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Summary 

 
This paper examines the creation of fine resolution maps at 100 m x 100 m resolution using statistical 
downscaling for the area of Prague, as a case study. This Czech city was selected due to the fine 
resolution proxy data available for this city. The reference downscaling methodology used is the linear 
regression and the interpolation of its residuals by the area-to-point kriging. Next to this, several other 
methods of statistical downscaling have been also executed. The results of different downscaling 
methods have been compared mutually and against the data from the monitoring stations of Prague, 
separately for urban background and traffic areas. In addition, the population exposure estimates 
based on the downscaled mapping results have been also calculated. 
 
The downscaled maps in 100 m x 100 m resolution have been constructed for three pollutants, namely 
for NO2, PM10 and PM2.5. In the maps, one can see overall realistic spatial patterns, for example the 
main roads in Prague are visible through higher air pollution levels. This is distinct especially for NO2, 
while for PM10 and PM2.5 the differences between road increments and urban background are smaller 
as would be expected. The results of the case study for Prague have proven the usefulness of the 
statistical downscaling for the air quality mapping, especially for NO2.   
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1 Introduction 
 
The European-wide air quality maps (Horálek et al., 2022b and references therein) as routinely 
produced using the Regression – Interpolation – Merging Mapping (RIMM) methodology under the 
ETC HE consortium (and its predecessors) are constructed at 1 km by 1 km resolution for health-related 
pollutants and their indicators. However, a need of a finer spatial resolution compared to the current 
grid has recently emerged. More specifically, for the purposes of the integrated assessment of noise 
and air quality in Europe, consistent air quality maps for European cities on a 100 metres  by 100 metres 
grid (i.e., in the same resolution as the noise maps) are required. In Horálek et al. (2022a), several 
possibilities of future development towards European-wide city level mapping at a fine spatial 
resolution have been suggested. 
 
This paper examines the creation of fine resolution maps at 100 m x 100 m resolution using the method 
of statistical downscaling for the area of Prague, as a case study. This Czech city was selected due to 
the fine resolution proxy data available for this city. In statistical downscaling, the spatial resolution of 
a coarse-resolution source dataset is increased to finer spatial resolution using additional information 
from a spatial proxy dataset available at a fine spatial resolution, which is correlated with the original 
coarse-resolution source dataset. As the input dataset at coarse spatial resolution, we used here the 
regular RIMM maps in 1 km x 1 km resolution (Horálek et al., 2022b). As the proxy dataset in fine spatial 
resolution, chemical transport modelling (CTM) output for Prague in 100 m x 100 m resolution has 
been used, namely the combination of the Eulerian model CAMx (ENVIRON, 2011) and the Gaussian 
model SYMOS (CHMI, 2016) outputs. 
 
As a reference downscaling methodology, the combination of linear regression and geostatistical area-
to-point kriging as used in Stebel et al. (2021) has been applied, in agreement with the proposal of 
Horálek et al. (2022a). Additionally, several other simpler approaches has been examined. The results 
have been compared mutually and with the routine maps in 1 km x 1 km resolution based on the air 
quality measurement data from monitoring stations located in Prague, separately for the urban 
background and urban traffic areas. The analysis has been performed for the 2020 annual averages of 
NO2, PM10, and PM2.5.  
 
Next to the mapping results in different variants, the population exposure estimates based on these 
downscaled mapping results have been calculated and mutually compared. 
 
Chapter 2 describes the methodology and the data used. Chapter 3 shows the analysis and the final 
fine resolution maps for Prague. Chapter 4 presents conclusions. 
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2 Methodology and data used 
 

2.1 Methodology  
 
2.1.1 Statistical downscaling 
For preparing the fine resolution maps, statistical downscaling using a linear regression model and 
interpolation of its residuals has been applied, similarly as in Stebel et al. (2021) and Park (2013). This 
methodology increases the spatial resolution of a coarse source dataset using spatial proxy or auxiliary 
datasets that are available at a fine spatial resolution and that are to some extent correlated with the 
source dataset. The parameters of the linear regression model (LRM) are estimated at the coarse 
resolution: the source dataset in this resolution is a dependent variable, while the proxy datasets 
spatially aggregated to the same coarse resolution are the independent variables. As the reference 
downscaling method for the interpolation of the LRM residuals, area-to point kriging (Kyriakidis, 2004) 
is used. An alternative simpler method for the interpolation of the LRM residuals is bilinear 
interpolation (ESRI, 2021). Bilinear interpolation calculates the fine grid value based on the values of 
four closest coarse grid cell centres using the weighted average, applying weights based on the 
distance of the grid cell centres. 
 
