& Futu	re	c)verall as	ses.		
1015	Surfac	e %M	S Trend	Ref.	Surface	% MS	Trend	Ref.	func.	pros	p. Curr. C	CS Qual	ifier Pre	ev. CS	Nat	of ch.
IT	440	0 100	0	≈4400	41.12	100	0	>41.12	Ul	FV	UI			FV		cl
EU Biog	eograp	hical as	sessme	nt and p	proposed	d corre	ctions									
MC (E1107	Sunfran	Range	True d		Area	Tread	Def	Struct.	Future	Curr. CS	Outline	Prev. CS	Mar af a		Targe	et 1
MS/EU27	Surface	Concl.	Irend Re	er. Surra	Concl	irend	Kel.	func.	prosp.	Concl.	Quaimer	Concl.	INAL OF C	n. Co	ntrib.	Туре
EU27	4400	00	0 ≈44	00	41 00	0	>41	00	00	MTX	1.000	FV	no		С	-
structure previous Countrie	e and f conse s: Conc	functio rvation cl. – cor	ns; Futu status; nclusion	ure pro Nat. c : Targe	osp. – f of ch. – et 1: - ta	uture nature rget 1	prospe e of ch of the	ect; Cu lange; EU 202	rr. CS EU27: 20 Biod	– curr assessi liversity	ent con ment on / Strateg	servation the leg	on stat vel of a	us; F all EL	Prev. J Me	CS – ember
Conserv	ation s	tatus	FV F	avourat	ole U	1 Unfa	voural	ole - ina	dequat	te U2	Unfavo	ourable ·	- bad	XX	Unkr	nown
Trend	0	= stab	le; + = 1	increas	se; - = d	ecreas	e; x =	unknov	wn							
Qualifie	r =	stable	; + posi	tive; - r	negative	e; x un	knowr	۱								
Nature o	of a	– geni	uine cha	nge; b	– chan	ge due	to bet	tter dat	ta or in	nprove	d knowl	edge; b	2 – du	e to f	taxoi	nomic
change	r	eview;	c1 – du	e to dif	ferent r	netho	ds to n	neasur	e or ev	aluate	; c2 - du	e to dif	ferent	thres	hold	s use;
	d	- no in	formati	on abo	out natu	re of c	hange	; e - du	e to les	ss accu	rate or a	bsent o	lata; no	: - no	o cha	nge
Target 1	A	- favo	urable a	assessr	nents; E	3 - imp	proved	assess	s.; C - c	deterio	rated as	sessme	nts; D	- unf	avou	Jrable
contribu	tion la	nd unk	nown a	ssessm	ents th	at did ı	not cha	ange; E	- asse	ssment	s that b	ecame	unknov	vn.		

Pressures, threats and proposed measures

Italy reported several pressures of medium intensity: artificial planting on open ground (non-native trees), removal of forest undergrowth, roads, motorways, skiing complex, genetic pollution (plants). Low intensity pressures are forest exploitation without replanting or natural regrowth and urbanised areas, human habitation.

Code	Pressure name	IT
B01.02	Artificial planting on open ground (non-native trees)	М
B02.03	Removal of forest undergrowth	М
B03	Forest exploitation without replanting or natural regrowth	L
D01.02	Roads, motorways	М
E01	Urbanised areas, human habitation	L
E01.02	Discontinuous urbanisation	М
G02.02	Skiing complex	М
103.02	Genetic pollution (plants)	М

Legend:

Low intensity M

M Medium intensity H High intensity

The establishment of protected areas/sites and legal protection of habitats and species are the most important proposed measures in Italy. Other important measure is adaptation of forest management.

