Approximated EU GHG inventory for the year 2009

Short report for EU-15 and EU-27

ETC/ACC Technical Paper 2010/4 September 2010

Julia Busche, Sabine Gores, Anke Herold, Hauke Hermann, Gerhard Penninger

The European Topic Centre on Air and Climate Change (ETC/ACC) is a consortium of European institutes under contract of the European Environment Agency PBL UBA-D UBA-V NILU AEAT AUTh CHMI MET.NO ÖKO TNO REC Front page picture: Industrial greenhouse gas emissions

Author affiliation:

Julia Busche, Sabine Gores, Anke Herold, Hauke Hermann, Gerhard Penninger: Öko-Institut e.V., Berlin, Germany

DISCLAIMER

This ETC/ACC Technical Paper has not been subjected to European Environment Agency (EEA) member country review. It does not represent the formal views of the EEA.

© ETC/ACC, 2010. ETC/ACC Technical paper 2010/4 European Topic Centre on Air and Climate Change PO Box 303 3720 AH Bilthoven The Netherlands Phone +31 30 2748562 Fax +31 30 2744433 Email <u>etcacc @pbl.nl</u> Website <u>http://air-climate.eionet.europa.eu/</u>

Acknowledgements

This paper was prepared for the European Environment Agency (EEA) by its European Topic Centre for Air and Climate Change (ETC/ACC). The ETC/ACC is a consortium of European institutes under contract of the European Environment Agency: MNP, UBA-D, UBA-V, NILU, AEAT, AUTH, CHMI, Met.No, ÖKO, TNO and REC. The coordinating author was Anke Herold (ÖKO). Other authors were, in alphabetical order, Julia Busche, Sabine Gores, Hauke Hermann; Gerhard Penninger. The EEA project managers were Andreas Barkman and Ricardo Fernandez.

Content

1	Summary						
2	Back	Background and objective19					
3	General results						
	3.1	Europe	an GHG emissions in 2009	. 21			
	3.2	Uncerta	ainties	. 27			
	3.3	Method	lologies and data sources	. 29			
4	Secto	oral resu	ılts	. 33			
	4.1	Energy		. 33			
		4.1.1	1.A Energy fuel combustion	. 33			
		4.1.2	1.A.1 Energy industries	. 36			
		4.1.3	1.A.2 Manufacturing industries and construction	. 40			
		4.1.4	1.B Fugitive emissions from fuels	. 43			
		4.1.5	1.A.3 Transport	. 45			
		4.1.6	1.A.4 Other sectors and 1.A.5 Other fuel combustion	. 47			
	4.2	Industri	al processes	. 48			
		4.2.1	2.A Mineral products	. 48			
		4.2.2	2C Metal production	. 50			
		4.2.3	Other source categories covering industrial processes	. 51			
	4.3	Agricult	ure	. 51			
		4.3.1	4.A Enteric fermentation	. 51			
		4.3.2	4.B Manure management	. 56			
		4.3.3	4.D Agricultural soils	. 56			
		4.3.4	Other source categories in the agricultural sector	. 57			
	4.4	Waste		. 57			
		4.4.1	6.A Solid waste disposal	. 57			
		4.4.2	Other categories in the waste sector	. 58			
	4.5	Other s	ource categories	. 58			
5	Anne	x 1 – De	etailed overview of methods and data sources used	. 59			

List of tables

Table 1	Change in GHG emissions between 2008 and 2009 at sectoral level in absolute and relative terms	. 23
Table 2	Summary table of approximated GHG emissions for 2009 for EU-15 (total emissions without LULUCF)	. 25
Table 3	Summary table of approximated GHG emissions for 2009 for EU-27 (total emissions without LULUCF)	. 26
Table 4	Deviation between the approximated GHG inventory estimated for 2008 and the real 2008 inventory submission for the EU-15 and the EU-27.	. 27
Table 5	Time of data availability of data sources used for the approximated inventory	. 32
Table 6	Change in GHG emissions between 2008 and 2009 for main source categories in the energy sector	. 35
Table 7:	Best fit trends for calculating CO_2 and CH_4 emissions from 1B2a, 1B2b and 1B2c	. 45
Table 8	Change in GHG emissions between 2008 and 2009 for industrial processes emissions	. 49
Table 9	Data from animal livestock surveyed by Eurostat in May/June (June) and December (Dec) used for proxy methodology and including application of a scaling factor if necessary (+AF).	. 53
Table 10	Implied emission factors from national UNFCCC inventories in 2008 used for the calculation of CH ₄ emissions from enteric fermentation (4A, left) and manure management (4B, right) for 2009	. 54
Table 11	Change in GHG emissions between 2008 to 2009 in the agricultural sector	. 54
Table 12	Change in GHG emissions between 2008 to 2009 in the waste sector	. 58
Table 13	Methods and data used for CO ₂ emissions from 1A Fuel combustion	. 59
Table 14	Methods and data used for CH_4 and N_2O emissions from 1A Fuel combustion	. 60

Table 15	Methods and data used for CO_2 , CH_4 and N_2O emissions for 1A1 Energy industries	. 61
Table 16	Methods and data used for CO_2 emissions from 1A1a Public electricity and heat production	. 62
Table 17	Methods and data used for CH ₄ emissions from 1A1a Public electricity and heat production	. 63
Table 18	Methods and data used for N_2O emissions from 1A1a Public electricity and heat production	. 64
Table 19	Methods and data used for CO ₂ emissions from 1A1b Petroleum refining	. 65
Table 20	Methods and data used for CH₄ emissions from 1A1b Petroleum refining	. 66
Table 21	Methods and data used for N_2O emissions from 1A1b Petroleum refining	. 67
Table 22	Methods and data sources used for CO_2 , CH_4 and N_2O emissions from 1A1c Manufacture of solid fuels and other energy industries.	. 68
Table 23	Methods and data used for CO ₂ emissions from 1A2 Manufacturing industries and construction	. 69
Table 24	Methods and data used for CH₄ emissions from 1A2 Manufacturing industries and construction	. 70
Table 25	Methods and data used for N_2O emissions from 1A2 Manufacturing industries and construction	. 71
Table 26	Methods and data used for CO_2 , CH_4 and N_2O emissions from 1A3 Transport	. 72
Table 27	Methods and data used for CO ₂ emissions from 1B1 Fugitive emissions from solid fuels	. 73
Table 28	Methods and data used for CH ₄ emissions from 1B1 Fugitive emissions from solid fuels	. 74
Table 29	Methods and data used for CO_2 emissions from 1B2a Fugitive emissions from oil	. 75
Table 30	Methods and data used for CH_4 emissions from 1B2a Fugitive emissions from oil	. 76
Table 31	Methods and data used for CO_2 emissions from 1B2b Fugitive emissions from gas	. 77

Table 32	Methods and data used for CH_4 emissions from 1B2b Fugitive emissions from gas	78
Table 33	Methods and data used for CO_2 emissions from 1B2c Venting and flaring	79
Table 34	Methods and data used for CH₄ emissions from 1B2c Venting and flaring	80
Table 35	Methods and data used for CO ₂ emissions from 2.A.1 Cement Production	81
Table 36	Methods and data used for CO ₂ emissions from 2.A.2 Lime Production	82
Table 37	Methods and data used for CH_4 emissions from 2.A Mineral products	83
Table 38	Methods and data used for CO ₂ emissions from 2B1 Ammonia Production	84
Table 39	Methods and data used for N_2O emissions from 2B2 Nitric Acid Production	85
Table 40	Methods and data used for N_2O emissions from 2B3 Adipic Acid Production	86
Table 41	Methods and data used for CH_4 emissions from 2.C Metal production	87
Table 42	Methods and data used for CO ₂ emissions from 2.C Metal production	88
Table 43	Methods and data used for N_2O emissions from 2.C Metal production	89
Table 44	Methods and data used for CO ₂ emissions from 2.C.1 Iron and steel production	90
Table 45	Methods and data used for CO ₂ emissions from 2.D Other production	91
Table 46	Methods and data used for CH_4 and N_2O emissions from 2.D Other production	92
Table 47	Methods and data used for SF ₆ emissions	93
Table 48	Methods and data used for HFC emissions	94
Table 49	Methods and data used for PFC emissions	95

Table 50	Methods and data used for CO ₂ emissions from 2.G Other96
Table 51	Methods and data used for CH_4 and N_2O emissions from 2.G Other
Table 52	Methods and data used for CO ₂ emissions from 3 Solvent and other product use
Table 53	Methods and data used for N ₂ O emissions from 3 Solvent and other product use
Table 54	Methods and data used for CH ₄ emissions from 4.A. Enteric fermentation and from 4.B Manure management
Table 55	Methods and data used for N ₂ O emissions from 4.B Manure management
Table 56	Methods and data used for CH ₄ emissions from 4.C Rice cultivation
Table 57	Methods and data used for CH ₄ emissions from 4.D Agricultural soils
Table 58	Methods and data used for N ₂ O emissions from 4.D.1.1 Synthetic fertilizer
Table 59	Methods and data used for N_2O emissions from 4.D.1.2 Animal manure applied to soil
Table 60	Methods and data used for N_2O emissions from 4.D.1.3 N-fixing crops
Table 61	Methods and data used for N_2O emissions from 4.D.1.4 Crop residues
Table 62	Methods and data used for N_2O emissions from 4.D.1.5 Cultivation of histosols
Table 63	Methods and data used for N ₂ O emissions from 4.D.1.6 Other
Table 64	Methods and data used for N_2O emissions from 4.D.2 Pasture, Range and Paddock Manure
Table 65	Methods and data used for N ₂ O emissions from 4.D.3 Indirect emissions
Table 66	Methods and data used for N_2O emissions from 4.D.4 Other 109
Table 67	Methods and data used for CH ₄ emissions from 4.F Field burning of agricultural residues110

Table 68	Methods and data used for N ₂ O emissions from 4.F Field burning of agricultural residues	0
Table 69	Methods and data used for CO ₂ emissions from 6.A Solid waste disposal on land	1
Table 70	Methods and data used for CH ₄ emissions from 6.A Solid waste disposal on land	2
Table 71	Methods and data used for N_2O emissions from 6.A Solid waste disposal on land	3
Table 72	Methods and data used for CH ₄ emissions from 6.B Wastewater handling	4
Table 73	Methods and data used for N ₂ O emissions from 6.B Wastewater handling	5
Table 74	Methods and data used for CO ₂ emissions from 6.C Waste incineration	6
Table 75	Methods and data used for CH ₄ emissions from 6.C Waste incineration	7
Table 76	Methods and data used for N ₂ O emissions from 6.C Waste incineration	8
Table 77	Methods and data used for CH ₄ emissions from 6.D Other 119	9
Table 78	Methods and data used for N ₂ O emissions from 6.D Other	0

List of figures

Figure 1	Trend in total greenhouse gas emissions excluding LULUCF in EU-15 and EU-27, 1990-2008 official data, 2009 EEA estimate	16
Figure 2	Change in GHG emissions between 2008 and 2009 at sectoral level	24
Figure 3	Deviations between the approximated GHG inventory estimated for 2008 and the real 2008 inventory submission at sectoral level for EU-15 and EU-27	28
Figure 4	Change in GHG emissions between 2008 and 2009 for main source categories in the energy sector	35
Figure 5	Reduction of energy consumption for the EU 27 between 2008 and 2009	36
Figure 6	Change in GHG emissions between 2008 and 2009 for industrial processes emissions	49
Figure 7	Change in GHG emissions between 2008 to 2009 in the agricultural sector	55

Abbreviations

AF	Adjustment factor
AD	Activity data
AR	Activity rate
BP	British Petroleum
CH ₄	Methane
CITL	Community independent transaction log
CO ₂	Carbon dioxide
CO ₂ eq	Carbon dioxide equivalent
CRF	Common reporting format
E	Emission
EC	European Commission
EEA	European Environment Agency
ETS	Emissions Trading Scheme
EU	European Union
EU-15	Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portu- gal, Spain, Sweden and the United Kingdom.
EU-27	Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Den- mark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxemburg, Malta, the Nether- lands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the United Kingdom
GDP	Gross domestic product
GHG	Greenhouse gas
IEA	International Energy Agency
IEF	Implied emission factor
IPCC	Intergovernmental Panel on Climate Change
IPCC GPG	IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories
LULUCF	Land use, land-use change and forestry
MS	Member State
Mt	Million tons

N ₂ O	Nitrous oxide
QA/QC	Quality assurance and quality control
UNFCCC	United Nations Framework Convention on Climate Change

1 Summary

The European Union (EU), as a party to the United Nations Framework Convention on Climate Change (UNFCCC), reports annually on greenhouse gas (GHG) inventories for the year y-2 and within the area covered by its Member States (i.e. domestic emissions taking place within its territory).

National GHG (greenhouse gas) inventories for EU Member States under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol are only available with a delay of 1 ½ years (inventories submitted 15 April of the year y include data up the year y-2). The latest official data available (1990-2008) covering all countries, sectors and gases was released 02 June 2010¹ in connection with the annual submission of the EU greenhouse gas inventory to the UNFCCC². Verified emissions from the EU Emissions Trading Scheme for 2009 are already available³. Thus, emissions data for the trading sectors are publicly available one year ahead of inventory data, the latter covering all greenhouse gas emissions for both trading and non-trading sectors.

Under the Kyoto Protocol, the EU-15 took on a common commitment to reduce emissions by -8 % between 2008 and 2012 compared to emissions in the base year. An early estimate of 2008 and 2009 can be used to better track progress towards EU targets, for example in the annual EEA report on greenhouse gas emission trends and projections in Europe, which will be published later this year.

The EEA published its first early estimates of greenhouse gas emissions for 2008 at the end of August 2009⁴ The actual reduction in greenhouse gas emissions in 2008, as officially reported to UNFCCC earlier this year, was captured by the confidence interval around the early estimates for EU-15 and EU-27.

The present technical report contains GHG emissions for 2009 for the EU-15 and the EU-27 based on methodologies using data sources that were published by mid-July of 2010. The estimates cover total GHG emissions as reported under the Kyoto Protocol and the UNFCCC excluding the LULUCF sector. Estimations are performed for all major source categories in all sectors. For the most important source categories, data sources with updated activity or emission data for the year y-1 were identified, which were used to calculate emissions. For source categories for which no international datasets with

¹ EEA Greenhouse Gas Data Viewer <u>http://dataservice.eea.europa.eu/PivotApp/pivot.aspx?pivotid=475</u>

² European Union's Greenhouse Gas Inventory 2010 (Official submission to the UNFCCC) http://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2010

³ European Union Emissions Trading Scheme (EU ETS) data viewer <u>http://dataservice.eea.europa.eu/PivotApp/pivot.aspx?pivotid=473</u>

⁴ New estimates confirm the declining trend in EU greenhouse gas emissions http://www.eea.europa.eu/highlights/new-estimates-confirm-the-declining-trend-in-eu-greenhouse-gasemissions

updated activity data exist or which are too complex for such an approach, emissions were extrapolated from past trends (linear extrapolation) or emissions from the previous year were kept constant if historic data did not show a linear trend. On this basis, a detailed bottom-up approach was developed that covers the full scope of emissions of a GHG inventory submission.

The EEA estimates are based on, publicly available, verified EU ETS emissions for 2009 and published activity data, as of mid-July, at both national and European level disaggregated by major source categories in all sectors reported under the UNFCCC and the Kyoto Protocol. Because of the inherent uncertainty in the estimations and given the main focus is providing robust EU aggregates, Member State data are not published. Some countries are already publishing their own early greenhouse gas estimates. When relevant, these are used by the EEA to better assess current progress in relation to greenhouse gas emission targets and also as a quality assurance and quality control (QA/QC) and verification of own calculations which progressively should lead to more robust EU estimates.

The 2009 EEA estimates indicate that EU greenhouse gas emissions decreased in 2009 for the sixth consecutive year. Compared to the 2008 official emissions published earlier this year, the annual reduction is estimated to be about - 6.9 % for both the EU-15 and for the EU-27.

Based on these 2009 estimates, greenhouse gas emissions in 2009 would be approximately 12.9 % below the Kyoto base year emissions for the EU-15⁵, and 17.3 % below the 1990 level for the EU-27⁶. See Figure 1 below

⁵ Under the Kyoto Protocol, the EU-15 has a common commitment to reduce emissions on average by 8 % between 2008 and 2012 compared to emissions in the 'base year'. The base-year emissions for the EU-15 have been fixed to 4 265.5 million tonnes CO_2 equivalents.

⁶ Unlike the EU-15, the EU-27 does not have a common target under the Kyoto Protocol and therefore the EU-27 does not have an applicable base-year against which to compare emission changes. Emission changes compared to 1990 are applicable to the EU-27 as it has made a unilateral commitment to achieve at least a 20% reduction of greenhouse gas emissions by 2020 compared to 1990.

Figure 1 Trend in total greenhouse gas emissions excluding LULUCF in EU-15 and EU-27, 1990-2008 official data, 2009 EEA estimate

Source: EEA's ETC ACC based on the 2010 EU greenhouse gas inventory to UNFCCC for 1990-2008 and early estimates for 2009

This strong annual decline in GHG emissions is mainly due to the economic crisis in 2009 leading to substantial emission reductions relative to 2008 in all Member States. Based on the latest official European Commission forecasts published earlier in the Spring, GDP in the EU-27 contracted by 4.2 % in 2009⁷. The economic downturn reduced industrial output and reduced energy consumption by industry. Energy gross inland consumption dropped in 2009 by - 5.5% for EU-27 compared to 2008 to levels of the mid 90's.

Lower demand for energy because of the economic recession was accompanied by lower energy and carbon prices in 2009. Newly-released data by the International Energy Agency (IEA) points to a sharp fall in energy prices during 2009⁸ from the high levels of 2008. Eurostat's data also confirms a significant reduction in natural gas prices for industrial consumers and households in most EU Member States⁹. Carbon prices re-

⁷ Real GDP growth rate of GDP volume - percentage change on previous year <u>http://epp.eurostat.ec.europa.eu/tgm/table.do;jsessionid=9ea7974b30dd8549af6fd90a4215b5a4bd09638</u> <u>f55ac.e34SbxiPb3uSb40Lb34LaxqRb30Ne0?tab=table&plugin=1&language=en&pcode=tsieb020</u>

⁸ Key World Energy Statistics 2010, IEA http://www.iea.org/textbase/nppdf/free/2010/key_stats_2010.pdf

⁹ Natural gas prices, Eurostat <u>http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-QA-10-021/EN/KS-QA-10-021-EN.PDF</u>

mained relatively stable during 2009 although significantly lower than during 2008¹⁰. Relatively cheaper natural gas and a significant increase in renewable energy have also contributed to lower emissions.

The largest absolute emission reductions occurred in the energy sector, which shows -220.2 Mt CO₂eq for the EU-15 and - 267.7 Mt CO₂eq for the EU-27 – equivalent to an emission reduction by - 6.9 % for both EU-15 and EU-27. Energy statistics from Eurostat based on monthly data show a decline in hard coal and lignite consumption in the EU-27 between 2008 and 2009 of - 12.7 % and of - 13.4 % in the EU-15, gas consumption dropped by - 5.8 % (EU-27) and - 5.4 % (EU-15) and liquid fuel consumption was 4.5 % (EU-27) and 3.7 % (EU-15) lower than in 2008.¹¹ The reduction in gas consumption was intensified in January 2009 due to the Russia-Ukraine gas dispute, which caused disruptions in supply to eighteen European countries in a very cold phase in winter 2009. According to Eurostat's monthly energy statistics, nuclear energy consumption declined by about - 3 % in the EU-27 between 2008 and 2009. Preliminary renewable energy data for 2009 also points to a significant increase of + 8.3% in renewable energy consumption (excluding biomass) in Europe between 2008 and 2009. Thus, at EU level the most pronounced decline in energy consumption occurred for coal use with the strongest impact on GHG emissions. The second trading period of the EU-ETS with tightened emission caps for the power sector and manufacturing industries that started in 2008 may have contributed to the emission reduction effects in 2009 and the switch in fuel use.

Weather conditions in 2009 had different influences in different European regions. In Europe as a whole, the 2009 winter was colder than 2008's¹². The number of actual heating degree days (i.e. Eurostat's indicator to estimate changes in heat demand) increased by about + 2 % on average in the European Union between 2008 and 2009. Eastern European countries experienced colder winters in 2009 than in 2008 (Eurostat heating degree days). The colder winter increased the energy demand in these Member States, and counteracted the declining industrial energy consumption. However, the 2009 winter was warmer in some Mediterranean Member States, resulting in additional emission reductions due to lower heating demand.

The largest relative emission reduction occurs in the industrial processes sector with - 12.5 % for the EU-15 and - 13.6 % for the EU-27 (decrease of - 39.0 Mt CO_2 eq for the EU-15 and of - 55.9 Mt CO_2 eq for the EU-27 in absolute terms). This industrial emissions reduction reflects a decline in emissions in the cement industry, the chemical industry and iron and steel industry. Due to the downturn of the European car market and an

¹⁰ Carbon prices: <u>http://www.pointcarbon.com/</u>

¹¹ Shares based on energy data in energy units (TJ)

¹² Core set indicator 'Global and European temperature', EEA http://www.eea.europa.eu/dataand-maps/indicators/global-and-european-temperature/global-and-european-temperatureassessment-3

economic slowdown in the construction sector, iron and steel production decreased significantly in all Member States in 2009.

GHG emissions from the agricultural sector show a decrease for the EU-15 (- 3.4 % or - 12.8 Mt CO₂eq) and also decreased in the EU-27 by - 3.0 % or - 14.0 Mt CO₂eq.

The waste sector is expected to show a small emission reduction for the EU-27 (- 1.2 %) and for the EU-15 (-1.7 %).

There is always a degree of uncertainty in the estimation of greenhouse gas emissions. And the uncertainty is higher in the absence of up to date activity data for some source categories, potential changes in implied emission factors and changes in methodology. The uncertainty in 2009 was derived from the comparison of 2008 official data submitted to the UNFCCC and 2008 estimates, at the country level.

The report does not contain 2009 estimates by country. As stated above, the main objective of this exercise is to proxy the evolution of greenhouse gas emissions at the EU level one year ahead of the formal submission to the UNFCCC as an early warning towards meeting the Kyoto targets. It is also a key objective for the EEA to strive and continuously improve the relevance and timeliness of information on Europe's environment to policy-making agents and the public.

Official 2009 greenhouse gas emissions for the EU will be available end May / early June 2011, when the EEA publishes the EU Greenhouse Gas Inventory 1990-2009 and Inventory Report 2011 to the UNFCCC.

2 Background and objective

The national GHG (greenhouse gas) inventories of the EU-27 Member States under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol are available for policy and market analysis at a delay of normally 16 to 18 months (in terms of the services of the European Commission, the delay will be a few months shorter). This report presents approximated GHG inventory estimates for the EU-15 and the EU-27 for the previous year 2009 aiming at an earlier indication of the recent emission trends.

The Climate Change and Energy package agreed by the European Council in April 2009 encourages trading and non-trading sectors to run on similar timelines. Thus, early estimates of overall greenhouse gas emissions allow a more timely assessment of progress towards targets. UNFCCC emissions run on a year t-2 timeline whereas Kyoto registries and EU ETS information run on a year t-1 timeline. Moreover, the beyond GDP process¹³ should also encourage environmental information to be as timely as socio-economic information.

In 2007 a feasibility study was conducted to identify appropriate data sources and methodologies for providing a more recent estimate for GHG emissions of the past year. In 2008 these methodologies were applied for the first year resulting in approximated GHG estimates.

The EEA published its first early estimates of greenhouse gas emissions for 2008 at the end of August 2009¹⁴. The actual reduction in greenhouse gas emissions in 2008, as officially reported to UNFCCC earlier this year, was captured by the confidence interval around the estimates for EU-15 and EU-27 a year earlier (see section 3.2). In this report the methodological approach from 2008 is repeated with several improvements reflecting experiences from the previous report.

The approximated GHG inventory for 2009 covers total GHG emissions as reported under the Kyoto Protocol, excluding the LULUCF sector.

For the most important source categories, data sources with updated activity or emission data for 2009 were identified, which were then used to calculate emissions. For source categories for which no international datasets with updated activity data exists or which are too complex for such an approach from a methodological point of view, emissions were extrapolated from past trends (linear extrapolation) or emissions from the previous year were held constant if historic data did not show a linear trend. On this basis, a de-

¹³ Beyond GDP international initiative <u>http://www.beyond-gdp.eu/</u>

¹⁴ New estimates confirm the declining trend in EU greenhouse gas emissions <u>http://www.eea.europa.eu/highlights/new-estimates-confirm-the-declining-trend-in-eugreenhouse-gas-emissions</u>

tailed bottom-up approach was developed that covers the full scope of emissions of a GHG inventory submission.