The statistical downscaling is performed according to the equation 
 

 𝑍̂(𝑠0) =  𝑐 + 𝑎1𝑋1(𝑠0) + 𝑎2𝑋2(𝑠0) + ⋯ + 𝑎𝑛𝑋𝑛(𝑠0) + 𝜂̂(𝑠0)   (2.1) 
 

where 𝑍̂(𝑠0) is the estimated concentration at a point so of the fine grid, 
 X1(s0),…, Xn(s0)  are n proxy variables at a point so of the fine grid, 

c, a1, a2,,…, an  are the n+1 parameters of the linear regression model calculated at the coarse 
resolution (using source dataset and aggregated proxy datasets) , 
𝜂̂(𝑠0) is the downscaling interpolation of the residuals of the linear regression model (as 
calculated at the coarse resolution) at a point so of the fine grid, either using the area-to point kriging 
or the bilinear interpolation. 
 
One can see that Equation 2.1 consists of the regression and the interpolation part. Next to the two 
downscaling methods described by the whole Equation 2.1, i.e. LRM and area-to-point kriging on its 
residuals (LR.a2p) and LRM and bilinear interpolation on its residuals (LR.bl), three additional methods 
are also used that are decribed only by either regression or interpolation part of this equation. These 
methods are LRM without further interpolation (LR) and the interpolation without preciding LRM using 
either area-to-point kriging (a2p) or bilinear interpolation (bl). 
 
In this report, the operational mapping result in 1 km x 1 km resolution (see Section 2.2.1) is used as a 
coarse source dataset, while the chemical transport modelling (CTM) output in 100 m x 100 m 
resolution (see Section 2.2.2) is used as the only fine resolution proxy dataset.  
 
2.1.2 Comparison and validation of the mapping results  
The evaluation of the maps and their mutual comparison is executed against the measurement data. 
The statistical indicators used are root mean square error (RMSE), relative root mean square error 
(RRMSE) and bias (mean prediction error, MPE): 
 

 𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑍̂(𝑠𝑖) − 𝑍(𝑠𝑖))

2
𝑁
𝑖=1      (2.2) 

 𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑍
. 100      (2.3) 

 𝑏𝑖𝑎𝑠(𝑀𝑃𝐸) =
1

𝑁
∑ (𝑍̂(𝑠𝑖) − 𝑍(𝑠𝑖))𝑁

𝑖=1      (2.4) 
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where   𝑍(𝑠𝑖) is the measurement value at the ith point, i = 1, …, N, 

𝑍̂(𝑠𝑖) is the estimated value at the ith point, i = 1, …, N,, 
𝑍̅ is the mean of the values Z(s1), …, Z(sN) as measured at points i = 1, … , N, 
N is the number of the measurement points. 

 
RMSE and RRMSE should be as small as possible, bias (MPE) should be as close to zero as possible. 
 
2.1.3 Population exposure 
Population exposure (i.e. percentage population for several concentration classes) has been calculated 
for different mapping results in the 100 m x 100 m resolution (see Section 2.1.1). These results in 
several variants have been compared with the commonly calculated population exposure based on 
the separate mapping layers (i.e. using the background and the urban traffic map layers at 1 km x 1 km 
resolution and weighting them based on buffers around the roads), as routinely applied in the regular 
mapping (Horálek et al., 2022b). In addition, the population exposure based on the coarse resolution 
RIMM maps (without taking into account the separate mapping layers) have been calculated. In all 
cases, the population density data in 1 km x 1 km resolution (see Section 2.2.4) have been used.  
 