Code	Measure name	IT
3.2	Adapt forest management	М
6.1	Establish protected areas/sites	Н
6.3	Legal protection of habitats and species	Н

Legend: Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 9510 reached the LHF score 2.65. This habitat type was classified as LHF especially because, to reach improvement, the change from declining to stable trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of quite significant representation of the habitat in Natura 2000 sites (up to 75 %) and the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) is needed to reach the overall improvement. In addition, no pressure of high intensity is reported by countries.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is needed. The additional improvement could be reached by increasing of the habitat area by habitat restoration. The main measures should include establishment of protected sites, legal protection of habitat and adaptation of forest management. The forest management adaptation includes avoiding or reduction of some not sustainable practices like artificial forest planting using non-native trees, forest exploitation without replanting or natural regrowth, and removal of forest undergrowth. The control of human activities like roads, motorways, and skiing complex building, and generally urbanisation is also important.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Forests&su bject=9510®ion=MED

9560 Endemic forests with Juniperus spp.

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - bad due to assessment of Spain. The habitat is in the Mediterranean biogeographic region widespread in Spain; it occurs also in Portugal, France, Italy, Cyprus, and Greece. Around 96% of the habitat area is located in Spain.

Improvement of habitat structure in Spain is needed. To reach further improvement, habitat structure should be improved also in France and Portugal. The habitat restoration is needed in Portugal because of reporting smaller habitat area than the reference value. The main measures should include establishment of protected sites, legal protection of habitat, and restoring or improving forest habitat. The forest management should be adapted in order to address main reported pressures: forest replanting using non-native trees, forestry clearance, removal of dead and dying trees, forest exploitation without replanting or natural regrowth. Further measures should be focused especially on regulation of grazing in forest, regulation of the recreational activities, and measures against vegetation succession. It would be advisable to develop ecological restoration programs that include the elimination of exotic species (*Opuntia* sp., *Agave americana*), the planting of juvenile junipers in areas where natural regeneration is problematic.

Habitat description

Medium altitude forest formations dominated by *Juniperus* spp. The arborescent matorrals (32.13 and 31.3) should not be included. There are five sub-types: Spanish juniper woods (*Juniperon thuriferae*), Grecian juniper woods (*Juniperetum excelsae*), Stinking juniper woods, Syrian juniper woods, Macaronesian juniper woods.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Spain. It occurs also in Portugal, France, Italy, Cyprus, and Greece. The overall quite low representation of the habitat in Natura 2000 sites (ca 35 %) is due to area of this habitat in Natura 2000 sites in Spain (only 34 %) and missing data from Portugal. The whole national habitat area is located in Natura 2000 sites in Cyprus and France. Information on the coverage of the Natura 2000 sites in Portugal is not available.

71 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Natura 2000 sites in the Mediterranean region										
Country	Habitat area /km ² /	Number of sites								
Cyprus	2.1	100	3							
France	4	100	8							
Greece	0	0	13							
Italy	N/A	N/A	1							
Portugal	50-80	N/A	8							
Spain	1,145	34	113							
Total	1,201-1,231	35	146							

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in the Mediterranean biogeographical region is unfavourable - bad due to assessment of Spain. Greece and Cyprus indicated favourable status and France and Portugal reported unfavourable – inadequate conservation status. On the level of biogeographical region, two parameters (Range; Area) were assessed as favourable, Structure and Functions as unfavourable – inadequate, and Future prospect as unfavourable - bad. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – bad. This change is not genuine, it is due to better data (Cyprus and France) and different methods used (Spain).