In essence, this technical report aims at providing greenhouse gas estimates at EU level one year before the official submission of national greenhouse gas inventories to UNFCCC. The estimates are based on a bottom-up approach with country specific sources and methods. The calculations make use of publicly available verified EU ETS emissions for 2009 (t-1) and published (t-1) activity data (at national and European levels) disaggregated by major source category in all sectors reported under the UNFCCC and the Kyoto Protocol. Because of the inherent uncertainty in the estimations and given the main focus is providing robust EU aggregates, Member State data are not published. Some countries are already publishing their own early greenhouse gas estimates. When relevant, these are used by the EEA to better assess current progress in relation to greenhouse gas emission targets and also as a QA/QC and verification of own calculations which progressively should lead to more robust EU estimates.

3 General results

3.1 European GHG emissions in 2009

The 2009 EEA estimates indicate that EU greenhouse gas emissions decreased in 2009 for the sixth consecutive year. Compared to the 2008 official emissions published earlier this year, the annual emission reduction is estimated to be about - 6.9 % for both the EU-15 and for the EU-27 (total emissions without LULUCF). According to approximated estimations for 2009 based on aggregate methodologies, total EU emissions (without LULUCF) decreased by - 6.9 % in 2009 for both EU-15 and EU-27 compared to the previous year 2008. Based on these 2009 estimates, total EU-15 emissions in 2009 would be - 12.9 % below the 1990 level. For EU-27, total GHG emissions in 2008 are estimated to be almost - 17.4 % below 1990 emissions. This strong annual decline in GHG emissions is mainly due to the economic recession in 2009 leading to substantial emission reductions relative to 2008 in all Member States. Based on the latest official European Commission forecasts published earlier in the Spring, GDP in the EU-27 contracted by - 4.2 % in 2009.¹⁵

Table 1 and Figure 2 show the changes between 2008 and 2009 at sectoral level for the EU-15 and the EU-27. The largest absolute emission reduction occurs in the energy sector, which shows a reduction of - 220.2 Mt CO₂eq for the EU-15 and - 267.7 Mt CO₂eq for the EU-27 – equivalent to an emission reduction of - 6.9 % for both EU groups. The largest emission decrease mainly arises from reduced emissions from energy consumption in manufacturing industries and in the industrial processes sector as reflected by strongly reduced verified emissions reported under the EU ETS (- 24 %).

This emission reduction in the energy sector reflects the reduction of gross inland energy consumption by -5.5 % in the EU-27 in 2009 compared to 2008 and shows the effects of the global financial and economic crisis which begun in 2008 and resulted in reduced industrial output and reduced energy consumption by industry, but also for freight transport due to a decrease in transported goods. A similar emission reduction trend is reflected by verified emissions from EU-ETS for 2009 where total EU-27 emissions decrease by - 11.7 % between 2008 and 2009.

Lower demand for energy because of the economic recession was accompanied by lower energy and carbon prices in 2009. Newly-released data by the International Energy Agency (IEA) points to a sharp fall in energy prices during 2009¹⁶ from the high levels of 2008. Eurostat's data also confirms a significant reduction in natural gas prices

¹⁵ Real GDP growth rate of GDP volume - percentage change on previous year http://epp.eurostat.ec.europa.eu/tgm/table.do;jsessionid=9ea7974b30dd8549af6fd90a4215b5 a4bd09638f55ac.e34SbxiPb3uSb40Lb34LaxqRb30Ne0?tab=table&plugin=1&language=en&p code=tsieb020

¹⁶ Key World Energy Statistics 2010, IEA http://www.iea.org/textbase/nppdf/free/2010/key_stats_2010.pdf

for industrial consumers and households in most EU Member States¹⁷. Carbon prices remained relatively stable during 2009 although significantly lower than during 2008¹⁸. Relatively cheaper natural gas and a significant increase in renewable energy have also contributed to lower emissions.

Eurostat's monthly energy statistics report a decline in coal and lignite consumption in the EU-27 of -12.7 % and of -13.4 % in the EU-15, gas consumption dropped by -5.8 % (EU-27) and - 5.4 % (EU-15) and liquid fuel consumption was 4.5 % (EU-27) and 3.7 % (EU-15) lower than in 2008.¹⁹ The reduction in gas consumption was intensified in January 2009 due to the Russia-Ukraine gas dispute, which caused disruptions in the gas supply to eighteen European countries in a very cold phase in winter 2009. Bulgaria and Slovakia were among the most affected EU Member States by these supply drops, but supply problems occured most Eastern European Member States. The missing supply had to be compensated by other fuels and could explain the increased coal use in some Member States. According to Eurostat's monthly energy statistics, nuclear energy consumption declined by about - 3 % in the EU-27 between 2008 and 2009. Preliminary renewable energy data for 2009 also points to a significant increase of + 8.3 % in renewable energy consumption (excluding biomass) in Europe between 2008 and 2009. Thus, at EU level the most pronounced decline in energy consumption occurred for coal use with the strongest impact on GHG emissions. The second trading period of the EU-ETS with tightened emission caps for the power sector and manufacturing industries that started in 2008 may have contributed to the emission reduction effects in 2009 and the switch in fuel use.

Weather conditions in 2009 had different influences in different European regions. In Europe as a whole, the 2009 winter was colder than 2008's²⁰. The number of actual heating degree days (i.e. Eurostat's indicator to estimate changes in heat demand) increased by about 2 % on average in the European Union between 2008 and 2009. Eastern European countries experienced colder winters in 2009 than in 2008 (based on Eurostat heating degree days²¹). The colder winter increased the energy demand in these countries, and counteracted the declining industrial energy consumption. However, the 2009 winter was warmer than in the previous year in some Mediterranean

¹⁷ Natural gas prices, Eurostat <u>http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-QA-10-021/EN/KS-QA-10-021-EN.PDF</u>

¹⁸ Carbon prices: <u>http://www.pointcarbon.com/</u>

¹⁹ Shares based on energy data in energy units (TJ)

²⁰ Core set indicator 'Global and European temperature', EEA http://www.eea.europa.eu/dataand-maps/indicators/global-and-european-temperature/global-and-european-temperatureassessment-3

²¹ Heating degree days (monthly data):

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_esdgr_m&lang=en

Member States, resulting in additional emission reductions due to a lower heating demand.

The largest relative emission reduction occured in the industrial processes sector with - 12.5 % for EU-15 and - 13.6 % for EU-27 (decrease of - 39.0 Mt CO_2 eq for EU-15 and of - 55.9 Mt CO_2 eq for EU-27 in absolute terms). This industrial emissions reduction reflects a decline in emissions in the cement industry, the chemical industry and iron and steel industry. Due to the downturn of the European car market and an economic slow-down in the construction sector, iron and steel production decreased significantly in all Member States in 2009. In the cement sector EU-27 production fell by about - 17 % in 2009 compared to 2008.

In the agricultural sector GHG emissions show a decrease of - 12.8 Mt CO₂eq or - 3.4 % and for the EU-15 and a decrease of -3 % or - 14.0 Mt CO₂eq for the EU-27.

The waste sector is expected to show a rather small decrease of - 1.7 % for the EU-15 and - 1.2 % for the EU-27.

	Change 2008/09						
Sector All	EU	-15	EU-27				
	Mt CO ₂ eq	%	Mt CO ₂ eq	%			
Energy	-220.2	-6.95%	-267.7	-6.85%			
Industrial processes	-39.0	-12.49%	-55.9	-13.64%			
Solvent and Other Product Use	-0.2	-1.56%	-0.2	-1.53%			
Agriculture	-12.8	-3.40%	-14.0	-2.96%			
Waste	-1.7	-1.72%	-1.6	-1.16%			
Other	NE,	NE,	NE,	NE,			
Total	-274.0	-6.90%	-339.4	-6.87%			

Table 1Change in GHG emissions between 2008 and 2009 at sectoral level in abso-
lute and relative terms

Figure 2 Change in GHG emissions between 2008 and 2009 at sectoral level

Table 2 Summary table of approximated GHG emissions for 2009 for EU-15 (total emissions without LULUCF)

SUMMARY 2 SUMMARY REPORT FOR CO2 FOULVALENT EMISSIONS							
(Sheat 1 of 1)							
							E0-15
GREENHOUSE GAS SOURCE AND	<u>(020)</u>	CH4	N2O	HFCs(2)	PFCs(2)	SF6 (2)	Total
SINK CATEGORIES		ciii		O2 equivalent ((Ger)	510(1)	Total
Total (Net Emissions) (1)	3 862 453 33	204 508 75	263 377 26	64 971 92	2 391 03	8 804 35	3 696 497 55
	2 070 207 11	42 400 12	203 311.20	04711.71	1 301.33	0 00 4.32	2 047 010 44
A Fuel Combustion (Sectors] & numerich)	2 070 297.11	12 467.12	27 112.21				2 947 010.44
1 Energy Industries	1 0/6 12/ 97	2 833 03	27 019.70				1 057 718 37
2. Manufacturing Industries and Construction	205 051 72	1 773 71	4 856 47				/01 621 01
2. Wandactung midshes and construction 3. Transport	200 002 03	1 160 33	7 196 12				917 255 29
A Other Sectors	200 600 31	1 100.55 TE	/ 160.15				31/33/38
4. Other	600 858 20	6 607 52	6 216 73				622 772 45
B. Eugitize Emissions from Eugle	18 253 30	20 044 53	0.210.75				12 772.45
1 Solid Engle	501.07	27 744.23	92.J1 IE				40 250.34
1. Solid Fuels	17.661.22	3 50.80	IE				20 340.04
2. On and Matural Gas	17 001.55	21 307.73	1E 21 975 18	64.071.02	3 201 02	0.004.25	372 512 47
A Mineral Products	00.011.17	19 35076234	21075.10 NE	047/1.72	2 301.73	0 004.35	00.000.42
R. Chemical Inductor	22 911.17	18.23970324	21777 05249				72 727.43 //0 019 10
C. Metal Production	52 001 01	430.33	21777.05540		IE	IE	47 710.10
D. Other Production	22 25296451	6.43	0.00		IE	IL	1027.60
E. Production of Helesenhous and SE6	33.35380452	0.42	02.07	IF	IE	IE	122.4477201
E. Consumption of Helocerbons and SF6 (2)				IE	IE	IE	IE,
Consumption of Halocaroons and SF0 (2)	214.04	26 002 41 9	6 400 47	IE	IE	IE	1E,
	514.04	50.902418	0.49047	IE	IE	IE	307.43
3. Solvent and Other Product Use	0/03./8	145 022 72	3238.3/5310				10002.10
4. Agriculture		105 233.73	199 /22.85				304 950.58
A. Entenc Fermentation		121 092.77	21.255.42				121 092.11
B. Manure Management		41 200.04	21 300.43				02 000.91
C. File Cultivation		2 444.04	179 266 05				2 444.04
D. Agneutural Sous(3)		8.5/1489456	178 200.95				1/8/2/5.52
E. Prescribed Burning of Savannas		NE 407.01	NE				NE,
F. Field Burning of Agricultural Residues		437.21	100.47				30.08
G. Other	NT.	NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	INE	INE	INE				INE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE NE	NE Of DOD OD	NE				NE,
o. Waste	2 539.35	86 238.82	11 428.73				100 206.90
A. Solid waste Disposal on Land	12.10	13 394.20	1.29				13 40 1.83
B. Waste-Water Handling	2,527,26	10 /60.11	10 245.88				21 006.00
C. waste Incineration	2 321.20	4/8.03	245.14				3 201.03
D. Other	NE	1 605.93	935.82				2041.749941
7. Other (as specified in Summary I.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
	T	otal CO2 Equiva	lent Emissions w	vithout Land Use	, Land-Use Chang	ge and Forestry	3 696 497.55
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry							

(1) For CO2 from Land Use, Land-use Change and Forestry the net emissions/temovals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(3) Parties which previous ly reported CO2 from soils in the Agriculture sector should note this in the NIR.

(4) See footnote 8 to table Summary 1.A.

Table 3 Summary table of approximated GHG emissions for 2009 for EU-27 (total emissions without LULUCF)