Next to this, the population-weighted concentration has been also calulated for different mapping 
variants, according to the equation:  
 

 ĉ =
∑ 𝑐𝑖

𝑁
𝑖=1 𝑝𝑖

∑ 𝑝𝑖
𝑁
𝑖=1

       (2.5) 

 
where ĉ is the population-weighted average concentration in the mapping area, 
 pi is the population in the ith grid cell, 
 ci is the concentration in the ith grid cell, 
 N is the number of grid cells in the mapping area. 
 
 

2.2 Data used  
 
2.2.1 Original maps in coarse resolution  
As the input maps in coarse resolution, the regular RIMM maps in 1x1 km resolution for 2020 as 
routinely produced under ETC HE (Horálek et al., 2022b) have been applied. 
 
The maps of following pollutants and aggregations have been used: 
NO2  – annual average [µg/m3], year 2020, 
PM10  – annual average [µg/m3], year 2020,  
PM2.5 – annual average [µg/m3], year 2020. 
 
2.2.2 Chemical transport modelling (CTM) output in fine resolution  
As the proxy data in fine resolution, a combination of two air quality dispersion model outputs in 
100 m x 100 m resolution as earlier prepared for the Czech national project ARAMIS have been used. 
In this combination, the fine-scale output of the Gaussian model SYMOS (CHMI, 2016) was combined 
with the 2325 m × 2325 m resolution output of the Eulerian chemical transport model (CTM) CAMx 
(ENVIRON, 2011). The SYMOS model provided annual average concentrations (contributions) of 
primary pollutants resulting from the road traffic (only roads covered by the traffic census were 
included), while in the CAMx model, all known sources were included and outputs for all hours were 
calculated and subsequently aggregated to the annual averages, which were further processed. 
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For the calculation by the SYMOS model, all roads (line sources) were divided into segments of 
maximum length of 20 m. For each point of the SYMOS’s grid, contributions of all the road segments 
within 2-km distance were summed up. The combination of CAMx and SYMOS models was performed 
in five steps. At first, the SYMOS model was calculated on the 155 m × 155 m grid, in three levels of 2, 
25 and 48 metres above ground, in order to cover homogenously the CAMx three-dimensional grid of 
2325 m × 2325 m horizontally and cca 50 m vertically. Then, the aggregation of this SYMOS model 
output to the three-dimensional CAMx grid was performed.  In the second step, this aggregated SYMOS 
model output was subtracted from the CAMx model output, in order to avoid a double counting of 
traffic emissions. In the third step, this adjusted CAMx output was resampled to the final 100 m × 
100 m grid (each grid point was assigned value from the corresponding CAMx grid cell). In the fourth 
step, the SYMOS model was calculated on the same final 100 m × 100 m grid. And in the last fifth step, 
adjusted CAMx model and SYMOS model (both on the final 100 m × 100 m grid) were summed up.  
 
The modelling outputs of following pollutants have been used: 
NOx  – annual average [µg/m3], year 2020, 
PM10  – annual average [µg/m3], year 2020.  
 
The reason for calculation of NOx (not NO2) was the fact that in the Gaussian dispersion model SYMOS, 
only simple empirical parametrization of conversion of NO to NO2 is taken into account. 
 
The NOx modelling output has been further used as a fine resolution proxy data in the downscaling for 
NO2 map, while the PM10 modelling output as a proxy in the downscaling  of both PM10 and PM2.5 maps.    
 
 
2.2.3 Air quality monitoring data 
For the validation and mutual comparison of the downscaling results, we have used the air quality 
station monitoring data for 2020 coming from the Air Quality e-Reporting database (EEA, 2022). Data 
from stations located in Prague and classified as background or traffic (for the two relevant types of 
area, i.e. urban and suburban) have been considered. Only stations with annual data coverage of at 
least 75 percent have been used. Table 2.1 shows the number of the measurement stations  selected 
for the individual pollutants. 
 