Treated data from Member States reports														
MS Sur		Range (km ²)			Area			Struct &	Future		Overall asses.			
	Surface	% MS	Trend	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. CS	Qualifie	er Prev. CS	Nat. of ch.
CY	99. <mark>4</mark> 8	0.1	+	99.48	2.09	0.1	÷	2.09	FV	FV	FV		XX	b1
GR	120	0.1	+	120	120	3.5	÷	120	FV	FV	FV]	FV	
ES	75211	89.4	0	≈75211	3347	96.4	x	≈3347	Ul	U2.	U2		XX	c1
FR	5600	6.7	0	≈5600	4	0.1	+	≈4	UI	U1	Ul	=	FV	b1
PT	3100	3.7	0	x	N/A	N/A	+	N	U1	XX	U1	=	Ul	nc
EU Biogeographical assessment and proposed corrections														
	R	ange _			Area		D.C.	Struct.	Future (Curr. CS	0.10	Prev. CS		Target 1
MS/EUZ/	Surface C	oncl. 11	end Re	er. Surra	ce Concl	Irend	Kei.	func.	prosp.	Concl.	Qualifier	Concl.	Cat. of cn.	ontrib. Type
EU27	84130	GD	0	34	73 2GD	x		2GD	2GD	MTX	- [XX	no	C -
Legend: MS – Member State; Overall asses- Overall assessment; % MS – percentage of the surface area in the														
respective	e Meml	oer Sta	ate con	npared	to who	ole Bio	geogra	aphica	l Regior	n; Ref.	– refere	ence val	ue; Struc	t & func
structure	and fu	nction	s; Futu	ire pros	sp. – fu	iture p	prospe	ct; Cu	rr. CS –	- curre	nt conse	ervation	status; l	Prev. CS –
previous conservation status; Nat. of ch nature of change; EU27: assessment on the level of all EU Member														
Countries; Concl. – conclusion; Target 1: - target 1 of the EU 2020 Biodiversity Strategy.														
Conservation status FV Favourable U1 Unfavourable - inadequate U2 Unfavourable - bad XX Unknown														
Trend	0 =	0 = stable; + = increase; - = decrease; x = unknown												
Qualifier	= s	= stable; + positive; - negative; x unknown												
Nature of	i a –	a – genuine change; b – change due to better data or improved knowledge; b2 – due to taxonomic												
change	rev	review; c1 – due to different methods to measure or evaluate; c2 - due to different thresholds use;												
_	d -	d - no information about nature of change; e - due to less accurate or absent data; nc - no change												
Target 1	A -	A - favourable assessments; B - improved assess.; C - deteriorated assessments; D - unfavourable												
contribut	ion and	on and unknown assessments that did not change; E - assessments that became unknown.												
								-						
Pressures, threats and proposed measures

The member countries reported a broad range of pressures; the most important is grazing, fire and fire suppression. Other important pressures are modifications of cultivation practices, problematic native species, biocenotic evolution, succession, fire (natural), changes in abiotic conditions.

Code	Pressure name	CY	ES	FR	PT
A01	Cultivation				L
A02	Modification of cultivation practices		Μ	М	
A03	Mowing / cutting of grassland		Μ		
A04	Grazing		Μ	Н	М
A04.01.04	Intensive goat grazing	L			
A05	Livestock farming and animal breeding (without grazing)		L		
A10	Restructuring agricultural land holding		Μ		
B01	Forest planting on open ground			Μ	
B02	Forest and Plantation management & use			Μ	
B02.01	Forest replanting		Μ		
B02.01.02	Forest replanting (non native trees)				L
B02.02	Forestry clearance		Μ		L
B02.03	Removal of forest undergrowth				L
B02.04	Removal of dead and dying trees		Μ		
B03	Forest exploitation without replanting or natural regrowth		Μ		
B06	Grazing in forests/ woodland			Н	
B07	Forestry activities not referred to above		Μ		
C01	Mining and quarrying			L	
D01	Roads, paths and railroads		Μ		
D01.01	Paths, tracks, cycling tracks	L			L
D01.02	Roads, motorways				L
D02	Utility and service lines		L		
E01	Urbanised areas, human habitation		L		L
E04.01	Agricultural structures, buildings in the landscape		L		
G01.03	Motorised vehicles				L
G05.01	Trampling, overuse	L			L
H05.01	Garbage and solid waste				L
H06.01	Noise nuisance, noise pollution		L		
101	Invasive non-native species			М	
102	Problematic native species			Н	
J01	Fire and fire suppression		M	М	М
J02.01	Landfill, land reclamation and drying out, general				L
K01.01	Erosion	M			
K02	Biocenotic evolution, succession			Н	
K04	Interspecific floral relations		L		
L05	Collapse of terrain, landslide			L	
L09	Fire (natural)		М	М	
M01	Changes in abiotic conditions		Н		
M02	Changes in biotic conditions			L	

Legend: Low intensity M Medium intensity H High intensity

The establishment of protected areas/sites, legal protection of habitats and species, restoring/improving forest habitats are the most important proposed measures. Other important measures are other agriculture-related measures, forestry-related measures, and other spatial measures.