Shurkers 2000 Shurkers 2000 CP2 evolution 2 Streption 2 Streption 2 Streption 2 CP2 evolution 2 Streption 2 <th colsp<="" th=""><th colspan="8">SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS Invento</th></th>	<th colspan="8">SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS Invento</th>	SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS Invento							
CREENHOUSE GAS SOURCE AND SINK CATEGORIES CO2 (J) CH N2O BFCs (J) SF6 (J) Teal (M e10 substance) Total (Vert Ensistens) (J) 3772 4572 398 085.02 3444.07.9 72105.28 3311.19 9 178.11 4640 385.55 Total (Vert Ensistens) (J) 3762 856 004.64 019042 32 444.07.9 72105.28 3311.19 9 178.51 4640 385.55 The lengt Industries 1394.5718 3000 073 10 398 04 - 3678 266.04 A. Transport 282 7960.01 3567 12 - - 476 62.4 J. Transport 282 7960.01 3570 22 - - 7212 155.0 S. Other 7447.71 2001.61 356.17 710 552 - - 7212 155.0 S. Todatial Production 17502.72 2712 155.44 18.003.0 2005.54 700.05 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18 19.05.18	(Sheet 1 of 1)						Submi	ssion 2010 v1.0	
CREENHOUSE GAS SOURCE AND SINK CATEGORIES CO2 (1) CH N20 HFCs (2) PFCs (2) SFS (2) Test Test Test Test STR (ATEGORIES) Interconserved 372 457.2 389 32 344 447.4 72165.20 331.1 9 178.1 440 83.2 Interconserved 3350 09.06 610 198.23 2447.79 716.20 331.1 9 178.1 309 29.04 Interconserved 398 09.06 109 177.31 223.234.0 1.402.146.5 1.402.146.5 Interconserved 928 7040 1.495.31 931.2.8 1.402.146.5 1.402.146.5 Interconserved 040 27.47.1 1.984.47 708.52 1.202.20 1.202.20 Interconserved 140.048 107.922.1 1.992.1 1.992.1 1.992.1 1.992.1 Interconserved 124.403.6 1185.07 316.68.5 3 311.19 9 178.5 3319.40.1 Interconserved 124.403.6 1185.47 731.68.58 3311.19 9 178.51 1.992.51 Interconserved 124.403.6 1185.47								EU-27	
CO21(0) CO3 NO PPC (2) PPC (2) SF6 (2) Total SNRC ATECORNES									
SINK CATEGORIES CO2 equivalent (Cg) I Cold Ver Ensistent) (1) 372 4557.2 3858 90.00 3 110 9 178.3 4 400 395.2 I. Rong (2) 352 60.00 352 60.00 352 60.00 3 100 573 3 223 40.1 1 400 180.2 A. Fuel Combustion (Sectoral Approach) 3 350 80 90.60 100 180 733 223 353 1 400 180.2 1 400 140.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2 1 100 120.2	GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total	
Total (Cel Baixsison) (D) 1772 (457.7) 398 (85.2) 344 447.54 72 (15.28) 33 11.19 9 (17.5.7) 4 400 (35.7) A. Fuel Combustion (Sectional Approach) 3.50 (89.64) 18 (07.33) 2.3 254.30 14 (40.145.7) A. Fuel Combustion (Industries and Construction 400 724.71 200.161 5.587.40 14 (40.145.7) 3. Transport 420 724.71 200.161 5.587.40 99 (40.2) 4. Other Sectors 110 119 (58.7) 7085.22 722 12.5.4 722 12.5.4 B. Pagitre Ensistence from Paula 13 (00.00) 2.0 20.5 (30.14 Paula) 7072 72 727 75.4 110 72 12.5.4 D. Other Devolution 71 (202.12) 72 775.54 12 19 (28.1) 91 (19.2) C. Industrial Devolution 71 (202.12) 72 735.54 12 19 (28.1) 73 11.99 91 (19.2) D. Other Devolution 74 (47.92) 73 73 75.81 12 128 (46.7) 19 (28.1) D. Other Devolution 74 (47.92) 73 73 73 128 (47.8) 128 (47.8) 128 (47.8) C. Markar Devolution 74 (47.92) 73 73 73 128 (47.8) 128 (47.8)	SINK CATEGORIES		CO2 equivalent (Gg)						
1. Dargy 352 690.46 90 1362 32 447.99 3 639 200.60 A. Fuel Comburtion (Sectoral Approach) 3350 809.66 180 753 32 325480 3 555 351 72 1. Eargy Industries and Construction 480 7247.1 3000 753 15 895 40 487 463.4 3. Transport 928 990.02 14 953 15 3 2123 487 463.4 4. Other Sectors 118 118 118 118 118 118 118 118 118 118 118 118 118 119 118	Total (Net Emissions) (1)	3 772 455.72	398 885.32	344 447.54	72 105.28	3 311.19	9 178.51	4 600 383.56	
A. Fuel Combustion (Sectional Approach) 3.50 (809.66) 18 (07.33) 2.3 2.3 4.80) 3.53 3.810 3.53 3.810 1 Bargy Industries 1.3 4.9 4.713 2001.61 5.587.1 1.486 1.45.5 2. Maunfactung Industries and Construction 400 274.71 2001.61 5.587.1 487.64.4 3. Tanaport 2.92 79.60.2 1.495.51 5.91.23 9.99 60.43 4. Other 7.04.471.34 11.49.64.7 7.095.22 7.21.25.4 B. Foghthe Banastore from Fuels 11.900.72 2.42.93.53 1.89.64.1 7.105.23 3.31.1.9 9.17.85.1 3.57.82.02 2. Outer Hondexton 7.17.97.54 1.89 7.105.23 3.31.1.9 9.17.85.1 3.57.82.02 2. Outer Hondexton 7.147.47.95 1.89.67 7.305.83 3.33.3 1.19 9.17.85.1 5.70.20 7.77.55 1.9 1.99.25.1 5.70.20 7.79.95 1.99.25.1 5.70.20 7.79.95 1.99.25.1 5.70.20 7.79.95 1.99.25.1 5.70.20 7.79.95 1.99.25.1 5.70.20 7.79.95 1.99.25.1 5.70.20 7.79.95	1. Energy	3 526 690.46	80 130.82	32 447.79				3 639 269.06	
1 Example Industries and Construction 400 274.71 3000.73 10.589.64 14.482 1463. 3 Transport 920 796.02 14.955.15 9.312.33 929.60.01 4 Other Sectors 11 18.402 147.17 11.864.47 708.52.2 92.96 5 Other 704.471.74 11.864.47 708.52.2 92.96 92.96 1 Sold Fuels 67.753.5 24.79.95 1E 92.96 92.96 2 Delawid Network 17.920.27 77.755.4 18 92.96 91.765.10 331.19 91.765.11 83.96.46 A Misead Producto 17.920.27 77.355.3 31.3.9 1E 1E 12 75.112.9 C. Inder Inductors and SF6 39.0726.62 6.4.2 6.2.67 1E 1E<	A. Fuel Combustion (Sectoral Approach)	3 508 089.66	18 075.33	32 354.80				3 558 519.78	
2. Massfacture for labelities and Construction 480 274 71 201 61 5 507 12 487 6643 3. Transport 928 7660 14 955 13 93 123 3 93 0043 4. Other Sectors 1E 201 234 30 702 23 1254 1. Sold Pauls 163 053 24 279 92 1E 201 234 30 702 23 37 773 54 1E 201 234 2353 33 5855 1 72 105 20 33 110 9 9 176 51 53 866.4 119 235 1 33 685 51 72 105 20 33 110 9 9 176 51 53 866.4 119 235 1 33 33 10 11 10 119 235 1 119 23 1	1. Energy Industries	1 394 547.18	3 009.73	10 589.64				1 408 146.55	
3. Transport 928 76602 1 49551 9 91 2633 99 20 633 4. Other Setors 1E 1E 1E 1E 1E 5. Other 704 471.74 11 586 47 705522 723 1254 1. Suble Pauls 6673 55 24 279 25 1E 24 26523 2. Industrial Processes 234 493.66 1185.97 33 658.51 72 105.28 3 311.19 9 176.51 35 842.44 A. Mineral Productio 119 905.72 22 4223236 KE 119 925.1 353 337 31607 119 925.1 353 337 31607 119 925.1 353 53 3337 31607 119 925.1 353 53 3337 31607 119 925.1 353 53 3337 31607 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 119 925.1 353 373 31607 129 326.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 128 3662.5 129 3563.6 129 3563.6 129 3563.6 129 3563.6	2. Manufacturing Industries and Construction	480 274.71	2 001.61	5 367.12				487 643.44	
4 Cher Sectors IE IE IE IE IE IE 5. Other 704 471,4115864,770552 723125.4 5037423125.4 1. Sold Fals 163030 62035.49 9292 5037427353 2. Oland Natural Gas 1792723 37775.5 IE 5037427 2. Jubartial Production 119905 72 22.423336 NH 72105.28 3311.9 9176.51 8. Chemical Industry 372627 73355 33537.81697 719905 719905 2. Other Production 39.0726462 6.42 6.267 119.9261 D. Other Production 39.0726462 6.42 6.407 1E 18.00370 128.06730 3. Other Production 39.0726462 6.42 6.4007 1E 128.06736 3. Other Production 19.0714.81 6.40047 1E 1E 128.07747 128.07747 128.07747 128.07747 1	3. Transport	928 796.02	1 495.51	9 312.83				939 604.36	
5. Other 704 471.74 11.588.47 708.52 723.125.4 B. Fagtive Ensistensions from Fuels 136 000.30 620.554 92.92 80.742.2 1. Sold Fuels 673.55 34279.95 1E 24493.53 2. Old and Natural General Material Processes 224.403.66 1185.07 33 654.51 72 105.28 3 31.19 9 178.51 35 82.4.4 A. Mineral Products 119.905.71 22.4223.03.01 119.921.1 119.921.1 119.921.1 B. Otherand Industry 33 62.8 783.95 333.38 1.13 1E 119.921.1 D. Other Production 74.747.05 333.38 31.33 1E 112.87667.04 F. Consumption of Halocatoons and SFG 20.174 36.902418 6.40407 1E 1E 1E 128.667.64 Shown and Other Product Use 799.30 499.02471.73 128.03.3 129.13.4 14.977.44 14.977.44 14.977.44 14.977.45 14.977.44 14.977.44 14.977.45 129.13.5 129.13.5 129.13.5 129.13.5 129.13.5 129.13.5 129.13.5 129.13.5 129.13.5 129.13.5 129.14.1	4. Other Sectors	IE	IE	IE				IE,	
B. Fightive Ensistions From Parka 18 600.80 62 0255.49 92.98 601749.23 1. Solid Parka 673.55 24 201957 18 24 0453.55 2. Oha and Natural Gas 117.927.25 37 775.54 118 24 0453.55 3. Industrial Presense 224.443.64 118.59.07 33 3518.17 21 065.28 3 311.19 9 178.51 35 042.47 B. Ohematal Industry 37 68.28 783.95 33337.81697 119.905.1 31 042.27 B. Ohematal Industry 37 68.28 783.95 33337.81697 112 71 1030.5 D. Other Production 39 67286452 6.42 82.67 122.766726 122.766726 F. Production of Halocarbons and SF6 (2) 0 118 118 121 120.83.3 J. Other Production 20.617.4 36 002.41 6409.027173 120.83.45 120.893.45 J. Agricultural Solik(3) 8.5714.84.20 64.72.82 687.044.04 124.971.44 J. Agricultural Solik(3) 8.5714.894.56 229.353.41 22.936.95 123.971.11 26.971.31 20.911.14 J. Agricultural Solik(3) 8.5714.894.56	5. Other	704 471.74	11 568.47	7 085.22				723 125.43	
1. Sold Fuels 673 55 24 279 95 IE 24353.5 2. Odar Matural Case 199272 377755 IE 9178.51 358 962.4 A. Masena Products 1199057 244233.35 72 105.26 3 31.19 9178.51 358 962.4 B. Chenical Industry 37 628.72 773.395 33337 81.697 119 925.1 358 962.4 D. Other Production 74 747.95 333.33 31.33 IE IE 119 921.2 O. Other Production of Halcoutons and SF6 64.4 8.6.70 IE IE IE IE IE 128.667.6 F. Consumption of Halcoutons and SF6 (2) 0 0 IE IE IE 128.667.6 J. Other Product Use 799.30 499.027173 128.67.1 129.053.3 144.971.48 J. Agricultura 144.971.48 20.94.35 0.803.3 0.803.71 129.233.3 J. Agricultura 5.014.67.148 20.94.82 20.94.83 0.803.71 22.351.3 23.13.3 129.231.33 J. Agricultural Sold(7) 8.5714.494.52 20.34.94.35 0.803.71 22.351.3 22.356.96	B. Fugitive Emissions from Fuels	18 600.80	62 055.49	92.98				80 749.28	
2. Oil and Natural Oas 17927 25 37755 4 IE 0 557027 2. Industrial Processes 234 403.86 11890573 234 2233230 NIE 917851 353 842.4 B. Ohemical Industry 376 673.39 33537 81067 119 9251 17 19 90 57 C. Metal Production 74 74795 3353 31 8167 IE IE 19 19 221 D. Other Production 29 67236442 6.42 22.67 IE	1. Solid Fuels	673.55	24 279.95	IE				24 953.50	
2. Industrial Processes 234 403.86 1185.07 33 658.5 72 105.28 3311.19 9 178.51 33 93 119 9 178.51 33 93 119 9 178.51 33 93 119 9 178.51 33 93 119 9 178.51 119 928.1 B. Oberneal Industry 37 632 78 783 95 333 33 33 33 78.1697 IE IE 119 928.1 B. Oberneal Industry 37 632 78 783 95 333 33 33 78.1697 IE IE IE 119 928.1 D. Other Production 747 473 95 33 58.0 31 2.0 IE IE IE 128.766726 F. Consumption of Habceabous and SF6 2081.74 36 902418 6.49047 IE IE IE IE IE IE IE 128.766726 G. Other 2081.74 2081.74 209 42.35 IS 93 93.0 109 427.173 IS 93 93.0 109 927.173 IS 93 93.0 121 210.0000 124 971.49 IS 93 93.000 93 93.000 100 93.071.1 IS 93 93.0000 100 93.071.1 IS 93 93.0000 125 93.000 IS 93 93.00000 125 93.00000 125 93.00000<	Oil and Natural Gas	17 927.25	37 775.54	IE				55 702.79	
A. Maxeal Products 119 905 72 22 42233236 NE 119 923.1 B. Chenical Industry 376 63.8 783.95 3337 81.67 71 920.5 C. Metal Production 74 747 95 335 33 31.53 IE IE IE 128.76726 D. Other Production 74 747 95 335 33 31.53 IE IS 30.773 I	2. Industrial Processes	234 403.86	1 185.07	33 658.51	72 105.28	3 311.19	9 178.51	353 842.43	
B. Chemical Industry 37 628.78 78 39 9 3337 81067 11 9903.32 C. Metal Production 39 67286452 6.42 82.67 12 7.1438 D. Other Production of Halocubons and SF6 (2) 1E IE	A. Mineral Products	119 905.72	22.42253236	NE				119 928.14	
C. Metal Production 74 747 95 333 33 31.33 IE IE 75 1143 D. Other Production of Halocubons and SF6 (2) 6.42 82.67 IE	B. Chemical Industry	37 628.78	783.95	33537.81697				71 950.55	
D. Other Production 396 67286452 6.4.2 82.67 IE [IE] IE [IE] IE F. Consumption of Halocubons and SF6 (2) 2081.74 36 902418 6.40047 IE IE IE IE IE G. Other 2081.74 2081.74 36 902418 6.40047 IE IE IE IE 2125.1 Solvent and Other Product Use 799.30 4090.21713 4012083.3 4. Agriculture 197 418.14 260 427.86 4047.78 4071.44 4711.44 B. Maaues Management 44 421 82 30 948.35 80370.11 C. Kwe Cultivation 22511.37 10 22513.3 D. Agriculture Solution 22511.37 10 22513.3 D. Agriculture Solution 22511.37 10 25	C. Metal Production	74 747.95	335.38	31.53		IE	IE	75 114.86	
E. Production of Halocabone and SP6 (2) IE IE <t< td=""><td>D. Other Production</td><td>39.67286452</td><td>6.42</td><td>82.67</td><td></td><td></td><td></td><td>128.7667261</td></t<>	D. Other Production	39.67286452	6.42	82.67				128.7667261	
F. Consumption of Halocabous and SP6 (2) Image: Construction of Constructin on Constretion of Construction of Construction of Co	E. Production of Halocarbons and SF6				IE	IE	IE	IE,	
G. Other 2081,74 36.902418 6.4007 IE IE IE 21251.37 Solvent and Other Product Use 197 418.14 200 427.88 437 844.0 144 971.43 A. Enteric Fermentation 144 971.43 200 427.88 800 970.13 800 970.13 C. Rice Cultivation 2 511.37 2511.37 2511.37 229 366.91 229 366.91 D. Agricultural Solid(3) 8 571489465 220 338.41 229 366.90 2511.37 D. Agricultural Solid(3) 8 571489465 220 338.41 6620.00 0.00 G. Other NE NE NE NE NE F. Field Burning of Agricultural Residues 504.89 121.11 6620.00 0.00 0.00 NE NE </td <td>F. Consumption of Halocarbons and SF6 (2)</td> <td></td> <td></td> <td></td> <td>IE</td> <td>IE</td> <td>IE</td> <td>IE,</td>	F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,	
3. Solvent and Other Product Use 7993.30 4090.027173 12083.37 4. Agriculture 197.418.14 260 427.88 457.646.0 A. Enteric Fermentation 144.971.48 144.971.48 144.971.48 B. Manue Management 49.421.82 30.949.35 30.877.646.01 C. Rise Cultivation 2.511.37 2.29.358.41 2.29.366.99 D. Agricultural Sols(3) 8.571469.456 2.29.358.41 2.29.366.99 F. Field Burning of Savannas NE NE NE F. Field Burning of Agricultural Residues 504.89 121.11 6626.00 O. Otter NE NE NE NE A. Forest Land NE NE NE NE A. Forest Land NE NE NE NE NE G. Other NE NE NE NE NE NE D. Wethands NE	G. Other	2 081.74	36.902418	6.49047	IE	IE	IE	2 125.13	
4. Agriculture 197 48,14 200 42.88 457 846.0 A. Entric Fermentation 144 971.48 144 971.48 144 971.43 B. Manue Management 49 421.82 30 948.35 80 370.11 C. Rize Cultivation 2 511.37 29 338.41 29 2338.41 29 336.41 D. Aggicultural Solid(3) 8 5714.994.62 29 338.41 29 336.41 29 336.41 E. Prescribed Burning of Savanaas NE NE NE NE NE F. Field Burning of Savanaas NE	3. Solvent and Other Product Use	7993.30		4090.027173				12083.32	
A. Enteric Permentation 144 971.48 144 971.48 144 971.48 B. Manue Management 49 421.82 30.948.35 80.370.11 C. Rec Cultivation 2.511.37 229.366 D. Agricultural Sole(3) 8.571489.456 229.33.41 229.366 E. Prescribed Burning of Savannas NE NE NE F. Field Burning of Agricultural Residues 504.89 121.11 66260 G. Other NE NE NE NE A. Forset Land NE NE NE NE B. Cropland NE NE NE NE C. Grassland NE NE NE NE D. Wetlands NE NE NE NE D. Wetlands NE NE NE NE G. Other NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other NE	4. Agriculture		197 418.14	260 427.88				457 846.01	
B. Manure Management 49 421.82 30 948.35 80 370.13 C. Rice Cultivation 2 511.37 2 511.37 D. Agricultural Solis(3) 8.571489456 229 338.41 2293669 E. Prescribed Burning of Agricultural Residues 504.89 121.11 6626.00 G. Other NE NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE A. Forest Land NE NE NE NE S. Cher NE NE NE NE B. Cropland NE NE NE NE C. Grassland NE NE NE NE D. Wetlands NE NE NE NE D. Wetlands NE NE NE NE G. Other NE NE NE NE	A. Enteric Fermentation		144 971.48					144 971.48	
C. Rise Cultivation 2 511.37 0 2 511.37 D. Agricultural Solig(3) 8 571489456 229 358.41 229 366.93 E. Prescribed Burning of Agricultural Residues 504.89 121.11 6626.00 G. Other NE NE NE NE S.Land Use, Land-Use Change and Forestry(1) NE NE NE NE A. Forest Land NE NE NE NE NE B. Corpland NE NE NE NE NE D. Wetlands NE NE NE NE NE NE D. Wetlands NE Solid Vast Dispoal on Land 12.72 102.321.61	B. Manure Management		49 421.82	30 948.35				80 370.18	
D. Agricultural Solid(3) 8.571489456 229 338.41 80 229 366 99 E. Prescribed Burning of Savanas NE NE NE NE NE NE NE NE Stand Use, Land-Use Change and Forestry(1) NE	C. Rice Cultivation		2 511.37					2 511.37	
E. Prescribed Burning of Savanas NE NE NE F. Field Burning of Agricultural Residues 504.89 121.11 662600 G. Other NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE A. Forest Land NE NE NE NE B. Cropland NE NE NE NE C. Grassland NE NE NE NE D. Wetlands NE NE NE NE E. Sottherents NE NE NE NE F. Other Land NE NE NE NE G. Other NE NE NE NE G. Other NE NE NE NE G. Other NE NE NE NE G. Waste-water Handing 12.72 102 311.61 1.29 28125.01 C. Waste Incineration 3 355.39 479.08 273.85 4108.32 D. Other NE NE NE NE Memo Items: (4) NE NE NE NE Marine NE NE NE NE Marine NE NE NE NE <td>D. Agricultural Soils(3)</td> <td></td> <td>8.571489456</td> <td>229 358.41</td> <td></td> <td></td> <td></td> <td>229 366.99</td>	D. Agricultural Soils(3)		8.571489456	229 358.41				229 366.99	
F. Field Burning of Agricultural Residues 504.89 121.11 62600 G. Other NE NE NE NE S. Land Use Change and Forestry(1) NE NE NE NE A. Forest Land NE NE NE NE B. Cropland NE NE NE NE C. Grassland NE NE NE NE D. Wetlands NE NE NE NE D. Wetlands NE NE NE NE G. Other NE NE NE NE NE G. Other 120 151.29 13 823.34 137 342.72 A. Solid Waste Disposal on Land 12.72 102 315.61 1.02 235.61 2783.765094 C. Waste Incinceration 3 355.39 </td <td>E. Prescribed Burning of Savannas</td> <td></td> <td>NE</td> <td>NE</td> <td></td> <td></td> <td></td> <td>NE,</td>	E. Prescribed Burning of Savannas		NE	NE				NE,	
G. Other NE NE NE NE 5. Land Use, Land-Use Change and Forestry(1) NE NE NE NE A. Forest Land NE NE NE NE B. Cropland NE NE NE NE C. Grassland NE NE NE NE D. Wetlands NE NE NE NE D. Wetlands NE NE NE NE E. Settlements NE NE NE NE G. Other NE NE NE NE G. Waste Disposal on Land 12.72 102.325.6 28125.0 28125.0 C. Waste Incineration 3355.39 479.08 273.85 4108.33 D. Other NE NE NE NE Memo Items: (4) NE NE NE NE International Bunkers NE NE NE	F. Field Burning of Agricultural Residues		504.89	121.11				626.00	
5. Land Use, Land-Use Change and Forestry(1) NE NE NE NE NE NE NE A. Forest Land NE NE NE NE NE NE NE B. Cropsland NE NE NE NE NE NE NE C. Grassland NE NE NE NE NE NE NE D. Wetlands NE NE NE NE NE NE NE NE G. Other NE	G. Other		NE	NE				NE,	
A. Forest Land NE NE NE NE NE B. Cropland NE NE NE NE NE C. Grassland NE NE NE NE NE D. Wetlands NE NE NE NE NE E. Settlements NE NE NE NE NE F. Other Land NE NE NE NE NE G. Other NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other NE	5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,	
B. Cropland NE NE NE NE NE C. Grassland NE NE NE NE NE D. Wetlands NE NE NE NE NE E. Settlements NE NE NE NE NE F. Other Land NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other NE NE NE NE NE NE NE B. Waste-water Handling 12.031.61 1.29 2455.01 28125.01 28125.01 28125.01 28125.01 2783.765090 C. Waste Incineration 3355.39 479.08 273.85 NE NE <td>A. Forest Land</td> <td>NE</td> <td>NE</td> <td>NE</td> <td></td> <td></td> <td></td> <td>NE,</td>	A. Forest Land	NE	NE	NE				NE,	
C. Grassland NE NE NE NE NE D. Wetlands NE NE NE NE NE NE E. Settlements NE NE NE NE NE NE F. Other Land NE NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other NE NE NE NE NE NE G. Waste 3368.11 120 151.29 13 823.34 0 102 325.61 B. Waste-water Handling 15 639.82 12 483.21 0 24 103.33 D. Other NE 1720.78 1062.98 0 2783.7650.90 T. Other (as specified in Summary I.A) NE NE NE NE NE Memo Items: (4) International Bunkers NE NE NE NE NE Marine NE NE NE NE NE NE NE NE	B. Cropland	NE	NE	NE				NE,	
D. Wetlands NE NE NE NE NE E. Settlements NE NE NE NE NE F. Other Land NE NE NE NE NE G. Other NE NE NE NE NE 6. Waste 33 66.11 120 151.29 13 823.34 102 325.61 B. Waste-water Handling 15 639.82 12 485.21 28 125.02 C. Waste Incineration 3 355.39 479.08 273.35 4108.33 D. Other NE NE NE NE NE Memo Items: (4) NE NE NE NE NE NE Marine NE NE NE NE NE NE NE Mutilateral Operations NE	C. Grassland	NE	NE	NE				NE,	
E. Settlements NE NE NE NE NE F. Other Land NE NE NE NE NE G. Other NE NE NE NE NE G. Other NE NE NE NE NE G. Other NE NE NE NE NE G. Waste 3368.11 120 151.29 13 823.34 1010 2325.61 102 325.61 B. Waste-water Handling 15 639.82 12 485.21 28 125.02 28 125.02 C. Waste Incineration 3 355.39 479.08 273.85 4108.32 D. Other NE 17 20.78 1062.98 2783.76094 7. Other (as specified in Summary LA) NE NE NE NE Memo Items: (4) NE NE NE NE NE International Bunkers NE NE NE NE NE Aviation NE NE NE NE NE NE Multilateral Operations NE NE NE NE NE NE <td< td=""><td>D. Wetlands</td><td>NE</td><td>NE</td><td>NE</td><td></td><td></td><td></td><td>NE,</td></td<>	D. Wetlands	NE	NE	NE				NE,	
F. Other Land NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other NE NE NE NE NE NE G. Other 3368.11 120 151.29 13 823.34 103 73 42.75 102 311.61 1.129 102 321.61 102 321.61 129 28 125.00 102 312.60 102 321.61 129 28 125.00 28 125.00 28 125.00 28 125.00 28 125.00 28 125.00 28 125.00 28 125.00 28 125.00 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 273.85 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 4 108.33 </td <td>E. Settlements</td> <td>NE</td> <td>NE</td> <td>NE</td> <td></td> <td></td> <td></td> <td>NE,</td>	E. Settlements	NE	NE	NE				NE,	
G. Other NE NE NE NE 6. Waste 3368.11 120 151.29 13 823.34 137 342.73 A. Solid Waste Disposal on Land 12.72 102 311.61 1.29 102 325 60 B. Waste-water Handling 15 639.82 12 485.1 28 120 28 120 C. Waste Incineration 3 355.39 479.08 273.85 4108.33 D. Other NE NE NE NE 7. Other (as specified in Summary I.A) NE NE NE NE Memo Items: (4) International Bunkers Aviation NE NE NE Marine NE NE NE NE Multilateral Operations Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry A 600 383.50	F. Other Land	NE	NE	NE				NE,	
6. Waste 3 368.11 120 151.29 13 823.34 137 342.73 A. Solid Waste Disposal on Land 12.72 102 311.61 1.29 102 325.63 B. Waste-water Handling 15 639.82 12 485.21 28 125 03 C. Waste Incineration 3 355.39 479.08 273.85 4108.33 D. Other NE 17 20.78 1 062.98 2783.76509 7. Other (as specified in Summary I.A) NE NE NE NE Memo Items: (4) NE NE NE NE NE Marine NE NE NE NE NE Marine NE NE NE NE NE Multilateral Operations NE NE NE NE NE CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 4600 383.50 A600 383.50 NE	G. Other	NE	NE	NE				NE,	
A. Solid Waste Disposal on Land 12.72 102 311.61 1.29 102 325.61 B. Waste-water Handling 15 639.82 12 485.21 28 125.00 C. Waste Incineration 3 355.39 479.08 273.85 4108.33 D. Other NE 1720.78 1062.98 2783.765096 7. Other (as specified in Summary I.A) NE NE NE NE Memo Items: (4) NE NE NE NE NE Axiation NE NE NE NE NE Marine NE NE NE NE NE Multilateral Operations NE NE NE NE NE Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 4600 383.50 4600 383.50	6. Waste	3 368.11	120 151.29	13 823.34				137 342.73	
B. Waste-water Handling 15 639.82 12 485.21 28 125.00 C. Waste Incineration 3 355.39 479.08 273.85 4 108.33 D. Other NE 1 720.78 1 062.98 2783.7650.96 7. Other (as specified in Summary I.A) NE NE NE NE NE Memo Items: (4) International Bunkers NE NE NE NE Aviation NE NE NE NE NE Marine NE NE NE NE NE Mutilateral Operations NE NE NE NE NE Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 4600 383.50 NE NE	A. Solid Waste Disposal on Land	12.72	102 311.61	1.29				102 325.61	
C. Waste Incineration 3 355.39 479.08 273.85 4108.33 D. Other NE 1720.78 1 062.98 2733.765094 7. Other (as specified in Summary I.A) NE NE NE NE NE NE NE NE Memo Items: (4) NE NE NE NE NE NE Aviation NE NE NE NE NE Marine NE NE NE NE NE Multilateral Operations NE NE NE NE CO2 Emissions from Biomass NE NE NE NE	B. Waste-water Handling		15 639.82	12 485.21				28 125.03	
D. Other NE 1 720.78 1 062.98 0 2783.765094 7. Other (as specified in Summary I.A) NE NE NE NE NE NE NE Memo Items: (4) Image: Constraint of the system	C. Waste Incineration	3 355.39	479.08	273.85				4 108.33	
Net NE NE NE NE NE NE NE NE NE Memo Items: (4) International Bunkers NE NE NE Image: Constraint of the second s	D. Other	NE	1 720.78	1 062.98				2783.765096	
Memo Items: (4) Image: Constraint of the second	7. Other (as specified in Summary I.A)	NE	NE	NE	NE	NE	NE	NE,	
Memo Items: (4) International Bunkers NE NE NE NE International Bunkers NE NE NE NE Aviation NE NE NE NE Marine NE NE NE NE Multilateral Operations NE NE NE NE CO2 Emissions from Biomass NE NE NE NE									
International Bunkers NE NE NE Aviation NE NE NE Marine NE NE NE Multilateral Operations NE NE NE CO2 Emissions from Biomass NE NE NE	Memo Items: (4)								
Aviation NE NE NE Marine NE NE NE Multilateral Operations NE NE NE CO2 Emissions from Biomass NE NE NE	International Bunkers	NE	NE	NE				NE,	
Marine NE NE NE Multilateral Operations NE NE NE CO2 Emissions from Biomass NE NE NE	Aviation	NE	NE	NE				NE,	
Multilateral Operations NE NE NE CO2 Emissions from Biomass NE NE NE Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry YEAR 4600 383.50	Marine	NE	NE	NE				NE,	
CO2 Emissions from Biomass NE NE Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 4 600 383.50 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE	Multilateral Operations	NE	NE	NE				NE,	
Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 4 600 383.50 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE	CO2 Emissions from Biomass	NE						NE,	
Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 4600 383.50 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE									
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE		Т	otal CO2 Equiva	lent Emissions w	ithout Land Use, I	Land-Use Change	and Forestry	4 600 383.56	
			Total CO2 Equ	iivalent Emission	s with Land Use, I	Land-Use Change	and Forestry	NE,	

(1) For CO2 from Land Use, Land-use Change and Forestry the net emissions/temovals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(3) Parties which previous ly reported CO2 from soils in the Agriculture sector should note this in the NIR.

(4) See footnote 8 to table Summary 1.A.

3.2 Uncertainties

National GHG inventories are required to fulfil certain principles as laid out in the UNFCCC reporting guidelines for GHG inventories; inventories must be transparent, consistent, comparable, complete and accurate (TCCCA). The IPCC GPG recommends Parties to perform QA/QC procedures that are important information to enable continuous improvement to inventory estimates. Through the quantification of uncertainties at the source level and for the inventory as a whole improvement can be tracked.

Thus Parties may change methodologies in order to improve their greenhouse gas estimates at source level (e.g. moving from Tier 2 to Tier 3), which could not be considered for the calculation of the approximated GHG inventory for the EU. Quality improvements are therefore a source of uncertainty for the proxy inventory.

For the approximated GHG inventory uncertainties were estimated on the basis of the deviation of Member States' real GHG inventories in 2008 with the approximated GHG inventory estimated for 2008. This deviation is shown for the EU-15 and the EU-27.

Table 4	Deviation between the approximated GHG inventory estimated for 2008 and
	the real 2008 inventory submission for the EU-15 and the EU-27.

MS	UNFCCC 2008	Proxy 2008	Deviation 2008 (April)	
	Gg CO₂eq		Gg CO₂eq	%
EU-15	3 970 472.70	4 001 140.20	30 667.50	0.77%
EU-27	4 939 738.06	4 971 150.87	31 412.81	0.64%

Source: EEA's ETC ACC based on the 2010 EU greenhouse gas inventory to UNFCCC for 1990-2008 and early estimates for 2009

For the EU-15 the approximated GHG emissions were 0.77 % higher than the real GHG inventory submissions and for the EU-27 0.64 %.

In 2009 it was the first time that EEA has produced estimates of total greenhouse gas emissions for the EU-15 and the EU-27 just months after the year in question. The proxy estimates of the reduction of greenhouse gas emissions 2007/2008 amounted to -1.3 % (-50.8 Mt CO₂eq) for the EU-15 and to -1.5 % (-74.2 Mt CO₂eq) for the EU-27. Greenhouse gas emissions, as officially reported to UNFCCC earlier this year, showed a reduction of emissions of -1.9 % (-75.7 Mt CO₂eq) for the EU-15 and -2.0 % (-99 Mt CO₂eq) for the EU-27. Even though the proxy estimates last year underestimated the mean reductions officially reported to UNFCCC this year, the latter mean reductions were captured by the upper and lower confidence limits around the mean proxy estimates estimated last year (+/-0.9 % for the EU-15, +/-0.6 % for the EU-27).

Thus, the use of the data sources and methodologies for the ealy estimates published last year and the results mirrored rather well the decreasing trend in official emissions as reported to the UNFCCC this year. The accuracy of the 2009 mean estimates given in this report can only be known in the late Spring of 2011 with the EU's official submission

to the UNFCCC. The upper and lower uncertainty bounds are meant to capture the true value of these reductions.

The deviations given in Table 4 arise from several sources: the less precise methodologies and data used for the approximated GHG inventories (compared to official GHG inventories); the lack of updated (t-1) activity data for some key sources; and, from Member States' own recalculations of GHG estimates and methodological improvements which cannot be reflected in the approximated data where constant methodologies and emission factors are assumed.

Due to the lack of updated (t-1) activity data, emissions from synthetic fertilizers for example might comprise a higher uncertainty for the approximated GHG inventory for the year 2009. Compared to last year's approximated GHG inventory activity data from Eurostat for the year 2009 have not been available until now and could not be used. Thus an extrapolation of official inventory data from previous year was made instead which might result in higher deviations (see Table 58).

Source: EEA's ETC ACC based on the 2010 EU greenhouse gas inventory to UNFCCC for 1990-2008 and early estimates for 2009

Figure 3 shows the deviations between approximated data for 2008 and inventory data. The largest relative deviation occurred in the Solvent and Other Product use sector – for the EU-15 the approximated GHG emissions were + 3.5 % higher than the real GHG inventory submissions. Emissions from this source category, by using the proxy methodologies, were overestimated for some Member States.