Table 2.1: Number of stations used in validation for each pollutant and area type, 2020, Prague 

Station type 
NO2  PM10 PM2.5 

Annual average Annual average Annual average 

Urban and suburban background 7 8 3 

Urban and suburban traffic 5 5 1 

 
Figure 2.1 presents the monitoring stations used in validation for different pollutants, including their 
annual average values for 2020. 
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Figure 2.1: Spatial distribution of NO2 (left), PM10 (middle) and PM2.5 (right) monitoring stations 
used in validation, including the measured annual average concentration, 2020, Prague 

 
 
 
2.2.4 Population density data 
Population density (in inhbs/km2, census 2011) is based on the Geostat 2011 grid dataset, Eurostat 
(2014). Just as in Horálek et al. (2022b), these data have been scaled to 2020 data using the national 
population totals for 2020 (Eurostat, 2022). 
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3 Analysis and map creation 
 
In this chapter, the results of the different downscaling techniques are compared mutually and with 
the original regular maps in coarse 1 km x 1 km resolution. For each pollutant, the following mapping 
results are compared: 

- original regular RIMM map (O), coarse resolution 1 km x 1 km, 
- area-to-point kriging on original map (a2p), resolution 100 m x 100 m, 
- bilinear interpolation on original map (bl), resolution 100 m x 100 m, 
- linear regression (LR), resolution 100 m x 100 m, 
- linear regression and area-to-point kriging on its residuals (LR.a2p), resolution 100 m x 100 m, 
- linear regression and bilinear interpolation on its residuals (LR.bl), resolution 100 m x 100 m. 

 
The reference downscaling methodology used is the linear regression and the interpolation of its 
residuals by the area-to-point kriging (LR.a2p). As an alternative, simple bilinear interpolation is used 
for the interpolation of the linear regression´s residuals instead of the geostatistical area-to-point 
kriging. The advantage of the bilinear interpolation is that it is not so computationally demanding 
compared to the area-to-point kriging. Next to these two downscaling methods (LR.a2p) and (LR.bl) 
that comprise both linear regression and interpolation, downscaling methods using only interpolation 
and linear regression only are also examined in addition, i.e. methods (a2p), (bl) and (LR). 
 
Apart from a statistical analysis, the final fine resolution maps are presented for each pollutant. For 
consistency, the same downscaling method have been used for production of these maps, namely the 
linear regression and area-to-point kriging on its residuals (LR.a2p), which is the reference downscaling 
method in this paper. 
 
Next to the downscaled mapping results, population exposure based on these results have been also 
estimated. The population exposure calculated based on the different downscaled mapping results in 
the 100 m x 100 m resolution have been compared with the commonly calculated population exposure 
based on the separate urban background and traffic map layers (using buffers around the roads), as 
routinely applied in the regular mapping (Horálek et al., 2022b), labelled (SO_bf). In addition, the 
population exposure based on the coarse resolution RIMM maps (without taking into account the 
separate mapping layers) have been calculated, labelled (O_1k). 
 
Section 3.1 presents the results for NO2, Section 3.2 for PM10 and Section 3.3 for PM2.5. 
 

3.1 NO2 annual average  
 
As a first step, the linear regression parameters have been estimated at the coarse resolution (when 
the dependent variable is the original regular RIMM map and the independent variable is the fine-
resolution CTM output aggregated  to the same coarse resolution). The estimated intercept is c = 4.41, 
the estimated slope is a = 0.683, the adjusted R2 is 0.639 and the standard error is 2.20 µg/m3. 
 
Table 3.1 presents the comparison of different mapping results in the fine 100 m x 100 m resolution 
and the original RIMM map in the coarse 1 km x 1 km resolution for NO2 annual average 2020 in Prague. 
The table rows highlighted by green and light green show the statistics that provide the best and the 
second best performances.  
 