Code	Measure name	CY	ES	FR	PT
1.1	No measures needed for the conservation of the habitat/species			Μ	
1.2	Measures needed, but not implemented				NA
2.0	Other agriculture-related measures		Μ	Μ	
2.1	Maintaining grasslands and other open habitats		L		
3.0	Other forestry-related measures	Н	Μ		
3.1	Restoring/improving forest habitats	Н	Μ		М
3.2	Adapt forest management		Μ		
6.0	Other spatial measures		Μ		Н
6.1	Establish protected areas/sites	Н	н		L
6.3	Legal protection of habitats and species	Н	н		
6.4	Manage landscape features		L		
7.0	Other species management measures		Μ		
7.4	Specific single species or species group management measures		M		
8.2	Specific management of traffic and energy transport systems	M			

Legend:

L Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 9560 reached the LHF score 14.17. This habitat type was classified as LHF especially because, to reach improvement, the change from decreasing to stable trend within the category U2 (unfavourable-bad) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Spain) is needed to reach the overall improvement.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Spain is needed. To reach further improvement, habitat structure should be improved also in France and Portugal. The habitat restoration is needed in Portugal because of reporting smaller habitat area than the reference value.

The main measures should include establishment of protected sites (integrated micro-reserves networks to be created), legal protection of habitat, and restoring or improving forest habitat. Intermit changes to land use in the area of habitat occupancy, e.g. expansion of agricultural use, forest with species of rapid growth and urban expansion (ICNB). The most direct threat factors (cuts, devastation, sub-forest disturbance, partial or total destruction) should be minimized. The forest management should be adapted in order to address main reported pressures: forest replanting using non-native trees, forestry clearance, removal of dead and dying trees, forest exploitation without replanting or natural regrowth.

Further measures should be focused especially on regulation of grazing in forest, regulation of the recreational activities (camping areas, off-road vehicles, hunting, etc.), elimination or reduction of problematic native and invasive alien species, and measures against vegetation succession.

The prevention of forest fires and reduction of fire risks should be performed, particularly by cleaning roads and shrubs, reducing the degree of coverage of nearby shrub vegetation. However, the maintenance of these sites by winter pastoral fires has been complementary to grazing.

It would be advisable to develop ecological restoration programs that include the elimination of exotic species (*Opuntia* sp., *Agave americana*), the planting of juvenile junipers in areas where natural regeneration is problematic (Montesinos et al., 2009). In regenerating spots, the process of establishing tree dominance can be facilitated by the selective thinning of very dense sticks and closely coupled or dominated individuals favouring larger ones.

Primary stands situated on rock bars and steep rocky areas apparently need no management.

Links

- https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Forests&su bject=9560®ion=MED
- ICNB: 9560 Florestas endemicas de Juniperus spp. http://www.icnf.pt/portal/pn/biodiversidade/rn2000/resource/docs/rn-plan-set/hab/hab-9560
- Montesinos, D, Otto, R., Fernández Palacios, J. M., 2009: 9560 Bosques endémicos de Juniperus spp(*). In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. Madrid. 84 p. http://www.jolube.es/Habitat_Espana/documentos/9560.pdf
- Tzonev, R., Dimitrov, D., 2015: Forests of Grecian juniper (Juniperus excelsa). In: Biserkov, V., Gussev, Ch. (eds).: Red Data Book of the Republic of Bulgaria. Vol. 3 Natural habitats. http://e-ecodb.bas.bg/rdb/en/vol3/39G3.html

91L0 Illyrian oak-hornbeam forests (Erythronio-Carpinion)

Х

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The habitat occurs in the Mediterranean biogeographical region only in Italy that reported unfavourable - inadequate overall conservation status. While two parameters (Range; Area) were assessed as favourable, other two (Structure and Functions; Future prospect) as unfavourable – inadequate.