The uncertainty ranges for the 2009 approximated emissions were based on the deviations that occurred in 2008, thus the uncertainty range provided in the figures reflects the difference related to the real Member States' GHG emissions. For the uncertainty estimation, the deviation found for 2008 was applied in the positive and negative direction to the Member States' estimates for 2008. For the relative change between 2008/2009 this method results in an uncertainty of \pm 0.8 % for the EU-15 and \pm 0.6 % for the EU-27.

3.3 Methodologies and data sources

For the estimation of approximated emissions, the following data sources for emissions or activities in the year 2009 were used:

- BP's Statistical Review of World Energy 2009²²;
- verified emissions reported under the EU-ETS and recorded in the CITL²³;
- Eurostat monthly production data of hard coal and lignite from Eurostat;
- Eurostat monthly data on crude oil input to refineries (indicator code 101008, product code 3100);
- Eurostat monthly data on crude oil production (indicator code 100100, product code 3100);
- Eurostat monthly total consumption data for natural gas (indicator code 100900, product code 4100);
- Eurostat production data for natural gas (indicator code 100100, product code 4100);
- Eurostat annual data for the final energy consumption of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Eurostat monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Monthly production data for crude steel production of the International Iron and Steel Institute (IISI);
- Eurostat annual statistics on livestock population for dairy cattle, non-dairy cattle, swine, sheep, goats.

22

http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publicati ons/statistical_energy_review_2008/STAGING/local_assets/2010_downloads/statistical_revie w_of_world_energy_full_report_2010.pdf

²³ http://www.eea.europa.eu/data-and-maps/data/european-union-emissions-trading-scheme-euets-data-from-citl-1

1

A number of EU Member States (and other EEA member countries such as Switzerland and Norway) prepared their own approximated greenhouse gases estimates for 2009 and provided these estimates to the project team. For some Member States these data were used in the final EU results for 2009. In other cases, the data provided by the countries has been used as verification of own calculations. This approach should progressively lead to more robust EU early-estimates, which is the current objective of this exercise. The detailed methodological overview in Annex 1 indicates in detail where Member States results have been used. Some Member States also published their own approximated greenhouse gas emissions for 2009 and the list below provides the links to these sources for individual EEA member countries:

• Denmark:

http://www.ens.dk/enus/info/news/news_archives/2010/sider/20100318largedropinenergyconsumption200 9.aspx

• Germany:

http://www.umweltbundesamt.de/uba-info-presse-e/2010/pe10-013_climate_protection_2009_shows_8_4_percent_decline_in_greenhouse_gas_emi ssions.htm

http://www.umweltbundesamt.de/uba-info-presse/2010/pdf/pd10-013 treibhausgasemissionen grafiken.pdf

- Finland (only CO₂ from energy): <u>http://www.stat.fi/til/ehkh/2009/04/ehkh 2009 04 2010-03-24 tie 001 en.html</u>
- France (only mainland France without overseas departments): <u>http://www.citepa.org/emissions/nationale/Ges/Emissions_FRmt_GES.pdf</u>
- Italy:

http://www.isprambiente.it/site/ contentfiles/00001600/1640 comunicato emiss2010. pdf

- Netherlands: <u>http://www.cbs.nl/nl-NL/menu/themas/natuur-</u> <u>milieu/publicaties/artikelen/archief/2010/2010-3199-wm.htm</u>
- Norway: <u>http://www.ssb.no/klimagassn/</u>
- Spain: <u>http://www.mma.es/secciones/calidad_contaminacion/atmosfera/emisiones/pdf/Avanc</u> <u>e_Inventario_de_Emisiones_GEI.pdf</u>
- Switzerland: <u>http://www.bafu.admin.ch/dokumentation/medieninformation/index.html?lang=de</u>
- UK:

http://www.decc.gov.uk/en/content/cms/statistics/climate_change/gg_emissions/uk_e missions/2009_prov/2009_prov.aspx The activity rates were multiplied by the implied emission factors from the 2010 inventory submissions to achieve the emissions, except when CITL data were used which already include CO_2 emissions.

Based on these data sources, 2009 emission estimates were made for the following source categories:

- Energy
 - o 1.A Fuel combustion
 - o 1.A.1 Energy industries
 - o 1.A.2 Manufacturing industries and construction
 - o 1.A.3 Transport
 - o 1.B Fugitive emissions
 - o 1.B.1 Solid fuels
 - o 1.B.2.a Oil and natural gas, oil
 - o 1.B.2.b Oil and natural gas, natural gas
 - o 1.B.2.c Oil and natural gas, venting and flaring
- Industrial processes
 - o 2.A Mineral products
 - o 2.C Metal production
- Agriculture
 - o 4.A Enteric fermentation
 - o 4.B Manure management

The alternative sources of AD and emissions listed above were only used if the resulting emissions matched well with real inventories for past years. If large discrepancies occurred for individual Member States, different approaches (trend extrapolation, constant values from previous year) were used.

For the waste sector and all other inventory source categories not listed above, no 2009 activity data was available that could be combined with IEFs from GHG inventories. These categories were extrapolated from 2008 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2008. Constant values were used when past trends were inconsistent and strongly fluctuating; trend extrapolation was used when historic time series showed good correlations with a linear trend.

Based on the analysis of deviations of the approximated GHG emissions for 2008 compared to final Member States emissions estimates submitted to the UNFCCC in 2008 (see section 3.2) a number of methodological changes were introduced or further applied (2B) for the estimation in this report compared to the approach in 2008:

- 1A2 Manufacturing Industries and construction: improved trend analysis of different ETS sectors to the 1A2 inventory category,;
- 2B Chemical Production: Extrapolation was undertaken at more disaggregate level for all subcategories.
- 2C1 Iron and Steel Production: improved disaggregation of power plants using waste gases from the iron and steel sector (ETS data for iron and steel).

Table 5 Time of data availability of data sources used for the approximated inventory

Data source	Availability		
Community Independent Transaction Log (CITL) emissions	March-April, significant updates until July		
BP Statistical Review of World Energy	15 June		
Eurostat monthly production data for hard coal and lignite	3 month after reporting period		
Eurostat monthly production data on crude oil input to refineries	3 month after reporting period		
Eurostat monthly production data for crude oil	3 month after reporting period		
Eurostat monthly production data for natural gas	3 month after reporting period		
IISI monthly production data for crude steel production	two month after reporting		
IISI monthly production data for blast furnace iron production	two month after reporting		
Eurostat annual statistics on livetsock population for dairy	April		
cattle, non-dairy cattle, swine, sheep, goats			
CRF inventory submissions	End of May (final submitted changes)		

4 Sectoral results

4.1 Energy

4.1.1 1.A Energy fuel combustion

4.1.1.1 Methods and data sources used

Based on the results of the National GHG emission inventories in the previous year, the main source for the estimation of CO₂ emissions from source category 1.A (Energy - fuel combustion) is the most recent BP Statistical Review of World Energy, which contains individual data for 20 EU Member States and combined data for Belgium and Luxembourg. No data are published for Cyprus, Estonia, Latvia, Malta and Slovenia in this source. The share of these (smaller) countries in energy consumption amounts to less than 1 % of total EU emissions, with some differences regarding individual energy sources. The BP data refer to primary energy consumption and covers only commercially traded fuels. The data source excludes non-commercial fuels such as wood, peat and animal wastes which, though important in many countries, are unreliably documented in terms of consumption statistics. In addition, wind, geothermal and solar power generation are not covered in the BP data.

The primary energy consumption reported by BP covers the three fossil fuel categories, oil, natural gas, and coal which are relevant to CO_2 emissions as well as nuclear energy and hydroelectric energy. On the basis of the fossil fuels, the respective CO_2 emissions can be calculated with assumed emission factors. As a result, we estimated the changes of total CO_2 emissions from previous year Y-1 to Y of each country.

Based on these data the emissions were calculated as follows:

$$E_{1A,CO_{2}}^{Y} = \frac{E_{BP(CO_{2}, \text{ fossil})}^{Y}}{E_{BP(CO_{2}, \text{ fossil})}^{Y-1}} \cdot E_{1A,CO_{2}}^{Y-1}$$

with

 $\begin{array}{ll} E_{1A,CO_2}^Y & CO_2 \ emissions \ for \ source \ category \ 1A \\ E_{1A,CO_2}^{Y-1} & CO_2 \ emissions \ for \ source \ category \ 1A \ from \ previous \ year \\ E_{BP(\ldots)}^Y & Calculated \ CO_2 \ emissions \ with \ BP \ energy \ data \\ E_{BP(\ldots)}^{Y-1} & Calculated \ CO_2 \ emissions \ with \ BP \ energy \ data \ from \ previous \ year \\ \end{array}$

For five countries (Cyprus, Estonia, Latvia, Malta and Slovenia), sufficient and consistent data were not available in the BP data. For these countries the calculated data from the source categories 1.A.1 - 1.A.5 were amounted.

The estimation for CH_4 emissions from source category 1.A (Energy fuel combustion) is similar to CO_2 and based on the following equation:

$$E_{IA,CH4}^{Y} = \frac{E_{BP(CO2, fossil)}^{Y}}{E_{BP(CO2, fossil)}^{Y-1}} \cdot E_{IA,CH4}^{Y-1}$$

with

 $\begin{array}{ll} E_{IA,CH4}^{Y} & CH_{4} \ emissions \ for \ source \ category \ IA \\ E_{IA,CH4}^{Y-1} & CH_{4} \ emissions \ for \ source \ category \ IA \ from \ previous \ year \\ E_{BP(\dots)}^{Y} & Calculated \ CO_{2} \ emissions \ with \ BP \ energy \ data \\ E_{BP(\dots)}^{Y-1} & Calculated \ CO_{2} \ emissions \ with \ BP \ energy \ data \ from \ previous \ year \\ \end{array}$

For five countries (Cyprus, Estonia, Latvia, Malta and Slovenia) sufficient and consistent data were not available in the BP data. For these countries the calculated data from the source categories 1.A.1 - 1.A.5 were amounted.

The estimation for N_2O emissions from source category 1.A (Energy fuel combustion) is similar to CO_2 and based on the following equation:

$$E_{IA,N2O}^{Y} = \frac{E_{BP(CO2, fossil)}^{Y}}{E_{BP(CO2, fossil)}^{Y-1}} \cdot E_{IA,N2O}^{Y-1}$$

with

$$\begin{array}{ll} E_{IA,N2O}^{Y} & N_{2}O \ emissions \ for \ source \ category \ IA \\ E_{IA,N2O}^{Y-1} & N_{2}O \ emissions \ for \ source \ category \ IA \ from \ previous \ year \\ E_{BP(\dots)}^{Y} & Calculated \ CO_{2} \ emissions \ with \ BP \ energy \ data \\ E_{BP(\dots)}^{Y-1} & Calculated \ CO_{2} \ emissions \ with \ BP \ energy \ data \ from \ previous \ year \end{array}$$

For five countries (Cyprus, Estonia, Latvia, Malta and Slovenia) sufficient and consistent data were not available in the BP data. For these countries the calculated data from the source categories 1.A.1 - 1.A.5 were amounted.

For the CO_2 emissions from 1A Fuel Combustion which represent a very large share of total GHG emissions in the EU additional checks and corrections were applied for this report. The CO_2 emissions from 1A were divided in a share of emissions covered by the EU-ETS and in Non-ETS emissions (1A – total verified emissions in 2008 corrected for scope). Then the change from 2007/2008 of the Non-ETS emissions was checked. For some Member States, in particular those for which insufficient data was available from BP data, these check showed unlikely high annual increases. In these cases the CO_2 emissions for 1A Fuel Combustion were corrected and refined methodologies applied.

4.1.1.2 Results for 2009

In the energy sector, results show a decline of GHG emissions by 218 Mt CO_2eq for EU-15 between 2008 and 2009. Table 6 indicates the sub-sector contribution to this drop in emissions. The largest reductions occur in the energy industries and manufacturing industries while emissions from 'Other sectors' and 'Other' representing mainly emissions from residential and services sector grew. The emission reduction from energy industries is more pronounced in the EU-27 than in the EU-15.

Table 6Change in GHG emissions between 2008 and 2009 for main source catego-
ries in the energy sector

	Change 2008/09				
Sector Energy	EU-15		EU-27		
	Mt CO ₂ eq	%	Mt CO ₂ eq	%	
A. Fuel Combustion (Sectoral Approach)	-218.5	-7.0%	-263.8	-6.9%	
1. Energy Industries	-89.6	-7.8%	-119.6	-7.8%	
2. Manufacturing Industries and Construction	-110.8	-21.6%	-121.1	-19.9%	
3. Transport	-20.2	-2.4%	-22.2	-2.3%	
4 Other sector and 5 Other	2.1	0.3%	-0.9	-0.1%	
B. Fugitive Emissions from Fuels	-1.6	-3.3%	-3.9	-4.6%	
1. Solid Fuels	-0.6	-6.6%	-1.8	-6.9%	
2. Oil and Natural Gas	-1.1	-2.7%	-2.2	-3.8%	

Source: 2010 CRF inventory submissions to UNFCCC and EU for 2008 and authors' own calculations for 2009

Figure 4 Change in GHG emissions between 2008 and 2009 for main source categories in the energy sector

According to BP data for energy consumption in the EU 27 fell by more than -6% in 2009. The emissions of all installations covered by the EU ETS indicate a decline of -

11 % in the EU 27 in the same period. This already indicates that the decline of emissions was stronger in the sectors covered by the EU ETS compared to the other sectors.

Coal consumption fell by -11 % compared to gas (-6 %) and oil (-6 %) consumption according to BP energy statistics. The majority of the coal is used by installations covered by the EU ETS, especially in power generation. Around 75 % of CO₂ emissions from 1A1a are from combustion of solid fuels. Thus, the stronger reduction of CITL emissions is due to the high share of solid fuel inputs in the EU ETS (see Figure 5).

Figure 5 Reduction of energy consumption for the EU 27 between 2008 and 2009

Source: BP energy statistics and CITL data

4.1.2 1.A.1 Energy industries

4.1.2.1 Methods and data sources used

The GHG emissions for source category 1.A.1 (Energy industries) were estimated on the basis of a separate analysis of the following source categories

- Public electricity and heat production (1.A.1.a)
- Petroleum refining (1.A.1.b)
- Manufacture of solid fuels and other energy industries (1.A.1.c)

The main data source for the estimation of CO_2 emissions from source category 1.A.1.a (Public electricity and heat production) is an analysis of the verified emissions data reported by installations covered under the EU ETS and recorded in the CITL. Öko-Institut
undertook a supplementary analysis on an installation-by-installation basis to separate the electricity generation installations from industrial combustion installations which are both reported under main activity code 1 in the ETS data (Combustion installations with a rated thermal input exceeding 20 MW combustion installations with a capacity of more than 20 MW). Based on these data the emissions were calculated as follows:

$$E_{1A1a,CO2}^{Y} = \frac{E_{CITL(1 \text{ w/o power})}^{Y}}{E_{CITL(1 \text{ w/o power})}^{Y-1}} \cdot E_{1A1a,CO2}^{Y-1}$$

with

 $\begin{array}{ll} E_{IAIa,CO2}^{Y} & CO_{2} \ emissions \ for \ source \ category \ IA1a \\ E_{IAIa,CO2}^{Y-1} & CO_{2} \ Emissions \ for \ source \ category \ IA1a \ from \ previous \ year \\ E_{CITL(...)}^{Y} & CITL \ emissions \ for \ electricity \ generation \ installations \\ E_{CITL(...)}^{Y-1} & CITL \ emissions \ for \ electricity \ generation \ installations \ from \ previous \ year \end{array}$

For Cyprus sufficient and consistent data were not available in the CITL data. For these countries, the inventory data from the last available submission was used.

Two different approaches were used for CH_4 emissions from source category 1.A.1.a (Public electricity and heat production):

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years the CH₄ emission data from the last inventory submissions were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following equation:

$$E_{IAIa,CH4}^{Y} = \frac{E_{IAIa,CO2}^{Y}}{E_{IAIa,CO2}^{Y-1}} \cdot E_{IAIa,CH4}^{Y-1}$$

with

$E^{Y}_{{\scriptscriptstyle 1}{\scriptscriptstyle A}{\scriptscriptstyle 1}a,CH4}$	CH4 emissions for source category 1A1a
$E^{Y-1}_{1A1a,CH4}$	CH4 emissions for source category 1A1a from previous year
$E^{Y}_{1A1a,CO2}$	CO2 emissions for source category 1A1a (see above)
$E_{IAIa.CO2}^{Y-1}$	CO2 emissions for source category IA1a from previous year

The first option was used for Austria, Belgium, Cyprus, the Czech Republic, Germany, Denmark, Estonia, Spain, Finland, Hungary, Lithuania, Luxembourg, Poland, Romania, and Slovenia. For all other EU-27 Member States, the CH_4 emissions were estimated on the basis of the trend dynamics for CO_2 emissions (option 2).

For N_2O emissions from source category 1.A.1.a (Public Electricity and Heat Production), two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and N₂O emissions in the previous years, the N₂O emission data from the last inventory submission were used.
- For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula:

$$E_{IA1a,N2O}^{Y} = \frac{E_{IA1a,CO2}^{Y}}{E_{IA1a,CO2}^{Y-I}} \cdot E_{IA1a,N2O}^{Y-I}$$

with

$E^{Y}_{1A1a,N2O}$	N2O emissions for source category 1A1a
$E^{Y-1}_{1A1a,N2O}$	N2O emissions for source category 1A1a from previous year
$E^{\scriptscriptstyle Y}_{\scriptscriptstyle 1A1a,CO2}$	CO2 emissions for source category 1A1a (see above)
$E^{Y-l}_{IA1a,CO2}$	CO2 emissions for source category 1A1a from previous year

The first option was used for Austria, Belgium, Cyprus, Denmark, Estonia, Spain, Finland, Hungary, Ireland, Latvia, Luxembourg, the Netherlands and the Slovak Republic. For all other EU-27 Member States, the N_2O emissions were estimated on the basis of trend dynamics for CO_2 emissions (option 2).

The main source for the estimation of CO_2 emissions from source category 1.A.1.b (Petroleum refining) is CITL data. For Lithuania and Poland sufficient and consistent data were not available. For Lithuania CO_2 emissions from the last inventory submission were used. For Poland the Eurostat monthly data on crude oil input to refineries (indicator code 101008, product code 3100). Based on these data the emissions were calculated as follows:

$$E_{IAIb,CO2}^{Y} = \frac{AR_{ref-inp}^{Y}}{AR_{ref-inp}^{Y-I}} \cdot E_{IAIb,CO2}^{Y-I}$$

with

 $\begin{array}{ll} E_{IAIb,CO2}^{Y} & CO2 \ emissions \ for \ source \ category \ IA1b \\ E_{IAIb,CO2}^{Y-1} & CO2 \ Emissions \ for \ source \ category \ IA1b \ from \ previous \ year \\ AR_{ref-inp}^{Y} & Crude \ oil \ input \ to \ refineries \\ AR_{ref-inp}^{Y-1} & Crude \ oil \ input \ to \ refineries \ for \ previous \ year \end{array}$

For CH₄ emissions from source category 1.A.1.b (Petroleum refining) two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years, the CH₄ emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following formula:

$$E_{1A1b,CH4}^{Y} = \frac{E_{1A1b,CO2}^{Y}}{E_{1A1b,CO2}^{Y-1}} \cdot E_{1A1b,CH4}^{Y-1}$$

with

$E_{1A1b,CH4}^{Y}$	CH4 emissions for source category 1A1b
$E_{1A1b,CH4}^{Y-1}$	CH4 emissions for source category 1A1b from previous year
$E_{1A1b,CO2}^{Y}$	CO2 emissions for source category 1A1b (see above)
$E_{1A1b,CO2}^{Y-1}$	CO2 emissions for source category 1A1b from previous year

The first option was used for Austria, Belgium, Cyprus, Denmark, Estonia, Luxembourg, Latvia, Malta, Romania, and Slovenia. For all other EU-27 Member States the CH_4 emissions were estimated on the basis of the trend dynamics for CO_2 emissions (option 2).

Two different approaches were used for N_2O emissions from source category 1.A.1.b (Petroleum refining):

- 1. For the Member States with no strong correlation between CO_2 and N_2O emissions in the previous years the N_2O emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO_2 and N_2O emissions in the previous years, the projection of N_2O emissions is based on the following formula.

$$E_{1A1b,N2O}^{Y} = \frac{E_{1A1b,CO2}^{Y}}{E_{1A1b,CO2}^{Y-1}} \cdot E_{1A1b,N2O}^{Y-1}$$

with

$E^{Y}_{1A1b,N2O}$	N2O emissions for source category 1A1b
$E_{1A1b,N2O}^{Y-1}$	N2O emissions for source category 1A1b from previous year
$E^{Y}_{1A1b,CO2}$	CO2 emissions for source category 1A1b (see above)
$E_{1A1b,CO2}^{Y-1}$	CO2 emissions for source category 1A1b from previous year

The first option was used for Belgium, Cyprus, Estonia, the UK, Luxembourg, Latvia, Malta, the Netherlands, Poland, Romania, Slovenia, and the Slovak Republic. For all other EU-27 Member States the N₂O emissions were estimated on the basis of the trend dynamics for CO_2 emissions (option 2).

For the source category 1.A.1.c (Manufacture of solid fuels and other energy industries) for CO_2 , CH_4 as well as N_2O the data from the last inventory submission were used.

The total greenhouse gas emissions for source category 1.A.1 (Energy industries) were calculated as the sum of the estimates for the source categories 1.A.1.a, 1.A.1.b and 1.A.1.c (see above).

4.1.3 1.A.2 Manufacturing industries and construction

4.1.3.1 Methods and data sources used

The main source for the estimation of CO_2 emissions from source category 1.A.2 (Manufacturing industries and construction) is an analysis of the verified emissions data from the CITL. The trends of different CITL categories were analysed and the trend with a significant correlation between Member States' CO_2 emissions and CITL emissions was used. The different trends represent the sum of verified emissions of:

- Activity code 1 (Combustion installations with a rated thermal input exceeding 20 MW, without power generation installations from supplementary analysis other combustion), activity code 7 (Installations for the manufacture of glass including glass fibre), activity code 8 (Installations for the manufacture of ceramic products by firing, in particular roofing tiles, bricks, refractory bricks, tiles, stoneware or porcelain), activity code 9 (Industrial plants for the production of (a) pulp from timber or other fibrous materials (b) paper and board), and activity code 99 (Other activity opted-in pursuant to Article 24 of Directive 2003/87/EC);
- 2. Activity codes 1 (without power), 7, 8, 9, 99 and activity code 6 (Installations for the production of cement clinker in rotary kilns or lime in rotary kilns or in other furnaces);
- 3. Activity codes 1 (without power), 6, 7, 8, 9, 99 and activity code 3 (Coke ovens) and 5 (Installations for the production of pig iron or steel (primary or secondary fusion) including continuous casting);
- 4. Activity codes 6, 7, 8, 9 and 99.

Based on these data the emissions were calculated as follows:

$$E_{1A2,CO2}^{Y} = \frac{E_{CITL(...)}^{Y}}{E_{CITL(...)}^{Y-1}} \cdot E_{1A2,CO2}^{Y-1}$$

with

$E_{1A2,CO2}^{Y}$	CO2 emissions for source category 1A2
$E^{\scriptscriptstyle Y-1}_{ m 1A2,CO2}$	CO2 emissions for source category 1A2 from previous year
$E_{CITL()}^{Y}$	CITL emissions for installations reported under
	different main activities
$E_{CITL()}^{Y-1}$	CITL emissions for installations reported under
	different main activities from previous year

The trend of the first option was used for Luxembourg and the Czech Republic. Latvia's CO_2 emissions are based on the second trend. The third trend was used for Austria, Belgium, Denmark, Greece, Finland, France, Ireland, Italy, Lithuania and Portugal. For Member States for which more than one trend shows a strong correlation, the mean value of the best fit of trends was used to calculate 2009 emissions from 1A2.

If sufficient and consistent data was not available for Member States and if trends show no correlation, a factor was calculated and multiplied with the sum of verified emissions from CITL activity code 1 (without power) but including those power plants in the CITL that where identified to use waste gases from the iron and steel industry. This trend was used for Estonia, the United Kingdom, Malta, Poland, Romania, Slovenia and the Slovak Republic.

For Cyprus the inventory data from the last available submission was used.