In addition, the table presents also the scores for the modelling proxy data in the fine resolution 
(highligted by light blue), although the modelling results show NOx values, not NO2. These scores (i.e. 
statistics of NOx modelling results against the NO2 measurement data) are presented for illustration 
only and are not further used in the comparison.  
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Table 3.1: Comparison of different mapping results showing RMSE, RRMSE and bias against 
measurement data of urban and suburban background (left) and traffic (right) stations 
for NO2 annual average 2020 in Prague. Units: µg/m3 except RRMSE 

RMSE RRMSE Bias RMSE RRMSE Bias

M Fine-resolution CTM model, NOx, 100 m x 100 m 1.6 9.3 -1.0 7.4 26.3 -5.3

O Original regular RIMM map, 1 km x 1 km 2.6 14.8 0.7 10.8 38.3 -9.1

a2p Area-to point kriging on original map, 100 m x 100 m 2.5 14.3 1.1 11.1 39.3 -9.4

bi Bilinear interpolation on original map, 100 m x 100 m 2.3 12.8 0.9 10.9 38.6 -9.2

LR Linear regression, 100 m x 100 m 2.3 13.1 -1.9 9.4 33.2 -8.2

LR.a2p LR + a2p kriging on its residuals, 100 m x 100 m 1.8 10.0 0.0 8.5 29.9 -7.0

LR.bi LR + bl interpolation on its residuals, 100 m x 100 m 1.9 10.8 -0.1 8.6 30.3 -7.0

Mapping Variant Urban Background Areas Urban Traffic Areas

NO2 Annual Average

 
 
Looking at Table 3.1, one can see that the best results are given by the downscaling methods (LR.a2p) 
and (LR.bl), with slightly better performance provided by (LR.a2p). Both of these methods improve the 
results given by the original map in the coarse 1 km x 1 km resolution in terms of all statistics, i.e. RMSE, 
RRMSE and bias. While the original coarse resolution results are moderately overestimated in the 
urban background areas, the downscaled results show no or almost no bias in these areas. The traffic 
areas are still somewhat underestimated in the fine 100 m x 100 m resolution, however the mean level 
of this bias is reduced from -9 µg/m3 to -7 µg/m3 for the area of Prague. 
 
Figure 3.1 shows the coarse-resolution input data (i.e., original RIMM map in 1 km x 1 km resolution), 
the fine-resolution modelled proxy data and the different mapping results in the fine 100 m x 100 m 
resolution. In addition, re-aggregation of two downsclaing results (LR.a2p) and (LR.bl) to the coarse 
resolution 1 km x 1 km is also shown. 
 
Looking at the maps, one can see the main roads with elevated NOx and NO2 concentrations both in 
the fine-resolution CTM proxy data and in the downscaled mapping results of methods using linear 
regression, i.e. (LR), (LR.a2p) and (LR.bl). It can be seen that the downscalling methods (LR.a2p) and 
(LR.bl) give almost the same results. 
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Figure 3.1: Coarse-resolution input data (top left), fine-resolution modelled proxy data (top middle) 
and the fine resolution mapping results of the downscaling methods LR (top right), 
a2p (centre left), LR.a2p (centre middle), bl (bottom left) and Lr.bl (bottom middle) and 
the re-aggregated mapping results of the downscaling methods LR.a2p (centre right) 
and LR.bl (bottom right) to the coarse resolution for NO2 annual average 2020, Prague 

 
 
In order further to examine the downscaled mapping results, the difference maps of downscaled vs. 
coarse-resolution mapping data and re-aggregated downscaled vs. coarse-resolution mapping data 
have been prepared, as well as the maps showing the differences of the downscaled mapping results 
vs. measurement data in the points of the measurement stations (separatelly for the urban/suburban 
background and the urban/suburban traffic stations). These maps have been prepared for the 
downscaling methods (LR.a2p) and (LR.bl), see Figure 3.2. 
 