Improvement of habitat structure and increase of habitat area in Italy are needed. The main measures should include adaptation of forest management, restoration or improving the forest habitats and other forestry-related measures as proposed by Italy. The adaptation of forest management is needed in favour of the habitat, which includes also avoidance of practices like artificial planting using non-native trees, forestry clearance and removal of forest undergrowth. The suitable measures are: adopting specific forest management plan, definition of forest areas to be left free to evolve, definition of conversion guidelines and structural improvement interventions that promote maximum floristic-structural diversification, promoting less impact forest management techniques, regulation of grazing in forest, introduction of measures for the regulation of hunting activities. It is also desirable to implement measures for better regulation of human activities like building of roads and urbanisation. The representation of the habitat in Natura 2000 sites should be improved.

Habitat description

Forests of *Quercus robur* or *Q. petraea*, sometimes *Q. cerris*, and *Carpinus betulus* on both calcareous and siliceous bedrocks, mostly on deep neutral to slightly acidic brown forest soils, with mild humus in the SE-Alpine-Dinaric region, West- and Central Balkans extending northwards to Lake Balaton mostly in hilly and submontane regions, river valleys and the plains of the Drava and Sava. The climate is more continental than in sub-Mediterranean regions and warmer than in middle Europe; these forests are intermediate between oak-hornbeam woods (e.g. 9170) of central Europe and those of the Balkans and merge northwards into the Pannonic oak woods (91G0). They have a much higher species richness than the Central European oak woods. Outliers of these forests also occur in Frioul and the northern Apennines.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type occurs in the Mediterranean biogeographical region only in Italy. Indication of the habitat from Greece should be confirmed. The overall representation of the habitat in Natura 2000 sites is low (ca 12 %).

Natura	Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km ² /	Coverage /%/	Number of sites									
Greece	N/A	N/A	1									
Italy	53	12	34									
Total	53	12	35									

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

Italy assessed the overall conservation status of this habitat type in Mediterranean biogeographical region as unfavourable - inadequate. Two parameters (Range; Area) were assessed as favourable, other two (Structure and Functions; Future prospect) as unfavourable – inadequate. The overall conservation status for the region has been changed against previous reporting from unknown to unfavourable – inadequate. This change is not considered genuine.

Treated	l data l	from M	ember s	states re	eports														
MC		Ran	ge (km²)			Area			Area St		Struct & Future Overall asses.			Future			es.		
NI3	Surfac	e % M	S Trend	Ref.	Surface	%MS	Trend	Ref.	func.	prosp	Curr. C	S Quali	ifier Pre	v. CS	Nat.	of ch.			
IT	3200	0 100	0	≈32000	443.52	100	0	≈ <mark>4</mark> 43.52	UI	U1	Ul	x	N	/A					
EU Biog	eograp	hical as	sessme	nt and pr	oposed	correct	tions												
		Range			Area			Struct.	Future	Curr. CS		Prev. CS			Targe	et 1			
MS/EU2/	Surface	Concl.	Irend R	et. Surfa	Concl	: Irend	Kei.	func.	prosp.	Concl.	Qualifier	Concl.	Nat. of cr	Cor	ntrib.	Туре			
EU27	32000	00	0 ≈32	000 4	44 00	0	≈444	00	00	MTX	x	XX	no		D	=			
structure previous Countrie	e and conse s: Con	functio rvation	ons; Fut n status; nclusior	ure pro Nat. of Target	sp. – fi f ch. – t 1: - tar	uture nature rget 1 (prospe of ch	ect; Cur ange; E FU 2020	rr. CS – U27: as 0 Biodiv	curre ssessm	nt cons ent on Strategy	ervatic the lev /.	on statu vel of a	is; P II EU	rev. Me	CS – mber			
Conserv	ation s	tatus	FV F	avourab	le U1	Unfa	vourat	ole - inac	dequate	U2	Unfavo	urable -	bad 🛛	XX I	Unkr	nown			
Trend	C) = stał	ole; + =	increas	e; - = de	ecreas	e; x =	unknow	vn										
Qualifie	r =	stable	e; + posi	tive; - n	egative	e; x un	knowr	า											
Nature o	of a	ı – gen	uine cha	nge; b∙	– chang	ge due	to bet	tter data	a or imp	proved	knowle	dge; b	2 – due	to t	axor	nomic			
change	r	eview;	c1 – du	e to diff	ferent n	netho	ds to n	neasure	e or eval	uate; o	c2 - due	to diff	erent tl	nresł	nold	s use;			
	C	l - no ii	nformat	on aboi	ut natu	re of cl	hange;	; e - due	e to less	accura	ate or al	osent d	ata; nc	- no	chai	nge			
Target 1	, A	A - favo	ourable	assessm	nents; B	3 - imp	roved	assess.	; C - de	teriora	ated ass	essmei	nts; D -	unfa	avou	irable			
contribu	tion a	nd unl	known a	ssessme	ents tha	at did r	not cha	ange; E	- assess	ments	that be	came ι	unknow	n.					