For CH₄ emissions from source category 1.A.2 two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years, the CH₄ emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following formula:

$$E_{1A2,CH4}^{Y} = \frac{E_{1A2,CO2}^{Y}}{E_{1A2,CO2}^{Y-1}} \cdot E_{1A2,CH4}^{Y-1}$$

with

 $\begin{array}{ll} E_{1A2,CH4}^{Y} & CH_{4} \ emissions \ for \ source \ category \ 1A2 \\ E_{1A2,CH4}^{Y-1} & CH_{4} \ emissions \ for \ source \ category \ 1A2 \ from \ previous \ year \\ E_{1A2,CO2}^{Y} & CO_{2} \ emissions \ for \ source \ category \ 1A2 \ (see \ above) \\ E_{1A2,CO2}^{Y-1} & CO_{2} \ emissions \ for \ source \ category \ 1A2 \ from \ previous \ year \end{array}$

The first option was used for Belgium, Cyprus, Germany, Denmark, France, Greece, Hungary, Latvia, Sweden, Slovenia and the Slovak Republic. For all other EU-27 Member States the CH_4 emissions were estimated on the basis of the trend dynamics for CO_2 emissions (option 2).

Two different approaches were used for N₂O emissions from source category 1.A.2:

- For the Member States with no strong correlation between CO₂ and N₂O emissions in the previous years the N₂O emission data from the last inventory submission were used.
- For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula.

$$E_{1A2,N2O}^{Y} = \frac{E_{1A2,CO2}^{Y}}{E_{1A2,CO2}^{Y-1}} \cdot E_{1A2,N2O}^{Y-1}$$

with

$$E_{1A2,N2O}^{Y}$$
N2O emissions for source category 1A2 $E_{1A2,N2O}^{Y-1}$ N2O emissions for source category 1A2 from previous year $E_{1A2,CO2}^{Y}$ CO2 emissions for source category 1A2 (see above) $E_{1A2,CO2}^{Y-1}$ CO2 emissions for source category 1A2 from previous year

The first option was used for Belgium, Estonia, Hungary, Latvia, the Netherlands, Romania, Slovenia and the Slovak Republic. For all other EU-27 Member States the N_2O emissions were estimated on the basis of the trend dynamics for CO_2 emissions (option 2).

4.1.4 1.B Fugitive emissions from fuels

4.1.4.1 Methods and data sources used

The CO_2 and CH_4 emissions for source category 1.B (Fugitive Emissions from Fuels) were estimated on the basis of a separate analysis of the following source categories:

- Solid fuels (1.B.1);
- Oil and natural gas, oil (1.B.2.a);
- Oil and natural gas, natural gas (1.B.2.b);
- Oil and natural gas, venting and flaring (1.B.2.c),

For the CO_2 emissions for source category 1.B.1 (Solid fuels) the inventory data from the last submission were used. For the Netherlands a strong correlation between CO_2 emissions and verified emissions of the CITL main activity 5 (installations for the production of pig iron or steel (primary or secondary fusion) including continuous casting) was found (the Netherlands report the emissions from coke ovens in this category). This trend dynamic was used in the calculation.

$$E_{1B1,CO2}^{Y} = \frac{E_{CITL(...)}^{Y}}{E_{CITL(...)}^{Y-1}} \cdot E_{1B1,CO2}^{Y-1}$$

with

$E_{ m 1B1,CO2}^{Y}$	CO ₂ emissions for source category 1B1
$E_{ m 1B1,CO2}^{ m Y-1}$	CO2 emissions for source category 1B1 from previous year
$E_{CITL()}^{Y}$	<i>CITL emissions for installations reported under</i> F
	main activity 5
$E_{CITL()}^{Y-1}$	CITL emissions for installations reported under

main activity 5 from previous year

or Slovenia the trend of CO_2 emissions is consistent with the trend of Eurostat lignite production and is used for calculating 1B1 (see formula 1B1 CH₄ emissions).

The estimates for CH_4 emissions for source category 1.B.1 (Solid fuels) are based on the monthly production data for hard coal and lignite from Eurostat.

$$E_{1B1,CH4}^{Y} = \frac{AR_{coal-prod}^{Y}}{AR_{coal-prod}^{Y-1}} \cdot E_{1B1,CH4}^{Y-1}$$

with

 $E_{1B1,CH4}^{Y}$ CH4 emissions for source category 1B1 $E_{1B1,CH4}^{Y-1}$ CH4 emissions for source category 1B1 from previous year $AR_{coal-prod}^{Y}$ Hard coal or lignite production $AR_{coal-prod}^{Y-1}$ Hard coal or lignite production for previous year

For the countries in which hard coal production is the main determinant for CH₄ emissions from source category 1.B.1 (Spain and the United Kingdom), the primary hard coal production (Eurostat indicator code 100100, Eurostat product code 2111) was used for the projection of CH₄ emissions arising from this source category. For countries with a dominant lignite production (Bulgaria, Greece, Hungary, Romania, Slovenia, the Slovak Republic), the primary production data for lignite (Eurostat indicator code 100100, Eurostat product code 2210) were used. For countries with hard coal and lignite production (the Czech Republic, Germany and Poland) the average of both trends is used for emission projections. For 16 Member States (Austria, Belgium, Cyprus, Denmark, Estonia, Finland, France, Ireland, Italy, Lithuania, Luxembourg, Latvia, Malta, the Netherlands, Portugal and Sweden) sufficient and consistent data were not available. For these countries, the inventory data from the last available submission were used.

For calculating CO_2 and CH_4 emissions from 1B2a, 1B2b, 1B2c the correlation of several trends has been reviewed.

- Eurostat crude oil production (Indicator code 100100, product code 3100);
- Eurostat gas consumption (Indicator code 100900, product code 4100);
- Eurostat gas production (Indicator code 100100, product code 4100);
- CITL main activity code 2 (refineries).

For the Member States with a significant correlation of CO_2 or CH_4 emissions with one of the trends in the previous years, the projection of emissions is based on the following formula.

$$\begin{split} E_{1B2\,a,b,c\,CO2\,or\,CH4}^{Y} &= \frac{E_{CITL}^{Y} \ or \ AR_{Eurostat}^{Y}}{E_{CITL}^{Y-1} \ AR_{Eurostat}^{Y-1}} \cdot E_{1B2a,b,c\,CO2\,or\,CH4}^{Y-1} \end{split} \\ & \text{with} \\ E_{1B2a,b,c\,CO2\,or\,CH4}^{Y} & CO2 \ or \ CH4 \ emissions \ for \ source \ category \ 1B2a,b,c} \\ & E_{1B2a,b,c\,CO2\,or\,CH4}^{Y-1} & CO2 \ or \ CH4 \ emissions \ for \ source \ category \ 1B2a,b,c} \\ & E_{1B2a,b,c\,CO2\,or\,CH4}^{Y-1} & CO2 \ or \ CH4 \ emissions \ for \ source \ category \ 1B2a,b,c} \\ & AR_{Eurostat}^{Y} & Crude \ oil \ production, \ Gas \ production \ or \ Gas \ consumption \\ & AR_{Eurostat}^{Y-1} & Crude \ oil \ production, \ Gas \ production \ or \ Gas \ consumption \\ & for \ previous \ year \end{split}$$

••

For Member States with no strong correlation between one of the trends and CO_2 or CH_4 emissions in the previous years, the emission data from the last inventory submission were used.

Table 7: Best fit trends for calculating CO_2 and CH_4 emissions from 1B2a, 1B2b and 1B2c

	1B2a CO2	1B2a CH4	1B2b CO2	1B2b CH4	1B2c CO2
Oil production	PL	AT	-	-	-
Gas Production	DE	DE	DE, IT	DE, IT	DE
Gas consumption	-		BE, LU, NL, PL	BE, LU, NL, RO, SH	-
CITL refineries	ES, PT	ES, PT	CZ	ES, FR, GB	PL, PT
Inventory 2008	other MS	other MS	other MS	other MS	other MS

For the CH₄ emissions for source category 1.B.2c the inventory data from the last submission were used.

For all N_2O emissions from source category 1.B (Fugitive emissions from fuels) the emissions data from the last inventory submissions were used.

4.1.5 1.A.3 Transport

4.1.5.1 Methods and data sources used

The main sources for the estimation of CO_2 emissions from source category 1.A.3 (Transport) are the following Eurostat data, extracted from Eurostat's database:

 Monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels.

Based on these data sources the CO₂ emissions were calculated as follows:

$$E_{1A3,CO2}^{Y} = \left(\frac{E_{MS,CO2}^{Y} + E_{AD,CO2}^{Y}}{E_{MS,CO2}^{Y-1} + E_{AD,CO2}^{Y-1}}\right) \cdot E_{1A3b,c,d,e,CO2}^{Y-1} + \frac{E_{K,CO2}^{Y}}{E_{K,CO2}^{Y-1}} \cdot E_{1A3a,CO2}^{Y-1}$$
with

$$E_{1A3,CO2}^{Y} \quad CO_{2} \text{ emissions for source category IA3}$$

$$E_{MS,CO2}^{Y} \quad CO_{2} \text{ emissions motor spirit (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{AD,CO2}^{Y-1} \quad CO_{2} \text{ emissions motor spirit (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{AD,CO2}^{Y-1} \quad CO_{2} \text{ emissions motor spirit (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{AD,CO2}^{Y-1} \quad CO_{2} \text{ emissions motor spirit (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{AD,CO2}^{Y-1} \quad CO_{2} \text{ emissions automotive diesel (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{AD,CO2}^{Y-1} \quad CO_{2} \text{ emissions for source category 1A3b, c, d, e from previous year}$$

$$E_{K,CO2}^{Y-1} \quad CO_{2} \text{ emissions kerosene (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{K,CO2}^{Y-1} \quad CO_{2} \text{ emissions kerosene (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{K,CO2}^{Y-1} \quad CO_{2} \text{ emissions kerosene (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{K,CO2}^{Y-1} \quad CO_{2} \text{ emissions kerosene (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{K,CO2}^{Y-1} \quad CO_{2} \text{ emissions kerosene (monthly total of internal market deliveries) x CO_{2} factor}$$

$$E_{K,CO2}^{Y-1} \quad CO_{2} \text{ emissions for source category 1A3a from previous year(civil aviation)}$$

For Malta data for 2009 was not available in the Eurostat database. Therefore the submitted CO_2 emissions for 2008 were used.

For some countries (Denmark, Estonia, the United Kingdom, Greece, Ireland, Slovenia and Slovakia) the application of another method based on the consumption of motor spirit, automotive diesel oil and kerosene/jet fuels resulted in more suitable approximated CO_2 emissions. For these countries the CO_2 emissions were calculated with the following equation:

$$\begin{split} E_{1A3,CO2}^{Y} &= F_{W} \cdot E_{1A3,CO2}^{Y-1} \\ with \\ E_{1A3,CO2}^{Y} & CO_{2} \text{ emissions for source category 1A3} \\ F_{W} & Weighted Factor \\ E_{1A3,CO2}^{Y-1} & CO_{2} \text{ emissions for source category 1A3 from previous year} \end{split}$$

$$F_{W} = \frac{C_{\text{motor spirit}}^{Y}}{C_{\text{motor spirit}}^{Y-1}} \cdot S_{\text{motor spirit}}^{Y} + \frac{C_{\text{automotive diesel}}^{Y}}{C_{\text{automotive diesel}}^{Y-1}} \cdot S_{\text{automotive diesel}}^{Y} + \frac{C_{\text{kerosene}}^{Y}}{C_{\text{kerosene}}^{Y-1}} \cdot S_{\text{kerosene}}^{Y}$$

with

 $C_{\rm motor\, spirit}^{Y}$ *Consumption of motor spirit (monthly total of internal market deliveries)* $C_{
m motor\,spirit}^{Y-1}$ Consumption of motor spirit (monthly total of internal market deliveries) previous year S^Y_{motor spirit} Share of motor spirit $C_{\text{automotive diesel}}^{Y}$ Consumption of automotive diesel (monthly total of internal market deliveries) $C_{ ext{automotive diesel}}^{Y-1}$ Consumption of automotive diesel (monthly total of internal market deliveries) previous year $S_{
m automotive \, diesel}^{Y}$ Share of automotive diesel C_{kerosene}^{Y} Consumption of kerosene(monthly total of internal market deliveries) $C_{\mathrm{kerosene}}^{Y-1}$ Consumption of kerosene(monthly total of internal market deliveries) previous year S_{kerosene}^{Y} Share of kerosene

The estimation for CH_4 emissions from source category 1.A.3 (Transport) is similar to CO_2 (first equation) and based on the following equation:

$$\begin{split} E_{1A3,CH4}^{Y} &= (\frac{E_{MS,CO2}^{Y} + E_{AD,CO2}^{Y}}{E_{MS,CO2}^{Y-1} + E_{AD,CO2}^{Y-1}}) \cdot E_{1A3b,c,d,e,CH4}^{Y-1} + \frac{E_{K,CO2}^{Y}}{E_{K,CO2}^{Y-1}} \cdot E_{1A3a,CH4}^{Y-1} \\ with \\ E_{1A3,CH4}^{Y} & CH \ emissions \ for \ source \ category \ IA3 \\ E_{MS,CO2}^{Y} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{MS,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ motor \ spirit (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{AD,CO2}^{Y-1} & CO \ emissions \ for \ source \ category \ IA3b, c, d, e \ from \ previous \ year \\ E_{K,CO2}^{Y-1} & CO \ emissions \ kerosene \ (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{K,CO2}^{Y-1} & CO \ emissions \ kerosene \ (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{K,CO2}^{Y-1} & CO \ emissions \ kerosene \ (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{K,CO2}^{Y-1} & CO \ emissions \ kerosene \ (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{K,CO2}^{Y-1} & CO \ emissions \ kerosene \ (monthly \ total \ of \ internalmarket \ deliveries) \ x \ CO \ factor \\ E_{K,CO2}^{Y-1} & CO \ emissions \ kerosene \ (monthly \ total \ of \ internalmarket \ deliveries) \$$

For Malta data for 2009 were not available in the Eurostat database. Therefore the submitted CH_4 emissions for 2008 were used.

The estimation for N_2O emissions from source category 1.A3 (Transport) is similar to CO_2 and based on the following equation:

$$\begin{split} E_{1A3,N2O}^{Y} &= (\frac{E_{MS,CO2}^{Y} + E_{AD,CO2}^{Y}}{E_{MS,CO2}^{Y-1} + E_{AD,CO2}^{Y-1}}) \cdot E_{1A3b,c,d,e,N2O}^{Y-1} + \frac{E_{K,CO2}^{Y}}{E_{K,CO2}^{Y-1}} \cdot E_{1A3a,N2O}^{Y-1} \\ with \\ E_{1A3,N2O}^{Y} & N_2O \ emissions \ for \ source \ category \ IA3 \\ E_{MS,CO2}^{Y} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ motor \ spirit \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ automotive \ diesel \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{AD,CO2}^{Y-1} & CO_2 \ emissions \ for \ source \ category \ IA3b, c, d, e \ from \ previous \ year \\ E_{K,CO2}^{Y-1} & CO_2 \ emissions \ kerosene \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{K,CO2}^{Y-1} & CO_2 \ emissions \ kerosene \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{K,CO2}^{Y-1} & N_2O \ emissions \ kerosene \ (monthly \ total \ of \ internal \ market \ deliveries) \ x \ CO_2 \ factor \\ E_{K,CO2}^{Y-1} & N_2O \ emissions \ for \ source \ category \ IA3a \ from \ previous \ year \ (civil \ aviation) \$$

For Malta data for 2009 was not available in the Eurostat database. Therefore the submitted N_2O emissions for 2008 were used.

4.1.6 1.A.4 Other sectors and 1.A.5 Other fuel combustion

No near-term data were identified which could be used to develop a real-time projection for the source categories 1A4 Other sectors and 1A5 Other fuel combustion based on activity or emission data.

Therefore, the only option was to calculate approximated emissions for the total of source category 1A4 (which represents a significant share in total emissions) and 1A5 (which represents only a minor share in total emissions) by a subtraction approach. Based on the real-time projection for the source categories 1A, 1A1, 1A2 and 1A3, the emissions for the total of source categories 1A4 and 1A5 were calculated based on the following formula:

$$E_{1A4+5}^{Y} = E_{1A}^{Y} - E_{1A1}^{Y} - E_{1A2}^{Y} - E_{1A3}^{Y}$$

with

 E_{1A3}^Y Emissions for source category 1A4 and 1A5 E_i^Y Emissions for source category i

Thus, the approximated emissions from these source categories cannot be further disaggregated and are not based on real data for 2009. As a result, the emissions from 1A4 and 1A5 have higher uncertainties than the other source categories in the energy sector.

4.2 Industrial processes

4.2.1 2.A Mineral products

4.2.1.1 Methods and data sources used

The emissions from 2.A Mineral products are based on CO_2 emission data for cement and lime from the CITL data which were used as an index of the evolution of the emissions from the production of cement clinker or lime. In this approach CO_2 emissions from mineral products were calculated as follows:

$$E_{2A}^{Y} = \frac{E_{CITL}^{Y}}{E_{CITL}^{Y-1}} \cdot E_{2A}^{Y-1}$$

with

E_{2A}^{Y}	Emissions for source category 2A
E_{2A}^{Y-1}	Emissions for source category 2A from previous year
E_{CITL}^{Y}	CITL emissions for the production of cement clinker or lime
E_{CITL}^{Y-1}	CITL emissions for the production of cement clinker or lime
	from previous year

For Malta and Cyprus 2009 verified emissions were not available, therefore emissions have been kept constant.

4.2.1.2 Results for 2009

GHG emissions from Industrial processes decreased by - 39.0 Mt CO_2 eq for the EU-15 and by - 55.9 Mt CO_2 eq for the EU-27 in 2009 compared to 2008. Table 8 indicates the sub-sector contribution to this trend in emissions.

Table 8Change in GHG emissions between 2008 and 2009 for industrial processes
emissions

		Change 2008/09					
Sector	Industrial Processes	EU	-15	EU-27			
		Mt CO ₂ eq	%	Mt CO ₂ eq	%		
2. Industria	I Processes	-39.0	-12.5%	-55.9	-13.6%		
A. Mineral	Products	-18.6	-16.7%	-25.0	-17.3%		
B. Chemica	al Industry	-3.4	-6.4%	-4.4	-5.8%		
C. Metal Pr	oduction	-20.2	-27.2%	-30.6	-28.9%		

Source: 2010 CRF inventory submissions to UNFCCC and EU for 2008 and authors' own calculations for 2009

Figure 6 Change in GHG emissions between 2008 and 2009 for industrial processes emissions

Source: 2010 CRF inventory submissions to UNFCCC and EU for 2008 and authors' own calculations for 2009

4.2.2 2C Metal production

4.2.2.1 Methods and data sources used

The estimates for CO_2 emissions for source category 2.C (Metal production) are based on separate estimates for source category 2.C.1 (Iron and steel production) and the remaining sub-categories of source category 2.C.

For calculating CO_2 emissions from 2C1 the correlation of several trends has been analysed. The estimates are based on monthly production data from the International Iron and Steel Institute (IISI) or on CITL data. The following trends have been used:

- 1. Crude steel production data from the International Iron and Steel Institute (IISI);
- 2. Blast furnace iron production data from the International Iron and Steel Institute (IISI);
- 3. CITL main activity code 3 (Coke ovens) and 5 (Installations for the production of pig iron or steel (primary or secondary fusion) including continuous casting) and including those power plants in the CITL that where identified to use waste gases from the iron and steel industry;
- 4. CITL main acitivity code 5 (Installations for the production of pig iron or steel (primary or secondary fusion) including continuous casting).

The estimates for CO_2 emissions for source category 2.C.1 (Iron and steel production) are based on the formula:

$$E_{2C1,CO2}^{Y} = \frac{AR_{steel}^{Y}}{AR_{steel}^{Y-1}} \cdot E_{2C1,CO2}^{Y-1}$$

with

 $\begin{array}{ll} E_{2CI,CO2}^{Y} & CO2 \ emissions \ for \ source \ category \ 2C1 \\ E_{2CI,CO2}^{Y-1} & CO2 \ emissions \ for \ source \ category \ 2C1 \ from \ previous \ year \\ AR_{steel}^{Y} & Crude \ steel \ production \\ AR_{steel}^{Y-1} & Crude \ steel \ production \ for \ previous \ year \end{array}$

This equation and the IISI monthly crude steel production data was used for Bulgaria, the Czech Republic, Hungary, Luxembourg and Portugal. For Sweden the IISI monthly blast furnace iron production data was used. For Austria, Belgium, Germany, Spain, Finland, France, Greece, Poland, Romania, Slovenia and the Slovak Republic emission trends from CITL data were used for the calculation.

For those Member States where both the trends of IISI data and CITL shows a strong correlation, the average of the best fit trends was used to calculate 2009 emissions for 2C1.

For Member States with no strong correlation between one of the trends and CO₂ emissions in the previous years, the emission data from the last inventory submission were used. This includes Cyprus, Denmark, Estonia, the United Kingdom, Ireland, Italy, Lithuania, Latvia, Malta and the Netherlands.

The total CO_2 emissions for source category 2.C. (Metal production) were calculated from the estimates for source category 2.C.1 (Iron and steel production) and the CO_2 emission data from all other sub-categories of source category 2.C from the last inventory submissions.

4.2.3 Other source categories covering industrial processes

For all other source categories covering industrial processes, 2009 activity data from alternative data sources are lacking. These categories were extrapolated from 2008 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2008. Constant values were used when past trends were inconsistent and strongly fluctuating and trend extrapolation were used when the historic time series showed good correlations with a linear trend.

Annex 1 provides a detailed overview of methods and data sources used for each source category and Member State.

4.3 Agriculture

4.3.1 4.A Enteric fermentation

4.3.1.1 Methods and data sources used

Emissions from the source category 4A were calculated using activity rates and (implied) emission factors. Activity rates were obtained from the Eurostat annual statistics on agriculture and fisheries with data on animal production as well as from the annual inventory data in CRF format and the National Inventory Reports (NIR) submitted to the EU and to the UNFCCC. Annual animal population data provided by Eurostat were used for the following animal categories: dairy cattle, non-dairy cattle, swine, sheep and goats. Live-stock surveys do not include poultry as Eurostat only provides livestock surveys for laying hens without broilers and hens. Buffalo, horses, mules and asses are also not covered by Eurostat animal production data. Therefore, the emissions of the corresponding animal categories were updated using data of previous years via trend extrapolation of UNFCCC inventory data submitted in 2010. The proxy CH₄ emissions for source category 4A were calculated based on the following equation:

$$\begin{split} E_{4A}^{Y} &= \sum_{i} AF_{i}^{Y-1} \cdot IEF_{i}^{Y-1} \cdot AR_{i}^{Y} + E_{other}^{Y-1} \\ with \\ E_{4A}^{Y} & Emissions \ for \ source \ category \ 4A \\ AF_{i}^{Y-1} & Adjustment \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) \\ IEF_{i}^{Y-1} & Implied \ emission \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) \\ AR_{i}^{Y} & Activity \ rate \ (livestock) \ for \ animal \ category \ i \end{split}$$

 E_{other}^{Y-1} Emissions for other animals for source category 4A

from previous year(s)

Activity rates provided by Eurostat encompass two animal livestock surveys in May/June and in December for the year Y-1. For each Member State how well the respective livestock surveys correspond with the data used in national GHG inventories was analysed. The results of the best fits differed for each MS and also for animal categories. For the estimation of approximated 2009 emissions, the animal population surveys were chosen which best corresponded with the livestock data reported in GHG inventories for past years. For some Member States and animal categories Eurostat livestock population tended to show a constant deviation over the time series compared to the animal population reported in GHG inventories. In such cases, a scaling factor was applied to achieve a 2009 data set comparable to animal population reported in GHG inventories (see Table 9). The scaling factor was derived on the basis of the most recent inventory data and the best fitting Eurostat dataset.

52

Table 9	Data from animal livestock surveyed by Eurostat in May/June (June) and De-
	cember (Dec) used for proxy methodology and including application of a scal-
	ing factor if necessary (+AF).

	Dairy	Non-dairy			
	cattle	cattle	Swine	Sheep	Goats
AT	Dec	Dec	Dec	Dec	Dec
BE	June	June	June	June + AF	June
BG	Dec	Dec	Dec	Dec	Dec + AF
CY	Dec	Dec	Dec	Dec	Dec
CZ	Dec + AF	Dec + AF	Dec + AF	Dec	Dec
DE	June	June	June	June	June
DK	June	June	June	Dec + AF	-
EE	Dec	Dec	Dec	Dec + AF	Dec + AF
ES	June	Dec	Dec	Dec	Dec + AF
FI	Dec	Dec	Dec + AF	Dec + AF	Dec + AF
FR	Dec	June	June + AF	Dec	Dec
GR	Dec + AF	Dec + AF	Dec + AF	Dec	Dec + AF
ΗU	Dec	Dec	Dec	Dec	Dec
IE	Dec	Dec	June	June	June
IT	Dec	June	Dec	Dec	Dec
LT	Dec	Dec	Dec	Dec + AF	Dec
LU	June	June	Dec	Dec	Dec
LV	Dec	Dec	Dec	Dec + AF	Dec + AF
MT	Dec	Dec	Dec	Dec	Dec + AF
NL	June	Dec	Dec	Dec + AF	Dec
PL	June	June	Dec	Dec + AF	Dec
РТ	Dec	Dec	Dec	Dec	Dec + AF
RO	Dec	Dec	Dec	Dec	Dec
SE	June	June	June	Dec	-
SI	Dec	Dec	Dec	Dec	Dec
SK	Dec + AF	Dec + AF	Dec	Dec	Dec
UK	June	Dec	June	Dec + AF	-

Note: (–): No data available for the last four years, thus no estimation of GHG emissions by using the approach as described above could be done. Emissions from goats as derived from UNFCCC inventories have been extrapolated for these Member States.

Implied emission factors for each animal category were derived from the national inventory data, which Member States submitted to the EU and the UNFCCC for the year Y-2 (Table 10).

	nı	ure mana	gemen	t (4B, rig	ght) for :	2009.					
4A	Dairy cattle	Non-dairy cattle	Swine	Sheep	Goats	4B	Dairy cattle	Non-dairy cattle	Swine	Sheep	Goats
		IEF [kg	j CH₄/heac	l/year]				IEF [kg	g CH₄/heac	l/year]	
AT	115.6	56.2	1.5	8.0	5.0	AT	8.5	4.0	1.1	0.2	0.1
BE	122.0	45.6	1.5	8.0	5.0	BE	16.0	2.6	9.7	0.6	0.7
BG	81.0	56.0	1.5	8.0	5.0	BG	19.1	13.0	7.2	0.3	0.2
CY	100.0	58.0	1.5	8.0	5.0	CY	42.0	21.0	19.0	0.4	0.3
CZ	115.9	51.9	1.5	8.0	5.0	CZ	14.0	6.0	3.0	0.2	0.1
DE	113.8	44.5	1.0	8.0	5.0	DE	27.1	5.6	3.9	0.2	0.2
DK	130.4	40.4	1.1	17.2	13.0	DK	28.8	4.3	2.0	0.5	0.4
EE	132.5	48.7	0.8	8.0	5.0	EE	10.3	3.4	3.2	0.2	0.1
ES	99.8	54.9	0.9	8.7	5.0	ES	15.6	1.2	9.3	0.2	0.2
FI	125.2	47.6	1.5	8.4	5.0	FI	14.7	3.2	4.3	0.2	0.1
FR	117.3	48.7	1.1	9.8	11.8	FR	18.3	20.3	20.9	0.3	0.2
GR	96.5	56.0	1.5	7.5	5.0	GR	19.0	13.0	7.0	0.3	0.2
HU	132.7	57.4	1.5	8.0	5.0	HU	7.7	2.0	10.9	0.2	0.1
IE	110.5	55.3	0.4	5.9	5.0	IE	20.8	11.4	12.5	0.2	0.1
IT	114.7	45.5	1.5	8.0	5.0	IT	13.2	6.7	6.9	0.2	0.1
LT	102.5	56.7	1.5	8.0	5.0	LT	20.9	10.6	16.0	0.2	0.1
LU	117.8	42.6	1.5	8.0	5.0	LU	36.0	8.6	19.5	0.2	0.1
LV	115.4	52.2	1.5	8.0	5.0	LV	6.0	4.0	4.0	0.2	0.1
MT	100.0	48.0	1.5	8.0	5.0	MT	44.0	20.0	10.0	0.3	0.2
NL	128.3	36.0	1.5	8.0	5.0	NL	37.5	6.7	4.4	0.2	0.3
PL	96.6	47.9	1.5	8.2	5.0	PL	10.5	4.8	6.5	0.2	0.1
РТ	122.5	57.5	1.4	9.2	8.5	PT	6.5	1.5	21.4	1.6	1.8
RO	92.6	56.0	1.0	5.0	5.0	RO	19.0	13.0	7.0	0.2	0.2
SE	131.7	54.6	1.5	8.0	5.0	SE	19.5	6.7	3.2	0.2	0.1
SI	104.5	50.9	1.6	8.0	5.0	SI	54.8	21.0	15.2	0.2	0.1
SK	108.3	55.1	1.5	9.8	5.0	SK	4.0	3.8	4.0	0.2	0.1
UK	108.9	43.1	1.5	4.7	5.0	UK	26.8	4.1	7.1	0.1	0.1

Table 10 Implied emission factors from national UNFCCC inventories in 2008 used for the calculation of CH₄ emissions from enteric fermentation (4A, left) and manure management (4B, right) for 2009.

Source: 2010 CRF inventory submissions to UNFCCC

4.3.1.2 Results for 2009

Compared to 2008, GHG emissions from agriculture decreased by - 3.4 % in 2009 for the EU-15 and by - 3 % for the EU-27. Figure 7 indicate the sub-sector contribution.

Table 11 Change in GHG emissions between 2008 to 2009 in the agricultural sector

		Change 2008/09				
Sector Agriculture	EU	-15	EU-27			
	Gg CO₂eq	%	Gg CO₂eq	%		
4. Agriculture	-12 846	-3.4%	-13 956	-3.0%		
A. Enteric Fermentation	-1 154	-0.9%	-1 953	-1.3%		
B. Manure Management	-822	-1.3%	-1 604	-2.0%		
D. Agricultural Soils	-11 078	-5.9%	-10 600	-4.4%		

Source: 2010 CRF inventory submissions to UNFCCC and EU for 2008 and authors' own calculations for 2009

Note: The sub-sectors does not sum up to the total for Agriculture as sub-sector 4.C Rice cultivation is not considered for the analysis of the results. GHG emissions from Rice cultivation are reported only by Bulgaria, France, Greece, Hungary, Italy, Portugal, Romania and Spain. The change in GHG emissions from 2008 to 2009 in minor source category amounts to 212 Gg CO_2 eq.

The decrease was dominated mainly by the reduction of N₂O emissions in German agricultural soils. According to preliminary estimates from Germany, the decrease in N₂O emissions from agricultural soils 2008 – 2009 was caused by a considerable reduction in the use of mineral fertilizers by - 15 % in that period²⁴. In addition GHG emissions from enteric fermentation and manure management decreased also but with minor extent.

Figure 7 Change in GHG emissions between 2008 to 2009 in the agricultural sector

Source: 2010 CRF inventory submissions to UNFCCC and EU for 2008 and authors' own calculations for 2009

²⁴ Press Release 013/2010: Climate protection: 2009 shows 8.4% decline in greenhouse gas emissions-http://www.umweltbundesamt.de/uba-info-presse-e/2010/pe10-013_climate_protection_2009_shows_8_4_percent_decline_in_greenhouse_gas_emissions.h tm

4.3.2 4.B Manure management

4.3.2.1 Methods and data sources used

For the estimation of CH_4 emissions from manure management the same Eurostat data were used as for the calculation of CH_4 emissions from enteric fermentation. Data from livestock surveys provided by Eurostat were used according to Table 9. The emission estimation follows a similar equation than the one for 4.A because of the same proxy methodology:

$$E_{4B}^{Y} = \sum_{i} AF_{i}^{Y-1} \cdot IEF_{i}^{Y-1} \cdot AR_{i}^{Y} + E_{other}^{Y-1}$$

with

 $\begin{array}{ll} E_{4B}^{Y} & Emissions \ for \ source \ category \ 4B \\ AF_{i}^{Y-1} & Adjustment \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) \\ IEF_{i}^{Y-1} & Implied \ emission \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) \\ AR_{i}^{Y} & Activity \ rate \ (livestock) \ for \ animal \ category \ i \\ E_{other}^{Y-1} & Emissions \ for \ other \ animals \ for \ source \ category \ 4B \\ from \ previous \ year(s) \end{array}$

Implied emission factors for each animal category for category 4.B were derived from the national inventory data submitted to the EU and the UNFCCC for the year Y-2, see Table 10.

4.3.3 4.D Agricultural soils

4.3.3.1 Methods and data sources used

Contrary to last year's calculation for the proxy inventory, Eurostat annual statistics on agriculture and fisheries with data on consumption of fertilisers in agriculture have not available this year. This no activity rate for the estimation of emissions from the source category 4D1 could be obtained. Thus, in order to calculate emissions from Agricultural soils the sub-sectors 4D1.1 Synthetic Fertilizers, 4D1.2 Animal Manure applied to Soils, 4D1.3 N-fixing crops, 4D1.4 Crop residue 4D1.5 Cultivation of Histosols and 4D1.6 Other direct emissions were extrapolated from 2008 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2008. Constant values were used when past trends were inconsistent and strongly fluctuating and trend extrapolation were used when the historic time series showed good correlations with a linear trend. These source categories were then added to derive emissions from 4D1.

The emissions of the other categories 4D2 to 4D6 were updated using data of previous years via trend extrapolation of UNFCCC inventory data submitted in 2010.

4.3.4 Other source categories in the agricultural sector

No near-term data were identified which could be used to develop a real-time projection for the other source categories in the agricultural sector, or at least not for all parts necessary for the emission estimation. Therefore, simple approaches were chosen for all remaining agricultural source categories. Either a linear trend extrapolation was used if the past data showed a rather consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant. The detailed methodologies used are documented in the tables in Annex I.

4.4 Waste

4.4.1 6.A Solid waste disposal

The most important source category in the waste sector is CH₄ emissions from source category 6.A. Solid waste disposal. For this source category, most Member States use higher tier methods, i.e. a first order decay approach that uses a number of activity data on certain types of waste deposited on landfills and a number of country-specific parameters. For the EU inventory 2010, among all 27 EU Member States Cyprus and Romania only still used Tier 1 methodologies to estimate emissions from this source category. The first order decay approach is challenging for the proxy estimation because an estimation method would not only need to use updated activity data, but would also need to mirror the chosen model approach for CH_4 emissions from landfills in each MS. The original idea in the feasibility study was the development of approximate first order decay models for each Member State based on submitted inventory data since 1990.²⁵ Such a model with specific results for each Member State was already developed by the European Topic Centre on Resource and Waste Management; however results were checked for 2007 and were less accurate than the extrapolation approach used in 2007 because a number of parameters are harmonized in this model that reflect MS estimates in a less accurate way.

In the absence of a detailed approach reflecting the first order decay assumptions, a simple approach was used to estimate CH_4 emissions from solid waste disposal on land. A linear extrapolation of the trend of previous years was used if the past data tended to show a consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant..

²⁵ Matthes, F. C., Herold, A., Ziesing, H.J. 2007: A 'Proxy-Inventory' for GHG Emissions from the EU-27 Member States – Feasibility study. ETC/ACC Technical Paper No 2007/3

4.4.2 Other categories in the waste sector

The other source categories in the waste sector are not very relevant for total GHG emissions in the EU. Total emissions from 6.B. Wastewater handling were 0.5% of EU-15 total emissions in 2007 and total emissions from 6.C Waste incineration contributed to 0.1 % to total EU-15 emissions in that year.

Therefore, simple approaches were chosen for these source categories. Either a linear trend extrapolation was used if the past data tended to show a consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant. This approach was used for CO_2 emissions from 6.A. Solid waste disposal on land, for N₂O and CH₄ emissions from 6.B. Wastewater handling and for CO₂, CH₄ and N₂O emissions from 6.C Waste incineration as well as for emissions from 6.D Other.

4.4.2.1 Results for 2009

GHG emissions from waste sector decrease by - 1.7 Mt CO_2 eq for the EU-15 and by - 1.2 Mt CO_2 eq for the EU-27 in 2009 compared to 2008. Table 12 indicates the subsector contribution to this trend in emissions.

		Change 2008/09					
Sector Waste	EU·	-15	EU-27				
	Gg CO₂eq	%	Gg CO₂eq	%			
6. Waste	-1 750	-1.7%	-1 607	-1.2%			
A. Solid Waste Disposal on Land	-1 933	-2.6%	-1 816	-1.7%			
B. Waste-water Handling	137	0.7%	133	0.5%			
C. Waste Incineration	25	0.8%	54	1.3%			
D. Other	21	0.8%	23	0.8%			

Source: 2010 CRF inventory submissions to UNFCCC and EU for 2008 and authors' own calculations for 2009

4.5 Other source categories

For all other source categories, no 2009 activity data was available that could be combined with IEFs from GHG inventories. These categories were extrapolated from 2008 GHG inventories, either by trend extrapolation or by taking the constant values of 2008. Constant values were used when past trends were inconsistent and strongly fluctuating; trend extrapolation was used when historic time series showed good correlations with a linear trend.

For some source categories, updated data was only partly available, but the inventory estimation methodology was too complex to be replicated in an approximated way, e.g. for N_2O emissions from soils.

5 Annex 1 – Detailed overview of methods and data sources used

Source Ca	Source Category 1A Fuel Combustion (Sectoral Approach)						
Gas	CO2						
Member	Projection A	pproach	Data Sources				
State	-		BP Statistical Review of World Energy consumption of oil gas and				
AT	Emissions calculation ba	ased on activity data	coal, June 2009, IEFs from 2010 inventory submission				
BE	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
BG	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
CY	Emission differentials fro	om other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5				
CZ	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
DE	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
DK	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
EE	Emission differentials fro	om other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5				
ES	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
FI	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
FR	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
UK	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
GR	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
HU	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
IE	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
IT	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
LT	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
LU	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
LV	Emission differentials fro	om other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5				
MT	Emission differentials fro	om other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5				
NL	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
PL	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
PT	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
RO	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
SE	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				
SI	Emission differentials fro	om other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5				
SK	Emissions calculation ba	ased on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2009, IEFs from 2010 inventory submission				

Table 13 Methods and data used for CO₂ emissions from 1A Fuel combustion

Source Categor	y 1A Fuel Combustion (Sectoral A	pproach)
Gas	CH4 N2O	
Member	Brainstian Annraach	Data Sauraaa
State	Projection Approach	Data Sources
AT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
BE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
CY	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
DK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
EE	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5
ES	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
FI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
HU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
IE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
LT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
LU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
LV	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5
MT	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5
NL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
PL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
PT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
RO	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
SI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2
SK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A for CO2

Table 14 M	Methods and da	ta used for CH	I₄ and N₂O	emissions	from 1.	A Fuel	combustion
------------	----------------	----------------	------------	-----------	---------	--------	------------

Source Cate	Source Category 1A1 Energy Industries						
Gas	CO2						
Member	Projection Approach	Data Sources					
State		Data Sources					
AT	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
BE	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
BG	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
CY	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
CZ	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
DE	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
DK	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
EE	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
ES	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
FI	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
FR	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
UK	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
GR	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
HU	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
IE	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
IT	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
LT	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
LU	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
LV	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
MT	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
NL	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
PL	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
PT	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
RO	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
SE	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
SI	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					
SK	Total from other source categories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c					

Table 15 Methods and data used for CO_2 , CH_4 and N_2O emissions for 1A1 Energy industries

Source Ca	ategory 1A1a Public Electricity ar	d Heat Production	
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
BG	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
CY	Data from previous years	2010 inventory submission	
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
DE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
EE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
FR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
HU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
IT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
LU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
LV	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
MT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
PL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
RO	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis
SK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	identification of power sector by Öko- Institut's analysis

Table 16Methods and data used for CO2 emissions from 1A1a Public electricity and
heat production

Source Ca	Source Category 1A1a Public Electricity and Heat Production					
Gas	CH4					
Member	Projection Approach	Data Sources				
State		Data Sources				
AT	Data from previous years	2010 inventory submission				
BE	Data from previous years	2010 inventory submission				
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
CY	Data from previous years	2010 inventory submission				
CZ	Data from previous years	2010 inventory submission				
DE	Data from previous years	2010 inventory submission				
DK	Data from previous years	2010 inventory submission				
EE	Data from previous years	2010 inventory submission				
ES	Data from previous years	2010 inventory submission				
FI	Data from previous years	2010 inventory submission				
FR	Emission trends (dynamics) from other sources Proxy-inventory source categories 1A1a for CO2					
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
HU	Data from previous years	2010 inventory submission				
IE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
LT	Data from previous years	2010 inventory submission				
LU	Data from previous years	2010 inventory submission				
LV	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
NL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
PL	Data from previous years	2010 inventory submission				
PT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
RO	Data from previous years	2010 inventory submission				
SE	Data from previous years	2010 inventory submission				
SI	Data from previous years	2010 inventory submission				
SK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				

Table 17 Methods and data used for CH₄ emissions from 1A1a Public electricity and heat production

Source Ca	Source Category 1A1a Public Electricity and Heat Production					
Gas	N2O					
Member	Projection Approach	Data Sources				
State		Data oources				
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009				
BE	Emission trends (dynamics) from other sources	2010 inventory submission				
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
CY	Emission trends (dynamics) from other sources	2010 inventory submission				
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
DK	Data from previous years	2010 inventory submission				
EE	Data from previous years	2010 inventory submission				
ES	Data from previous years	2010 inventory submission				
FI	Data from previous years	2010 inventory submission				
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
HU	Data from previous years	2010 inventory submission				
IE	Data from previous years	2010 inventory submission				
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
LT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
LU	Data from previous years	2010 inventory submission				
LV	Data from previous years	2010 inventory submission				
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
NL	Data from previous years	2010 inventory submission				
PL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
PT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
RO	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
SI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
SK	Data from previous years	2010 inventory submission				

Table 18	Methods and data	used for	· N ₂ O	emissions	from	1A1a	Public	electricity	and
	heat production								

Source Category 1A1b Petroleum Refining				
Gas	CO2			
Member State	Project	tion Approach	Data Sources	Notes
AT	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
BE	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
BG	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
CY	Data from previous	years	2010 inventory submission	
CZ	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
DE	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
DK	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
EE	Data from previous	years	2010 inventory submission	
ES	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
FI	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
FR	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
UK	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
GR	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
HU	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
IE	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
IT	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
LT	Data from previous	years	2010 inventory submission	
LU	Data from previous	years	2010 inventory submission	
LV	Data from previous	years	2010 inventory submission	
MI	Data from previous	years	2010 inventory submission	
NL	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
PL	Activity trends (dyna	mics) from other sources	Eurostat data for Crude oil input to refineries	Indicator code 101008, product code 3100
PT	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
RO	Data from previous	years	2010 inventory submission	
SE	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2
SI	Data from previous	years	2010 inventory submission	
SK	Emission trends (dy	namics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main acitivity code 2

Table 19 Methods and data used for CO_2 emissions from 1A1b Petroleum refining

Source Category		1A1b	Petroleum Refining	
Gas	Gas			
Member	Projection Approach		tion Annroach	Data Sources
State				Data Gources
AT	Data from previous years		ears	2010 inventory submission
BE	Data from	n previous ye	ears	2010 inventory submission
BG	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
CY	Data from	n previous ye	ears	2010 inventory submission
CZ	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
DE	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
DK	Data from	n previous ye	ears	2010 inventory submission
EE	Data from	n previous ye	ears	2010 inventory submission
ES	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
FI	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
FR	Emission trends (dynamics) from other sources		amics) from other sources	Proxy-inventory source categories 1A1b for CO2
UK	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
GR	Emission trends (dynamics) from other sources		amics) from other sources	Proxy-inventory source categories 1A1b for CO2
HU	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
IE	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
IT	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
LT	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
LU	Data from	n previous ye	ears	2010 inventory submission
LV	Data from	n previous ye	ears	2010 inventory submission
MT	Data from	n previous ye	ears	2010 inventory submission
NL	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
PL	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
PT	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
RO	Data from	n previous ye	ears	2010 inventory submission
SE	Emission	trends (dyna	amics) from other sources	Proxy-inventory source categories 1A1b for CO2
SI	Data from	n previous ye	ears	2010 inventory submission
SK	Emission trends (dynamics) from other sources		amics) from other sources	Proxy-inventory source categories 1A1b for CO2

Table 20	Methods and dat	a used for CH	I₄ emissions fron	n 1A1b Petroleu	m refining
----------	-----------------	---------------	-------------------	-----------------	------------

Source Category 1A1b		A1b	Petroleum Refining		
Gas	N	20			
Member		Projecti	on Approach	Data Sources	
State			++		
AT	Emission trends (dynamics) from other sources		mics) from other sources	2010 inventory submission	
BE	Data from pr	revious yea	ars	2010 inventory submission	
BG	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
CY	Data from pr	revious yea	ars	2010 inventory submission	
CZ	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
DE	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
DK	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
EE	Data from pr	revious yea	ars	2010 inventory submission	
ES	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
FI	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
FR	Emission trends (dynamics) from other sources		mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
UK	Data from previous years		ars	2010 inventory submission	
GR	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
HU	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
IE	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
IT	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
LT	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
LU	Data from pr	revious yea	ars	2010 inventory submission	
LV	Data from pr	revious yea	ars	2010 inventory submission	
MT	Data from pr	revious yea	ars	2010 inventory submission	
NL	Data from pr	revious yea	ars	2010 inventory submission	
PL	Data from pr	revious yea	ars	2010 inventory submission	
PT	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
RO	Data from pr	revious yea	ars	2010 inventory submission	
SE	Emission tre	nds (dyna	mics) from other sources	Proxy-inventory source categories 1A1b for CO2	
SI	Data from pr	revious yea	ars	2010 inventory submission	
SK	Data from previous years		ars	2010 inventory submission	

Table 21	Methods and data	used for N ₂ O	emissions from	1A1b Petroleum	refining
----------	------------------	---------------------------	----------------	----------------	----------

Source Ca	e Category 1A1c Manufacture of Solid Fuels and Other Energy Industries				
Gas	CO2 CH4, N2O				
Member	Projection Approach	Data Sources			
State		Data oources			
AT	Data from previous years	2010 inventory submission			
BE	Data from previous years	2010 inventory submission			
BG	Data from previous years	2010 inventory submission			
CY	Data from previous years	2010 inventory submission			
CZ	Data from previous years	2010 inventory submission			
DE	Data from previous years	2010 inventory submission			
DK	Data from previous years	2010 inventory submission			
EE	Data from previous years	2010 inventory submission			
ES	Data from previous years	2010 inventory submission			
FI	Data from previous years	2010 inventory submission			
FR	Data from previous years	2010 inventory submission			
UK	Data from previous years	2010 inventory submission			
GR	Data from previous years	2010 inventory submission			
HU	Data from previous years	2010 inventory submission			
IE	Data from previous years	2010 inventory submission			
IT	Data from previous years	2010 inventory submission			
LT	Data from previous years	2010 inventory submission			
LU	Data from previous years	2010 inventory submission			
LV	Data from previous years	2010 inventory submission			
MT	Data from previous years	2010 inventory submission			
NL	Data from previous years	2010 inventory submission			
PL	Data from previous years	2010 inventory submission			
PT	Data from previous years	2010 inventory submission			
RO	Data from previous years	2010 inventory submission			
SE	Data from previous years	2010 inventory submission			
SI	Data from previous years	2010 inventory submission			
SK	Data from previous years	2010 inventory submission			

Table 22	Methods and data sources used for CO_2 , CH_4 and N_2O emissions from 1A1c
	Manufacture of solid fuels and other energy industries

Source Category 1A2 Manufacturing Industries and Construction					
Gas CO2					
Member State	Projection Approach	Data Sources	Notes		
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas and CITL glass, ceramics, paper, 99, cement		
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas and CITL glass, ceramics, paper, 99, cement		
BG	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Mean value of trends from different CITL categories		
CY	Data from previous years	2010 inventory submission			
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement		
DE	Direct use of emissions data from other sources	MS Proxy			
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
EE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
FR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas and CITL glass, ceramics, paper, 99, cement		
HU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
IT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
LU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99		
LV	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement		
MT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL glass, ceramics, paper, 99, cement		
PL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL other combustion, glass, ceramics, paper, 99, cement, coke ovens, ore, iron, bf-gas		
RO	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL glass, ceramics, paper, 99, cement		
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		
SK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	Factor * CITL combustion and bf-gas		