77 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Pressures, threats and proposed measures

Italy reported some pressures of medium intensity: artificial planting on open ground (non-native trees), removal of forest undergrowth, roads, motorways, discontinuous urbanisation, burning down. Less important pressures are forestry clearance and dispersed habitation.

Code	Pressure name	IT
B01.02	Artificial planting on open ground (non-native trees)	М
B02.02	Forestry clearance	L
B02.03	Removal of forest undergrowth	Μ
D01.02	Roads, motorways	Μ
E01.02	Discontinuous urbanisation	М
E01.03	Dispersed habitation	L
J01.01	Burning down	М

Legend: L Low intensity M Medium intensity H High intensity

The adaptation of forest management and other forestry-related measures are the most important measures proposed by Italy. Other important measure is restoring/improving forest habitats.

Code	Measure name	IT
3.0	Other forestry-related measures	Н
3.1	Restoring/improving forest habitats	Μ
3.2	Adapt forest management	Н

Legend: Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 91L0 reached the LHF score 8.40. This habitat type was classified as LHF especially because, to reach improvement, the change from unknown to improving trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) is needed to reach the overall improvement. In addition, no pressure of high intensity is reported by Italy.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is needed. The main measures should include adaptation of forest management, restoration or improving the forest habitats and other forestry-related measures as proposed by Italy. The adaptation of forest management is needed in favour of the habitat, what includes also avoidance of practices like artificial planting using non-native trees, forestry clearance and removal of forest undergrowth. The suitable measures are: adopting specific forest management plan, definition of forest areas to be left free to evolve, definition of conversion guidelines and structural improvement interventions that promote maximum floristic-structural diversification, promoting less impact forest management techniques, regulation of grazing in forest, introduction of measures for the regulation of hunting activities. It is also desirable to implement measures for better regulation of human activities like building of roads and urbanisation. The representation of the habitat in Natura 2000 sites should be improved.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Forests&subject=91L0®ion=MED

https://www.regione.marche.it/natura2000/pagina_base98d2.html?id=1666

91M0 Pannonian-Balkanic turkey oak-sessile oak forests

v

Selected for first round of Biogeographical Seminar Selected using "Low hanging fruit" approach

Habitat summary

The overall conservation status in the Mediterranean region is unfavourable - inadequate due to the assessment of Italy. The habitat is in the Mediterranean biogeographic region widespread in Italy, it occurs also in Greece. Around 73% of the habitat area is located in Italy.