Table 23Methods and data used for CO_2 emissions from 1A2 Manufacturing industriesand construction

Source Cate	Source Category 1A2 Manufacturing Industries and Construction				
Gas CH4					
Member	Projection Approach	Data Sources			
State		Data Sources			
AT	Data from previous years	2010 inventory submission			
BE	Data from previous years	2010 inventory submission			
BG	Data from previous years	2010 inventory submission			
CY	Data from previous years	2010 inventory submission			
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
DE	Data from previous years	Proxy-inventory source categories 1A2 for CO2			
DK	Data from previous years	2010 inventory submission			
EE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
ES	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
FI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
FR	Data from previous years	2010 inventory submission			
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
GR	Data from previous years	2010 inventory submission			
HU	Data from previous years	2010 inventory submission			
IE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
LT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
LU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
LV	Data from previous years	2010 inventory submission			
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
NL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
PL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
PT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
RO	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
SE	Data from previous years	2010 inventory submission			
SI	Data from previous years	2010 inventory submission			
SK	Data from previous years	2010 inventory submission			

Table 24Methods and data used for CH₄ emissions from 1A2 Manufacturing industriesand construction

Source Cat	Source Category 1A2 Manufacturing Industries and Construction				
Gas	N2O				
Member	Projection Approach	Data Sources			
State		Data Sources			
AT	Data from previous years	2010 inventory submission			
BE	Data from previous years	2010 inventory submission			
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
CY	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
DK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
EE	Data from previous years	2010 inventory submission			
ES	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
FI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
HU	Data from previous years	2010 inventory submission			
IE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
LT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
LU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
LV	Data from previous years	2010 inventory submission			
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
NL	Data from previous years	2010 inventory submission			
PL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
PT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
RO	Data from previous years	2010 inventory submission			
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A2 for CO2			
SI	Data from previous years	2010 inventory submission			
SK	Data from previous years	2010 inventory submission			

Table 25	Methods and data used for N_2O emissions from 1A2 Manufacturing industries
	and construction

Source Ca	ategor 1A3 Transport		
Gas Mombor	CO2 CH4, N2O		
State	Projection Approach	Data Sources	Notes
AT	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
BE	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
BG	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
CY	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
CZ	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
DE	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
DK	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Complex calculation see Report Chapter 4.1.5
EE	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Complex calculation see Report Chapter 4.1.5
ES	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
FI	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
FR	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
UK	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Complex calculation see Report Chapter 4.1.5
GR	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
HU	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
IE	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Complex calculation see Report Chapter 4.1.5
IT	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
LT	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
LU	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
LV	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
MT	Data from previous years	2010 inventory submission	
NL	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
PL	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
PT	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
RO	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
SE	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
SI	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Complex calculation see Report Chapter 4.1.5
SK	Emissions calculation based on activity data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Complex calculation see Report Chapter 4.1.5

Table 26 Methods and data used for CO_2 , CH_4 and N_2O emissions from 1A3 Transport
Source (Source Category 1B1 Fugitive Emissions from Soild Fuels				
Gas	CO2				
Member	Projection Approach	Data Sources	Notes		
State	····				
AT	Data from previous years	2010 inventory submission			
BE	Data from previous years	2010 inventory submission			
BG	Data from previous years	2010 inventory submission			
CY	Data from previous years	2010 inventory submission			
CZ	Data from previous years	2010 inventory submission			
DE	Data from previous years	2010 inventory submission			
DK	Data from previous years	2010 inventory submission			
EE	Data from previous years	2010 inventory submission			
ES	Data from previous years	2010 inventory submission			
FI	Data from previous years	2010 inventory submission			
FR	Data from previous years	2010 inventory submission			
UK	Data from previous years	2010 inventory submission			
GR	Data from previous years	2010 inventory submission			
HU	Data from previous years	2010 inventory submission			
IE	Data from previous years	2010 inventory submission			
IT	Data from previous years	2010 inventory submission			
LT	Data from previous years	2010 inventory submission			
LU	Data from previous years	2010 inventory submission			
LV	Data from previous years	2010 inventory submission			
MT	Data from previous years	2010 inventory submission			
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL Main activity code 5		
PL	Data from previous years	2010 inventory submission			
PT	Data from previous years	2010 inventory submission			
RO	Data from previous years	2010 inventory submission			
SE	Data from previous years	2010 inventory submission			
SI	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210		
SK	Data from previous years	2010 inventory submission			

Table 27Methods and data used for CO2 emissions from 1B1 Fugitive emissions from
solid fuels

Source Cate	Source Category 1B1 Fugitive Emissions from Soild Fuels					
Gas CH4						
Member State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	2010 inventory submission				
BE	Data from previous years	2010 inventory submission				
BG	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210			
CY	Data from previous years	2010 inventory submission				
CZ DE	Activity trends (dynamics) from other sources Activity trends (dynamics) from other	Eurostat Primary Hard Coal and Lignite Production (monthly data) Eurostat Primary Hard Coal and	Indicator code 100100, product code 2111 and 2210 Indicator code 100100, product code 2111			
חע	Sources	2010 inventory submission	and 2210			
UK	Dala num previous years					
EE	Data from previous years	2010 inventory submission				
ES	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product code 2111			
FI	Data from previous years	2010 inventory submission				
FR	Data from previous years	2010 inventory submission				
UK	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product code 2111			
GR	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210			
HU	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210			
IE	Data from previous years	2010 inventory submission				
ІТ	Data from previous years	2010 inventory submission				
LT	Data from previous years	2010 inventory submission				
LU	Data from previous years	2010 inventory submission				
LV	Data from previous years	2010 inventory submission				
МТ	Data from previous years	2010 inventory submission				
NL	Data from previous years	2010 inventory submission				
PL	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal and Lignite Production (monthly data)	Indicator code 100100, product code 2111 and 2210			
PT	Data from previous years	2010 inventory submission				
RO	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210			
SE	Data from previous years	2010 inventory submission				
SI	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210			
SK	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210			

Table 28 Methods and data used for CH₄ emissions from 1B1 Fugitive emissions from solid fuels

Source Category 1B2a Oil				
Gas	CO2			
Member	Brojection Approach	Data Sources	Notos	
State		Data Sources	Notes	
AT	Data from previous years	2010 inventory submission		
BE	Data from previous years	2010 inventory submission		
BG	Data from previous years	2010 inventory submission		
CY	Data from previous years	2010 inventory submission		
CZ	Data from previous years	2010 inventory submission		
DE	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100	
DK	Data from previous years	2010 inventory submission		
EE	Data from previous years	2010 inventory submission		
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL refineries	
FI	Data from previous years	2010 inventory submission		
FR	Data from previous years	2010 inventory submission		
UK	Data from previous years	2010 inventory submission		
GR	Data from previous years	2010 inventory submission		
HU	Data from previous years	2010 inventory submission		
IE	Data from previous years	2010 inventory submission		
IT	Data from previous years	2010 inventory submission		
LT	Data from previous years	2010 inventory submission		
LU	Data from previous years	2010 inventory submission		
LV	Data from previous years	2010 inventory submission		
MT	Data from previous years	2010 inventory submission		
NL	Data from previous years	2010 inventory submission		
PL	Activity trends (dynamics) from other sources	Eurostat Crude Oil Production (monthly data)	Indicator code 100100, product code 3100	
PT	Emission trends (dynamics) from other sources	CITL data	CITL refineries	
RO	Data from previous years	2010 inventory submission		
SE	Data from previous years	2010 inventory submission		
SI	Data from previous years	2010 inventory submission		
SK	Data from previous years	2010 inventory submission		

Table 29	Methods and data used for CO ₂ emissions from 1B2a Fugitive emissions from
	oil

Source Category 1B2a Oil						
Gas CH4						
Member	Projection Approach	Data Sauraaa	Netos			
State	Projection Approach	Data Sources	Notes			
AT	Activity trends (dynamics) from other	Eurostat Crude Oil Production (monthly	Indicator code 100100, product code			
	sources	data)	3100			
BE	Data from previous years	2010 inventory submission				
BG	Data from previous years	2010 inventory submission				
CY	Data from previous years	2010 inventory submission				
CZ	Data from previous years	2010 inventory submission				
DE	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100			
DK	Data from previous years	2010 inventory submission				
EE	Data from previous years	2010 inventory submission				
ES	Emission trends (dynamics) from other sources	CITL data	CITL refineries			
FI	Data from previous years	2010 inventory submission				
FR	Data from previous years	2010 inventory submission				
UK	Data from previous years	2010 inventory submission				
GR	Data from previous years	2010 inventory submission				
HU	Data from previous years	2010 inventory submission				
IE	Data from previous years	2010 inventory submission				
IT	Data from previous years	2010 inventory submission				
LT	Data from previous years	2010 inventory submission				
LU	Data from previous years	2010 inventory submission				
LV	Data from previous years	2010 inventory submission				
MT	Data from previous years	2010 inventory submission				
NL	Data from previous years	2010 inventory submission				
PL	Emission trends (dynamics) from other sources	Eurostat Crude Oil Production (monthly data)	Indicator code 100100, product code 3100			
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL refineries			
RO	Data from previous years	2010 inventory submission				
SE	Data from previous years	2010 inventory submission				
SI	Data from previous years	2010 inventory submission				
SK	Data from previous years	2010 inventory submission				

Table 30Methods and data used for CH₄ emissions from 1B2a Fugitive emissions fromoil

Source Cat	egory 1B2b	Natural Gas			
Gas	CO2				
Member	Member Projection Approach		Deta Sources	Notes	
State			Data Sources		
AT	Data from previous years		2010 inventory submission		
BE	Activity trends	(dynamics) from	Eurostat Total Natural Gas	Indicator code 100900, product	
	other sources		Consumption (monthly data)	code 4100	
BG	Data from prev	vious years	2010 inventory submission		
CY	Data from prev	vious years	2010 inventory submission		
CZ	Emission trend other sources	ls (dynamics) from	CITL data (operator holding accounts) 2008-2009	CITL refineries	
55	Activity trends	(dynamics) from	Eurostat Total Natural Gas	Indicator code 100100, product	
DE	other sources		Production (monthly data)	code 4100	
DK	Data from prev	vious years	2010 inventory submission		
EE	Data from prev	vious years	2010 inventory submission		
ES	Data from prev	vious years	2010 inventory submission		
FI	Data from prev	vious years	2010 inventory submission		
FR	Data from prev	vious years	2010 inventory submission		
UK	Data from previous years		2010 inventory submission		
GR	Data from prev	vious years	2010 inventory submission		
HU	Data from prev	vious years	2010 inventory submission		
IE	Data from prev	vious years	2010 inventory submission		
іт	Activity trends	(dynamics) from	Eurostat Total Natural Gas	Indicator code 100100, product	
''	other sources		Production (monthly data)	code 4100	
LT	Data from prev	vious years	2010 inventory submission		
LU	Activity trends	(dynamics) from	Eurostat Total Natural Gas	Indicator code 100900, product	
1.17	Data from prov		2010 inventory submission	code 4100	
	Data from prev		2010 inventory submission		
	Activity tronds	(dynamics) from	Eurostat Total Natural Gas	Indicator codo 100900, product	
NL	other sources	(dynamics) nom	Consumption (monthly data)	code 4100	
PI	Activity trends	(dynamics) from	Eurostat Total Natural Gas	Indicator code 100900, product	
	other sources		Consumption (monthly data)	code 4100	
PT	Data from prev	vious years	2010 inventory submission		
RO	Data from previous years		2010 inventory submission		
SE	Data from prev	vious years	2010 inventory submission		
SI	Data from previous years		2010 inventory submission		
SK	Data from prev	vious years	2010 inventory submission		

Table 31Methods and data used for CO2 emissions from 1B2b Fugitive emissions fromgas

Source Category 1B2b Natural Gas				
Gas	CH4			
Member	Projection Approach	Data Sources	Notes	
State		Data Couroco	10100	
AT	Data from previous years	2010 inventory submission		
BE	Activity trends (dynamics) from other	Eurostat Total Natural Gas Consumption		
DC	sources	(monthly data)		
BG	Data from previous years	2010 Inventory submission		
	Data from previous years	2010 Inventory submission		
62	Activity trends (dynamics) from other	Eurostat Total Natural Gas Production	Indicator code 100100, product code	
DE	sources	(monthly data)	4100	
DK	Data from previous years	2010 inventory submission		
EE	Data from previous years	2010 inventory submission		
ES	Emission trends (dynamics) from other so	CITL data (operator holding accounts) 2008-2009	CITL refineries	
FI	Data from previous years	2010 inventory submission		
FR	Emission trends (dynamics) from other so	CITL data (operator holding accounts) 2008-2009	CITL refineries	
UK	Emission trends (dynamics) from other so	CITL data (operator holding accounts) 2008-2009	CITL refineries	
GR	Data from previous years	2010 inventory submission		
HU	Data from previous years	2010 inventory submission		
IE	Data from previous years	2010 inventory submission		
IT	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100	
LT	Data from previous years	2010 inventory submission		
LU	Activity trends (dynamics) from other sour	Eurostat Total Natural Gas consumption (monthly data)	Indicator code 100100, product code 4100	
LV	Data from previous years	2010 inventory submission		
MT	Data from previous years	2010 inventory submission		
NL	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas consumption (monthly data)	Indicator code 100100, product code 4100	
PL	Data from previous years	2010 inventory submission		
PT	Data from previous years	2010 inventory submission		
RO	Activity trends (dynamics) from other sour	Eurostat Total Natural Gas consumption (monthly data)	Indicator code 100100, product code 4100	
SE	Data from previous years	2010 inventory submission		
SI	Data from previous years	2010 inventory submission		
SK	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas consumption (monthly data)	Indicator code 100100, product code 4100	

Table 32Methods and data used for CH₄ emissions from 1B2b Fugitive emissions from
gas

Source Ca	ategory	1B2c	Venting and flaring		
Gas	(002			
Member	D	oiection	Approach	Data Sources	Notes
State	FI	ojection	Approach	Data Sources	Notes
AT	Data fror	n previou	is years	2010 inventory submission	
BE	Data from	n previou	is years	2010 inventory submission	
BG	Data fror	n previou	is years	2010 inventory submission	
CY	Data fror	n previou	is years	2010 inventory submission	
CZ	Data from	n previou	is years	2010 inventory submission	
DE	Activity to	rends (dy	namics) from other	Eurostat Total Natural Gas	Indicator code 100100, product code
DL	sources			Production (monthly data)	4100
DK	Data fror	n previou	is years	2010 inventory submission	
EE	Data fror	n previou	is years	2010 inventory submission	
ES	Data fror	n previou	is years	2010 inventory submission	
FI	Data fror	n previou	is years	2010 inventory submission	
FR	Data fror	n previou	is years	2010 inventory submission	
UK	Data fror	n previou	is years	2010 inventory submission	
GR	Data fror	n previou	is years	2010 inventory submission	
HU	Data fror	n previou	is years	2010 inventory submission	
IE	Data from	n previou	is years	2010 inventory submission	
IT	Data fror	n previou	is years	2010 inventory submission	
LT	Data fror	n previou	is years	2010 inventory submission	
LU	Data fror	n previou	is years	2010 inventory submission	
LV	Data from	n previou	is years	2010 inventory submission	
MT	Data from	n previou	is years	2010 inventory submission	
NL	Data fror	n previou	is years	2010 inventory submission	
PL	Emissior other sou	n trends (urces	dynamics) from	CITL data (operator holding accounts) 2008-2009	CITL refineries
PT	Emission other sou	n trends (urces	dynamics) from	CITL data (operator holding accounts) 2008-2009	CITL refineries
RO	Data fror	n previou	is years	2010 inventory submission	
SE	Data fror	n previou	is years	2010 inventory submission	
SI	Data fror	n previou	is years	2010 inventory submission	
SK	Data from	n previou	is years	2010 inventory submission	

Table 33	Methods and data	used for CO ₂	emissions from	1B2c Ventina	and flaring

Source Cate	gory 1B2c Venting and flaring		
Gas	CH4		
Member	Projection Approach	Data Sources	
State		Data Sources	
AT	Data from previous years	2010 inventory submission	
BE	Data from previous years	2010 inventory submission	
BG	Data from previous years	2010 inventory submission	
CY	Data from previous years	2010 inventory submission	
CZ	Data from previous years	2010 inventory submission	
DE	Data from previous years	2010 inventory submission	
DK	Data from previous years	2010 inventory submission	
EE	Data from previous years	2010 inventory submission	
ES	Data from previous years	2010 inventory submission	
FI	Data from previous years	2010 inventory submission	
FR	Data from previous years	2010 inventory submission	
UK	Data from previous years	2010 inventory submission	
GR	Data from previous years	2010 inventory submission	
HU	Data from previous years	2010 inventory submission	
IE	Data from previous years	2010 inventory submission	
IT	Data from previous years	2010 inventory submission	
LT	Data from previous years	2010 inventory submission	
LU	Data from previous years	2010 inventory submission	
LV	Data from previous years	2010 inventory submission	
MT	Data from previous years	2010 inventory submission	
NL	Data from previous years	2010 inventory submission	
PL	Data from previous years	2010 inventory submission	
PT	Data from previous years	2010 inventory submission	
RO	Data from previous years	2010 inventory submission	
SE	Data from previous years	2010 inventory submission	
SI	Data from previous years	2010 inventory submission	
SK	Data from previous years	2010 inventory submission	

Table 34 Methods and data used for CH ₄ emissions from 1B2c Venting and flar	ing
---	-----

Source Ca	tegory 2A1 Cement Production	ו	
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
BE	Direct use of emissions data from	CITL data as of 12 July 2010 from	CITL trend 2008/2009 applied to 2008
DL	other sources	EU ETS data viewer	CRF emissions
BG	other sources	EU ETS data as of 12 July 2010 from	CRF emissions
CY	Data from previous year	CITL data as of 12 July 2010 from	CITL trend 2008/2009 applied to 2008
CZ	other sources	EU ETS data viewer	CRF emissions
DE	other sources	EU ETS data as of 12 July 2010 from EU ETS data viewer	CRF emissions
DK	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
EE	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
ES	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
FI	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
FR	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
UK	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
GR	Direct use of emissions data from	CITL data as of 12 July 2010 from	CITL trend 2008/2009 applied to 2008
	other sources	EU ETS data viewer	CRF emissions
HU	other sources	EU ETS data viewer	CRF emissions
IE	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
IT	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
LT	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
LU	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
LV	Direct use of emissions data from	CITL data as of 12 July 2010 from	CITL trend 2008/2009 applied to 2008
мт	Data from previous year	EU ETS data viewer	CRF emissions
NL	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
PL	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
PT	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
RO	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
SE	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
SI	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
SK	Direct use of emissions data from other sources	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions

Table 35 Methods and data used for CO₂ emissions from 2.A.1 Cement Production

Source Category		A2	Lime Production		
Gas	C	02			
Member	Proje	ection /	Approach	Data Sources	Notes
State AT	Direct use o	f emiss	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
BE	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
BG	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
CY	Data from p	revious	year		
CZ	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
DE	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
DK	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
EE	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
ES	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
FI	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
FR	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
UK	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
GR	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
HU	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
IE	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
IT	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
LT	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
LU	Data from p	revious	year		
LV	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
MT NL	Data from p Data from p	revious revious	year year		
PL	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
PT	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
RO	Data from p	revious	year		
SE	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
SI	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions
SK	Direct use o other source	f emiss es	ions data from	CITL data as of 12 July 2010 from EU ETS data viewer	CITL trend 2008/2009 applied to 2008 CRF emissions

Source Category	A Mineral Products		
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State		Data Sources	Notes
AT			
BE			
BG			
CY			
CZ	Data from previous years	UNFCCC 2010 submission	Value of 2008
DE			
DK			
EE			
ES			
FI			
FR			
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008
RO			
SE			
SI			
SK			

Table 37 Methods and data used for CH₄ emissions from 2.A Mineral products

Source Category 2B1 Ammonia Productio		on		
Gas	Gas CO2			
Member State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
BG	Data from previous year	UNFCCC 2010 submission	Value of 2008	
CY				
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DK				
EE	Data from previous year	UNFCCC 2010 submission	Value of 2008	
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FI				
FR	Data from previous year	UNFCCC 2010 submission	Value of 2008	
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
IE				
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LU				
LV				
МТ				
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PT	Data from previous year	UNFCCC 2010 submission	Value of 2008	
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SE				
SI				
SK	Data from previous year	UNFCCC 2010 submission	Value of 2008	

Table 38 Methods and data used for CO₂ emissions from 2B1 Ammonia Production

Source Ca	Source Category 2B2 Nitric Acid Production			
Member	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum	
BE	Extrapolation from previous years	UNFCCC 2010 submission	square deviation linear trend projection via minimum	
BG	Extrapolation from previous years	UNFCCC 2010 submission	square deviation linear trend projection via minimum	
CY			square deviation	
C7	Extrapolation from previous years	UNECCC 2010 submission	linear trend projection via minimum	
DE	Extrapolation from previous years	UNECCC 2010 submission	square deviation linear trend projection via minimum	
			square deviation	
	Extranslation from providuo vooro		linear trend projection via minimum	
E5	Extrapolation from previous years	UNFCCC 2010 submission	square deviation linear trend projection via minimum	
F1	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
FR	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
UK	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
GR	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
HU	Data from previous year	UNFCCC 2010 submission	Value of 2008	
IE				
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LT	Data from previous year	UNFCCC 2010 submission	Value of 2008	
LU				
LV				
мт				
NL	Data from previous year	UNFCCC 2010 submission	Value of 2008	
PL	Data from previous year	UNFCCC 2010 submission	Value of 2008	
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
RO	Extrapolation from previous years	UNFCCC 2010 submission	inear trend projection via minimum square deviation	
SE	Data from previous year	UNFCCC 2010 submission	Value of 2008	
SI				
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	

Table 39 Methods and data used for N_2O emissions from 2B2 Nitric Acid Production

Source Category	2B3 Adipic Acid Produc	ction	
Gas	N2O		
Member	Projection Approach	Data Sources	Notes
State		Data Sources	notes
AT			
BE			
BG			
CY			
CZ			
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
DK			
EE			
ES			
FI			
FR	Extrapolation from previous years	UNFCCC 2010 submission	minimum square deviation
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
GR			
HU			
IE			
IT	Data from previous year	UNFCCC 2010 submission	Value of 2008
LT			
LU			
LV			
MT			
NL			
PL			
PT			
RO			
SE			
SI			
SK			

Table 40 Methods and data used for N_2O emissions from 2B3 Adipic Acid Production

Г

Source Ca	tegory 2.C 2.C Metal Product	ion		
Gas CH4				
Member	Projection Approach	Data Sources	Notes	
State				
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008	
CY				
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CO2	
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CO2	
DK EE				
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008	
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CO2	
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008	
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CO2 emissions	
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CO2 emissions	
HU				
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum	
LT			square deviation, adjustment to CO2	
LU				
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008	
NL				
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008	
PT				
RO	Data from provious voars	LINECCC 2010 submission	Value of 2008	
SI	Data nom previous years			
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008	

Table 41	Methods and data	used for CH ₄ emissions	from 2.C Metal production
----------	------------------	------------------------------------	---------------------------

Source Category 2C Metal Production			
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
BE	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
BG	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
CY	Data from previous years	CRF 2C	
CZ	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
DE	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
DK	Data from previous years	CRF 2C	
EE	Data from previous years	CRF 2C	
ES	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
FI	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
FR	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
UK	Data from previous years	CRF 2C	
GR	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
HU	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
IE	Data from previous years	CRF 2C	
IT	Data from previous years	CRF 2C	
LT	Data from previous years	CRF 2C	
LU	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
LV	Data from previous years	CRF 2C	
МТ	Data from previous years	CRF 2C	
NL	Data from previous years	CRF 2C	
PL	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
PT	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
RO	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
SE	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
SI	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year
SK	Complex calculation	CRF 2C and 2C1 proxy	2C1 proxy + (CRF 2C - CRF 2C1)previous year

Table 42Methods and data used for CO2 emissions from 2.C Metal production

Source Category 2.C 2.C Metal Production				
Gas	Gas N2O			
Member	Projection Approach	Data Sources	Notes	
State		Data Sources	Notes	
AT				
BE				
BG				
CY				
CZ				
DE				
DK				
EE				
ES	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
FI				
FR				
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CO2	
GR			· [·····	
HU				
IE				
IT				
LT				
LU				
LV				
MT				
NL				
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PT				
RO				
SE				
SI				
SK				

Table 43 Methods and data used for N_2O emissions from 2.C Metal production

Source Category 2C1 Iron and Steel Production			
Gas CO2			
Member	Projection Approach	Data Sources	Notes
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL categories coke, ore,iron, bf-gas
BE	Emission trends (dynamics) from alternative calculations	CITL data and International Iron and Steel Institute (IISI)	CITL iron, Iron production
BG	Activity trends (dynamics) from other sources	International Iron and Steel Institute (IISI)	Steel production
CY	Data from previous years	2010 inventory submission	
CZ	Activity trends (dynamics) from other sources	International Iron and Steel Institute (IISI)	Steel and Iron production
DE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL iron
DK	Data from previous years	2010 inventory submission	
EE	Data from previous years	2010 inventory submission	
ES	Emission trends (dynamics) from alternative calculations	CITL data and International Iron and Steel Institute (IISI)	CITL iron, Steel production
FI	Emission trends (dynamics) from alternative calculations	CITL data and International Iron and Steel Institute (IISI)	CITL iron, Iron production
FR	Emission trends (dynamics) from alternative calculations	CITL data and International Iron and Steel Institute (IISI)	Mean Value of different trends
UK	Data from previous years	2010 inventory submission	
GR	Emission trends (dynamics) from other sources Activity trends (dynamics) from	CITL data (operator holding accounts) 2008-2009 International Iron and Steel	CITL iron
HU	other sources	Institute (IISI)	Steel production
IE	Data from previous years	2010 inventory submission	
IT	Data from previous years	2010 inventory submission	
LT	Data from previous years	2010 inventory submission	
LU	Activity trends (dynamics) from other sources	International Iron and Steel Institute (IISI)	Steel production
LV	Data from previous years	2010 inventory submission	
MT	Data from previous years	2010 inventory submission	
NL	Data from previous years	2010 inventory submission	
PL	Emission trends (dynamics) from alternative calculations	CITL data and International Iron and Steel Institute (IISI)	Mean Value of different trends
PT	Activity trends (dynamics) from other sources	International Iron and Steel Institute (IISI)	Steel production
RO	Activity trends (dynamics) from other sources	CITL data and International Iron and Steel Institute (IISI)	Mean Value of different trends
SE	Activity trends (dynamics) from other sources	International Iron and Steel Institute (IISI)	Iron production
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2009	CITL iron
SK	Activity trends (dynamics) from other sources	CITL data and International Iron and Steel Institute (IISI)	Mean Value of different trends

Table 44Methods and data used for CO2 emissions from 2.C.1 Iron and steel produc-
tion

Source Category 2.D 2.D Other Prod		ion		
Gas	CO2			
Member	Projection Approach	Data Sources	Notes	
State			Notes	
AT				
BE				
BG				
CY				
CZ				
DE				
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
EE				
ES				
FI				
FR				
UK				
GR				
HU				
IE				
IT				
LT				
LU				
IVI I			linear trend projection via minimum	
NL	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008	
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008	
RO				
SE				
SI				
SK				

Table 45 Methods and data used for CO₂ emissions from 2.D Other production

Source Ca	tegory 2.D	2.D Other Production	วท	
Gas	CH4	N2O		
Member	Projectio	n Annroach	Data Sources	Notos
State	Frojecuo	парроаст	Data Sources	Notes
AT				
BE				
BG				
CY				
CZ				
DE				
DK				
EE				
ES				
FI				
FR				
UK				
GR				
HU				
IE				
IT				
LT				
LU				
LV				
MI				
NL				
PL				
ĸu				linear trand projection via minimum
SE	Extrapolation fro	m previous years	UNFCCC 2010 submission	square deviation
SI				
SK				

Table 46 Methods and data used for CH_4 and N_2O emissions from 2.D Other production

Source Cat	egory 2 2. Industrial Process	ses	
Gas	SF6		
Member State	Projection Approach	Data Sources	Notes
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008
CY			
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
HU	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
IT	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008
LU	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
LV	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
МТ	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008
PL	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
PT	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation

Table 47 Methods and data used for SF_6 emissions

Source Category 2 2. Industrial Processes				
Gas HFC				
Member	Projection Approach	Data Sources	Notes	
State			notes	
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008	
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008	
CY	Data from previous years	UNFCCC 2010 submission	Value of 2008	
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DE	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008	
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
МТ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008	
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	

Table 48 Methods and data used for HFC emission	ons
---	-----

Source Category 2 2. Industrial Processes			
Gas	PFC		
Member	Projection Approach	Data Sources	Notes
State			linear trend projection via minimum
AT	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
BG			
CY			
			linear trand projection via minimum
CZ	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
DE	Data from previous years	UNFCCC 2010 submission	Value of 2008
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum
			linear trend projection via minimum
EE	Extrapolation from previous years	UNFCCC 2010 Submission	square deviation
ES	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
FI	Data from previous years	UNFCCC 2010 submission	Value of 2008
FR	Extrapolation from previous vears	UNFCCC 2010 submission	linear trend projection via minimum
			square deviation
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008
GR	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum
	Fotos alation form and income		square deviation linear trend projection via minimum
11	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
LT			
LU			
LV			
мт	Data from providuo valoro		Value of 2008
	Data from previous years	UNFCCC 2010 Submission	Value of 2008
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008
PO	Data from previous vears	LINECCC 2010 submission	Value of 2008
ĸŬ	Data nom previous years		linear trend projection via minimum
SE	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum

	Table 49	Methods and	data used for	r PFC emissions
--	----------	-------------	---------------	-----------------

Source Cat	egory 2.G 2.G Other		
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State			
AT			
BE			
BG			
CY			
CZ			
DE			linear trand projection via minimum
DK	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
EE			-
ES			
FI			
FR			
UK			
GR			
HU	Extrapolation from previous years	UNFCCC 2010 submission	square deviation
IE			
IT			
LT			
LU			
LV			
MT			
NL	Extrapolation from previous years	UNFCCC 2010 submission	Inear trend projection via minimum
ы			linear trend projection via minimum
PL	Extrapolation from previous years	UNFUCE 2010 SUDMISSION	square deviation
PT			
RO			
SE			
SI			
SK			

Table 50 Methods and data used for CO₂ emissions from 2.G Other

Source Category		2.G	2.G Other		
Gas		CH4	N2O		
Member	Projection Approach		n Annroach	Data Sourcos	Notos
State			парроасн	Data Sources	Notes
AT					
BE					
BG					
CY					
CZ					
DE					
DK					
EE					
ES					
FI					
FR					
UK					
GR					
HU					
IE					
IT					
LT					
LU					
LV					
MT					
NL	Data	from pre	vious years	UNFCCC 2010 submission	Value of 2008
PL					
PT					
RO					
SE					
SI					
SK					

Table 51 Methods and data used for CH_4 and N_2O emissions from 2.G Other

Source Category 3 3. Solvent and Other Product Use				
Gas CO2				
Member	Projection Approach	Data Sources	Notes	
State				
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
CY	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
DK EE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
UK				
GR	Data from previous years	UNFCCC 2010 submission	Value of 2008	
HU	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
IE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LV	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
MT			linear trand projection via minimum	
NL	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
PL	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
PT	Extrapolation from previous years	UNFCCC 2010 submission	square deviation	
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008	
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
SI SK	Data from previous years	UNFCCC 2010 submission	Value of 2008	

Table 52Methods and data used for CO2 emissions from 3 Solvent and other product
use

Source Category 3 3. Solvent and Other Product Use			
Member	Projection Approach	Data Sources	Notes
State AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum
CY			Square deviation
CZ	Data from previous years	UNFCCC 2010 submission	Value of 2008
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
EE			
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
UK			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008
IE			
IT	Data from previous years	UNFCCC 2010 submission	Value of 2008
LT			
LU	Data from previous years	UNFCCC 2010 submission	Value of 2008
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008
MT	Data from previous years	UNFCCC 2010 submission	Value of 2008
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008
RO			
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation

Table 53 Methods and data used for N₂O emissions from 3 Solvent and other product use

Source C Gas	atego <mark>ry A. Enteric F CH4 Dairy Cattle</mark>	Fermentation, 4.B Manure Management: e, Non-dairy Cattle, Sheep, Goats, Swine	
Member State	Projection Approach	Data Sources	Notes
AT	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey
BE	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Goats, Swine: EUROSTAT June survey; Sheep: EUROSTAT June survey plus adjustment factor
BG	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Swine: EUROSTAT December survey; Goats: EUROSTAT December survey plus adjustment factor
CY	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey
CZ	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey plus adjustment factor; Sheep, Goats: EUROSTAT December survey
DE	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT June survey
DK	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Swine: EUROSTAT June survey; Sheep: EUROSTAT December survey plus adjustment factor; Goats:
EE	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey plus adjustment factor
ES	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle: EUROSTAT June survey; Non-dairy cattle, Sheep, Swine: EUROSTAT December survey; Goats: EUROSTAT December survey plus adjustment factor
FI	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle: EUROSTAT December survey; Sheep, Goats, Swine: EUROSTAT December survey plus adjustment factor
FR	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Sheep, Goats: EUROSTAT December survey; Non-dairy cattle: EUROSTAT June survey; Swine: EUROSTAT June survey plus adjustment factor
UK	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Swine: EUROSTAT June survey; Non-dairy cattle: EUROSTAT December survey; Sheep: EUROSTAT December survey plus adjustment factor; Goats: no population data available, extrapolation of UNFCCC CH4 emissions
GR	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Goats, Swine: EUROSTAT December survey plus adjustment factor; Sheep: EUROSTAT December survey
HU	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey
IE	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle: EUROSTAT December survey; Sheep, Goats, Swine: EUROSTAT June survey
т	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey; Non-dairy cattle: EUROSTAT June survey
LT	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Goats, Swine: EUROSTAT December survey; Sheep: EUROSTAT December survey plus adjustment factor
LU	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle: EUROSTAT June survey; Sheep, Goats, Swine: EUROSTAT December survey

Table 54	Methods and data used for CH_4 emissions from 4.A. Enteric fermentation and
	from 4.B Manure management

Source Category A. Enteric Fermentation, 4.B Manure Management: Gas CH4 Dairy Cattle, Non-dairy Cattle, Sheep, Goats, Swine					
Member State	Projection Approach	Data Sources	Notes		
LV	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey plus adjustment factor		
МТ	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Swine: EUROSTAT December survey; Goats: EUROSTAT December survey plus adjustment factor		
NL	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle: EUROSTAT June survey; Non-dairy cattle, Swine, Goats: EUROSTAT December survey; Sheep: EUROSTAT December survey plus adjustment factor		
PL	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle: EUROSTAT June survey; Sheep: EUROSTAT December survey plus adjustment factor; Goats, Swine: EUROSTAT December survey		
PT	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Swine: EUROSTAT December survey; Goats: EUROSTAT December survey plus adjustment factor		
RO	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey		
SE	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Swine: EUROSTAT June survey; Sheep: EUROSTAT December survey; Goats: no population data available, extrapolation of UNFCCC CH4 emissions		
SI	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey		
SK	Emissions calculation based on activity data	Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2008 inventories	Dairy cattle, Non-dairy cattle: EUROSTAT December survey plus adjustment factor; Sheep, Goats, Swine: EUROSTAT December survey		

Source Category 4.B B. Manure Management					
Gas	N2O	I			
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
CY	Data from previous years	UNFCCC 2010 submission	Value of 2008		
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
DE	Data from previous years	UNFCCC 2010 submission	Value of 2008		
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008		
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CH4		
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2010 submission	square deviation		
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LU	Data from previous years	UNFCCC 2010 submission	Value of 2008		
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
МТ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation, adjustment to CH4		
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		

Table 55 Methods and data used for N_2O emissions from 4.B Manure management

Source Ca	Source Category 4.C C. Rice cultivation					
Gas	CH4					
Member	Projection Approach	Data Sources	Notes			
State		Data Oburces	Notes			
AT						
BE			line or trend projection via minimum			
BG	Extrapolation from previous years	UNFCCC 2010 submission	square deviation			
CY						
CZ						
DE						
FF						
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FI			·			
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
UK						
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IE			line on the set of the			
IT	Extrapolation from previous years	UNFCCC 2010 submission	square deviation			
LT						
MT						
NL						
PL						
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SE						
SI						
SK						

Table 56 Methods and data used for CH₄ emissions from 4.C Rice cultivation

Source Cate	Source Category 4.D D. Agricultural Soils					
Gas	CH4					
Member	Projection Approach	Data Sources	Notos			
State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BE						
BG						
CY						
CZ						
DE						
DK						
EE						
ES						
FI						
FR						
UK						
GR						
HU						
IE						
IT						
LT						
LU						
LV						
MT						
NL						
PL						
PT						
RO						
SE						
SI						
SK						

Table 57 Methods and data used for CH_4 emissions from 4.D Agricultural soils

Source Category 4.D.1.1 1. Synthetic Fertilizers					
Gas	N2O				
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
CY	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LU	Data from previous years	UNFCCC 2010 submission	Value of 2008		
LV	Extrapolation from previous years	UNFCCC 2010 submission	square deviation		
МТ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008		
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		

Table 58 Methods and data used for N_2O emissions from 4.D.1.1 Synthetic fertilizer

Source Ca	Source Category 4.D.1.2 2. Animal Manure Applied to Soils					
Gas	N2O					
Member	Protocilian American	Data Gaussia	Natas			
State	Projection Approach	Data Sources	Notes			
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
CY	Data from previous years	UNFCCC 2010 submission	Value of 2008			
CZ	Data from previous years	UNFCCC 2010 submission	Value of 2008			
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008			
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008			
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
MT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			

Table 59	Methods and	data	used	for	N ₂ O	emissions	from	4.D.1.2	Animal	manure	ар-
	plied to soil										

Table 60 Methods and data used for N_2O emissions from 4.D.1.3 N-fixing crops

Source Ca	Source Category 4.D.1.3 3. N-fixing Crops					
Gas	N2O					
Member	Projection Approach	Data Sources	Notes			
State			Notes			
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008			
CY	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
GR	Data from previous years	UNFCCC 2010 submission	Value of 2008			
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008			
MT						
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			

Source Ca	Source Category 4.D.1.4 4. Crop Residues					
Gas	N2O					
Member						
State	Projection Approach	Data Sources	Notes			
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008			
CY	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
CZ	Data from previous years	UNFCCC 2010 submission	Value of 2008			
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008			
MT						
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			

Table 61	Methods and da	ta used for N ₂ O	emissions f	from 4.D.1.4	Crop residues
----------	----------------	------------------------------	-------------	--------------	---------------

Table 62 Methods and data used for N_2O emissions from 4.D.1.5 Cultivation of histosols

Source Category 4.D.1.5 5. Cultivation of Histosols					
Gas	N2O				
Member	Projection Approach	Data Sources	Notos		
State	Projection Approach	Data Sources	Notes		
AT					
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008		
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008		
CY					
CZ					
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
ES					
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FR					
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008		
GR	Data from previous years	UNFCCC 2010 submission	Value of 2008		
HU					
IE					
IT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LU					
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
MT					
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PT					
RO					
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008		
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008		
SK					

Source Ca	Source Category 4.D.1.6 6. Other direct emissions					
Gas	N2O					
Member	Projection Approach	Data Sauraaa	Natao			
State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BE						
BG						
CY						
CZ						
DE						
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
UK						
GR						
HU						
IE						
IT						
LT						
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LV						
MT						
NL						
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
PT						
RO						
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SI						
SK						

Table 64 Methods and data used for N₂O emissions from 4.D.2 Pasture, Range and Paddock Manure

Source Category 4.D.2 2. Pasture, Range and Paddock Manure				
Gas N2O				
Member	Projection Approach	Data Sources	Notos	
State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
CY	Data from previous years	UNFCCC 2010 submission	Value of 2008	
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008	
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008	
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008	
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
IT	Data from previous years	UNFCCC 2010 submission	Value of 2008	
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008	
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008	
MT				
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008	
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008	
Source Category 4.D.3 3. Indirect Emissions				
---	-----------------------------------	------------------------	--	--
Gas	N2O			
Member	Projection Anneach	Data Courses	Notes	
State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008	
CY				
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008	
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FI	Data from previous years	UNFCCC 2010 submission	Value of 2008	
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
GR	Data from previous years	UNFCCC 2010 submission	Value of 2008	
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
MT				
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008	
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008	
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	

Table 65	Methods and	data used for	N_2O	emissions	from	4.D.3	Indirect	emissions
----------	-------------	---------------	--------	-----------	------	-------	----------	-----------

Table 66 Methods and data used for N_2O emissions from 4.D.4 Other

Source Ca	Source Category 4.D.4 4. Other				
Gas	N2O				
Member	Projection Approach	Data Sources	Notes		
State		Data Sources	Notes		
AT					
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008		
BG					
CY					
CZ					
DE	Data from previous years	UNFCCC 2010 submission	Value of 2008		
DK					
EE					
ES					
FI					
FR					
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
GR					
HU					
IE					
IT					
LT					
LU					
LV					
MI					
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008		
PL	Data (manada ang				
PT	Data from previous years	UNFCCC 2010 Submission	value of 2008		
RO	Enterna latina farmana incorrectore		Para and the second second and the second		
SE	Extrapolation from previous years	UNFCCC 2010 Submission	linear trend projection via minimum square deviation		
SI					
SK					

Table 67	Methods and data used for CH ₄ emissions from 4.F Field burning of agricul-
	tural residues

Source Category 4.F F. Field Burning of Agricultural Residues				
Gas	CH4			
Member	Decisation Annuageh	Data Courses	Natas	
State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008	
BE				
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008	
CY	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
CZ				
DE				
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008	
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
FR				
UK				
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
HU				
IE				
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
LT				
LU				
LV				
MT				
NL				
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008	
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation	
RO				
SE				
SI				
SK				

Table 68Methods and data used for N2O emissions from 4.F Field burning of agricul-
tural residues

Source Ca	Source Category 4.F F. Field Burning of Agricultural Residues				
Gas	N2O				
Member	Projection Approach	Data Sources	Notos		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
BE					
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
CY	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
CZ					
DE					
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008		
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FR					
UK					
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
HU					
IE					
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LT					
LU					
LV					
MT					
NL					
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
RO					
SE					
SI					
SK					

Source Ca	urce Category 6A A. Solid Waste Disposal on Land				
Gas	CO2				
Member	Projection Approach	Data Sources	Notos		
State			Notes		
AT					
BE					
BG					
CY					
CZ					
DE					
DK					
EE					
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008		
FI					
FR					
UK					
GR					
HU					
IE					
IT					
LT					
LU					
LV					
MT					
NL					
PL					
PT					
RO					
SE					
SI					
SK					

Table 69 Methods and data used for CO_2 emissions from 6.A Solid waste disposal on land

Source Ca	Source Category 6A A. Solid Waste Disposal on Land				
Gas CH4					
Member	Projection Approach	Data Sauraaa	Natas		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
BG	Data from previous years	UNFCCC 2010 submission	Value of 2008		
CY	Data from previous years	UNFCCC 2010 submission	Value of 2008		
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008		
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
MT	Data from previous years	UNFCCC 2010 submission	Value of 2008		
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008		
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation		
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008		

Table 70 Methods and data used for CH₄ emissions from 6.A Solid waste disposal on land

Source Ca	Source Category 6A A. Solid Waste Disposal on Land				
Gas	N2O				
Member	Brojection Approach	Data Sources	Notos		
State		Data Sources	Notes		
AT					
BE					
BG					
CY					
CZ					
DE					
DK					
EE					
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008		
FI					
FR					
UK					
GR					
HU					
IE					
IT					
LT					
LU					
LV					
MT	1				
NL	1				
PL					
PT	1				
RO	1				
SE	1				
SI	1				
SK					

Table 71 Methods and data used for N_2O emissions from 6.A Solid waste disposal on land

Source Category 6B B. Waste Water Handling						
Gas	Gas CH4					
Member	Projection Approach	strandation from providus you	Notos			
State		kitapolation nom previous year	NOICS			
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
CY	Data from previous years	UNFCCC 2010 submission	Value of 2008			
CZ	Data from previous years	UNFCCC 2010 submission	Value of 2008			
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
EE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FI	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008			
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
GR	Data from previous years	UNFCCC 2010 submission	Value of 2008			
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LU	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
MT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
RO	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SE						
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008			

Table 72	Methods and	data used for CH ₄	emissions from 6.	3 Wastewater handling
----------	-------------	-------------------------------	-------------------	-----------------------

Source Category 6B B. Waste Water Handling						
Gas	Gas N2O					
Member	Projection Approach	Data Sources	Notos			
State	Projection Approach	Data Sources	Notes			
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BG	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
CY						
CZ	Data from previous years	UNFCCC 2010 submission	Value of 2008			
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
ES	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
FI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LV	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
MT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
NL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008			

Source Category 6C C. Waste Incineration						
Gas CO2						
Member	Projection Approach	Data Sauraaa	Natao			
State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BG						
CY						
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DE						
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
EE						
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI						
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008			
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008			
IE						
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LU						
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008			
MT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
NL						
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
RO	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008			

Table 74 Methods and data used for CO₂ emissions from 6.C Waste incineration

Source Category 6C C. Waste Incineration						
Gas CH4						
Member	Projection Approach	Data Sources	Notos			
State		Data Sources	Notes			
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
BG						
CY						
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DE						
DK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
EE						
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI						
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008			
UK	Data from previous years	UNFCCC 2010 submission	Value of 2008			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
IE						
IT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
LT						
LU						
LV						
MT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
NL						
PL						
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
RO						
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SI						
SK						

Table 75 N	Methods and	data used for	CH₄ emissions	from 6.C	Waste	incineration
------------	-------------	---------------	---------------	----------	-------	--------------

Source Category 6C C. Waste Incineration						
Gas N2O						
Member	Projection Approach	Data Sauraaa	Natao			
State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
BG						
CY						
CZ	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
DE						
DK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
EE						
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008			
FI						
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
UK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
GR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
HU	Data from previous years	UNFCCC 2010 submission	Value of 2008			
IE						
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
LT						
LU						
LV						
MT	Data from previous years	UNFCCC 2010 submission	Value of 2008			
NL						
PL	Data from previous years	UNFCCC 2010 submission	Value of 2008			
PT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation			
RO						
SE	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SI	Data from previous years	UNFCCC 2010 submission	Value of 2008			
SK	Data from previous years	UNFCCC 2010 submission	Value of 2008			

Table 76 Methods and data used for N ₂ O emissions from 6.C Waste incineration

Source Category 6D D. Other							
Gas CH4							
Member	Projection Approach	Data Sauraaa	Nataa				
State	Projection Approach	Data Sources	Notes				
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
BE	Data from previous years	UNFCCC 2010 submission	Value of 2008				
BG							
CY							
CZ							
DE	Data from previous years	UNFCCC 2010 submission	Value of 2008				
DK							
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
ES	Data from previous years	UNFCCC 2010 submission	Value of 2008				
FI	Data from previous years	UNFCCC 2010 submission	Value of 2008				
FR	Data from previous years	UNFCCC 2010 submission	Value of 2008				
UK							
GR							
HU							
IE							
IT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
LT							
LU	Data from previous years	UNFCCC 2010 submission	Value of 2008				
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008				
MT							
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
PL							
PT							
RO							
SE							
SI							
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				

Table 77	Methods and da	a used for CH	4 emissions from	6.D Other
----------	----------------	---------------	------------------	-----------

Source Category 6D D. Other							
Gas N2O							
Member	Projection Approach	Data Sources	Notes				
State			Holes				
AT	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
BE							
BG							
CY							
CZ							
DE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
DK							
EE	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
ES							
FI	Data from previous years	UNFCCC 2010 submission	Value of 2008				
FR	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
UK							
GR							
HU							
IE							
IT							
LT							
LU	Data from previous years	UNFCCC 2010 submission	Value of 2008				
LV	Data from previous years	UNFCCC 2010 submission	Value of 2008				
MT							
NL	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				
PL							
PT							
RO							
SE							
SI							
SK	Extrapolation from previous years	UNFCCC 2010 submission	linear trend projection via minimum square deviation				

Table 78	Methods and	data used for	N ₂ O er	missions	from 6.D	Other
----------	-------------	---------------	---------------------	----------	----------	-------