Improvement of the habitat structure in Italy is needed. The adaptation of forest management is the main proposed measure. It should include promotion of the renewal of the tree species, the maintenance of the undergrowth species (particularly the rare ones), retaining of dead trees and trunks, as well as prohibition of grazing in the forest. The eventually abandoned adjacent surfaces to the current nuclei of this habitat could be used for habitat expansion. Effective fire plans should be prepared.

Habitat description

Sub-continental thermo-xerophile *Quercus cerris, Q. petraea* or *Q. frainetto* and related deciduous oaks, locally of *Q. pedunculiflora* or *Q. virgiliana* forests of the Pannonic, hills and plains of western and southern Romania, northern Balcanic hilly regions and of the supra-Mediterranean level of continental north east Greece, and of supra-Mediterranean Anatolia and in lower mountains with the continental *Acer tataricum*. Distributed generally between 250 and 600 (800) m above sea level and developed on varied substrates: limestones, andesites, basalt, loess, clay, sand, etc., on slightly acidic, usually deep brown soils.

Distribution in the Mediterranean region and coverage by Natura 2000 network

The habitat type is widespread in Italy and Greece. The overall representation of the habitat in Natura 2000 sites is very low (ca 3 %).

Natura	Natura 2000 sites in the Mediterranean region											
Country	Habitat area /km ² /	Coverage /%/	Number of sites									
Greece	N/A	N/A	N/A									
Italy	593.91	11	161									
Total	594	3	161									

Γr.

The table shows size of the habitat area in Natura 2000 sites and its proportion compared to habitat area in the whole biogeographic region ("coverage") as reported by MS in the 2013 Article 17 report. The number of sites was extracted from the 2016 Natura 2000 database.

Biogeographical conservation status assessment

The overall conservation status of this habitat type in Mediterranean biogeographical region is unfavourable - inadequate due to assessment of Italy. Greece reported favourable conservation status. On the level of biogeographical region, two parameters (Range; Area) were assessed as favourable, other two (Structure and Functions; Future prospect) as unfavourable - inadequate. The overall conservation status for the region has been changed against previous reporting from favourable to unfavourable – inadequate. This change is not considered genuine.

Treated	data f	rom Me	ember	States r	eports										
216		Rang	e (km²)			A	irea		Struct &	Future	e Overall asses.				
1/15	Surfac	e 🛛 % MS	Trend	Ref.	Surface	% MS	Trend	Ref.	func.	prosp.	Curr. C	S Qual	ifier Prev	CS Nat	of ch.
GR	1400	0 17.9	0	14000	14000	72.5	0	14000	FV	FV	FV		F	7	
IT	6400	82.1	0	≈64000	53 <mark>0</mark> 4.56	27.5	0	≈5304.5 <mark>6</mark>	U1	U1	U1	x	N/	A	
EU Biog	jeograpi	nical as	sessme	nt and p	roposed	correct	tions								
MS/F1127	Surface	Range .	Trend	Ref Surf	Area	Trend	Ref	Struct.	Future C	Curr. CS	Qualifier	Prev. CS	Nat of ch	Targ	et 1
NIS/ECZ/	Surface	Concl.	irenu i	ver. Juli	Concl	L ITENG	iter.	func.	prosp.	Concl.	Quanner	Concl.	Ivat. of cit.	Contrib.	Туре
EU27	78000	0	0 ≈7	8000 19	305 0	0	≈19305	2XA	2XA	MTX	x	FV	no	D	=
respective structure previous Countrie	ve Mer e and f s conse es; Conc	mber S functio rvation cl. – cor	tate co ns; Fut status nclusio	ompareo ture pro s; Nat. c n; Targe	d to wh osp. – f of ch. – et 1: - ta	iole Bio uture nature rget 1	ogeogi prospe e of ch of the	raphical ect; Curr ange; El EU 2020	Region; r. CS – U27: ass Biodive	; Ref. currer sessme ersity S	 referent referent<	ence va ervatio the lev 1.	alue; Str n status el of all	uct & f s; Prev. EU Me	unc CS – ember
Conserv	ation s	tatus	FV	Favoural	ble <mark>U</mark>	1 Unfa	avoural	ole - inad	equate	U2	Unfavoı	urable -	bad X	X Unkr	nown
Trend	0	= stab	le; + =	increas	se; - = d	ecreas	se; x =	unknow	n						
Qualifie	r =	stable	; + pos	sitive; - ı	negative	e; x un	knowr	۱ <u> </u>							
Nature o	of a	– geni	uine ch	ange; b	– chan	ge due	to bet	tter data	ı or impi	roved	knowle	dge; bi	2 – due '	to taxo	nomic
change	r	eview;	c1 – dı	ue to dif	fferent r	metho	ds to n	neasure	or evalu	iate; c	2 - due	to diff	erent th	reshold	s use;
	d	- no in	forma	tion abc	out natu	re of c	hange	; e - due	to less a	accura	te or al	osent d	ata; nc -	no cha	nge
Target 1		r			_										
10.900 -	. A	- tavo	urable	assessr	nents; E	3 - imp	proved	assess.;	C - det	eriora	ted ass	essmer	nts; D -	unfavou	urable

Pressures, threats and proposed measures

Italy reported some pressures of medium intensity: grazing, artificial planting on open ground (nonnative trees), removal of forest undergrowth, urbanised areas, human habitation, roads, motorways, dispersed habitation, and burning down.

Code	Pressure name	IT	GR
A04	grazing	М	
B01.02	artificial planting on open ground (non-native trees)	М	
B02.02	forestry clearance	L	
B02.03	removal of forest undergrowth	М	

81 Supporting elements for the Mediterranean Natura 2000 review seminar (2nd part: Fact sheets for "Low hanging fruits" habitats)

Code	Pressure name	IT	GR
D01.02	roads, motorways	М	
E01	Urbanised areas, human habitation	М	
E01.03	dispersed habitation	М	
J01.01	burning down	М	

Legend: Low intensity M Medium intensity H High intensity

The adapting of forest management was the only measure proposed by Italy.

3.2 Adapt forest management M	Code	Measure name	IT	GR
	3.2	Adapt forest management	Μ	

Legend: Low importance M Medium importance H High importance

Reason for selection as "Low Hanging Fruit" (LHF) habitat in the Mediterranean region

Applying the methodology to identify LHF habitats in the Mediterranean region, habitat 91M0 reached the LHF score 6.07. This habitat type was classified as LHF especially because, to reach improvement, the change from unknown to improving trend within the category U1 (unfavourable-inadequate) is sufficient. It is normally much easier to improve a trend than to reach change in category. The habitat type was included to LHF also because of the fact that the improvement of trend of only one parameter (Structure & Functions) in one country (Italy) is needed to reach the overall improvement. In addition, no pressure of high intensity was reported.

Priority conservation measures needed

For the improvement of the overall conservation status in the Mediterranean biogeographical region, improvement of the habitat structure in Italy is needed. The adaptation of forest management is the main proposed measure. It should include promotion of the renewal of the tree species, the maintenance of the undergrowth species (particularly the rare ones), retaining of dead trees and trunks, as well as prohibition of grazing in the forest. The eventually abandoned adjacent surfaces to the current nuclei of this habitat could be used for the habitat expansion. The effective fire plans should be prepared.

Links

https://bd.eionet.europa.eu/article17/reports2012/habitat/summary/?period=3&group=Forests&su bject=91M0®ion=MED

3 Template for reporting on Member States perspectives

Each descriptive fact should be completed by a report compiled by Member States, answering questions according to the below template

Member States perspectives (to be filled by MS, experts; length not restricted)

Situation of the habitat (conservation status and main problems)
Is the habitat considered a good candidate for the 'Low Hanging Fruit' approach
Could a intensified cooperation with other MS be considered in practical terms?
What changed since last seminar? (cons. status, measures undertaken and planned, other)
Conservation objectives
Conservation measures undertaken and planned
Specialist species linked to the habitat type
Other comments