Looking at the difference maps of fine-resolution downscaled maps vs. coarse-resolution input data, 
one can see the effect of the downscalling. In these difference maps, the main roads with higher NO2 
concentrations estimated by the downscaled maps can be seen. The difference maps of re-aggregated 
downscaled maps vs. coarse-resolution map input data show into which level the downscaling method 
is mass-conservative, i.e. how it changes the values of the coarse-resolution grid cells. 
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Figure 3.2: Difference between downscaled mapping results and coarse-resolution input data (left), 
re-aggregated downscaled mapping results and coarse-resolution input data (middle) 
and downscaled mapping results and measurement data (right) based on the 
downscaling methods LR.a2p (centre right) and LR.bl (bottom right) for NO2 annual 
average 2020, Prague 

 
 
Map 3.1 presents the final fine resolution map of NO2 annual average 2020 for Prague, as created by 
the reference downscaling method (LR.a2p), i.e. the linear regression and area-to-point kriging on its 
residuals. In the map, one can see the main roads in Prague with elevated NO2 concentrations. 
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Map 3.1: Fine resolution concentration map of NO2 annual average 2020, Prague 

 
 
Next to the downscaled mapping results, population exposure based on these results have been 
estimated and compared with the commonly calculated population exposure based on the separate 
urban background and traffic map layers, as routinely applied in the regular mapping (Horálek et al., 
2022b). In addition, the population exposure based on the coarse resolution RIMM maps (without 
taking into account the separate mapping layers) have been also calculated. 
 
Table 3.2 presents the population frequency distribution for a limited number of exposure classes to 
NO2 concentrations and the population-weighted concentration as calculated based on the different 
mapping results. 
 
Table 3.2: Population exposure and population-weighted concentration for NO2 annual average 

2020 in Prague calculated based on different mapping results 

< 10 10-20 20-30 30-40 40-45 > 45

μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 [μg/m3]

SO_bf Separate RIMM map layers + buffers 1 421 394 20 716 1 144 980 255 698 0 0 0 17.5

O_1k Coarse RIMM map, 1 km x 1 km 1 421 394 19 672 1 075 290 326 432 0 0 0 17.5

a2p Area-to point kriging, 100 m x 100 m 1 421 394 22 550 1 083 990 314 854 0 0 0 17.2

bl Bilinear interpolation, 100 m x 100 m 1 421 394 22 403 1 090 692 308 299 0 0 0 17.1

LR Linear regression, 100 m x 100 m 1 421 394 57 865 1 254 947 107 251 1 330 0 0 15.3

LR.a2p LR + a2p on its residuals, 100 m x 100 m 1 421 394 30 553 1 078 150 310 959 1 732 0 0 17.1
LR.bl LR + bl on its residuals, 100 m x 100 m 1 421 394 28 586 1 081 932 309 144 1 732 0 0 17.1

Mapping Variant Exposed Population

NO2 Annual Average

Pop.-w. 

Conc.

Population 

[inhbs]

 
 
Looking at the results, one can see that the method (LR) gives noticebly smaller estimate of the 
population-weighted concentration, compared to the other methods. 
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3.2 PM10 annual average  
 
At first, the linear regression parameters have been estimated at the coarse resolution (when the 
dependent variable is the original regular RIMM map and the independent variable is the fine-
resolution CTM output aggregated  to the same coarse resolution). The estimated intercept is c = 12.03, 
the estimated slope is a = 0.328, the adjusted R2 is 0.369 and the standard error is 1.07 µg/m3. One can 
see only quite a weak correlation between the coarse-resolution data and the proxy data. 
 
Table 3.3 presents the comparison of different mapping results in the fine 100 m x 100 m resolution 
and the original RIMM map in the coarse 100 m x 100 m resolution for PM10 annual average 2020 in 
Prague. Again, the rows highlighted by green and light green show the statistics that provide the best 
and the second best downscaling performances. 
 
Table 3.3: Comparison of different mapping results showing RMSE, RRMSE and bias against 

measurement data of urban and suburban background (left) and traffic (right) stations 
for PM10 annual average 2020 in Prague. Units: µg/m3 except RRMSE 

RMSE RRMSE Bias RMSE RRMSE Bias

M Fine-resolution CTM model, 100 m x 100 m 1.5 9.2 -1.1 2.9 13.7 -2.3

O Original regular RIMM map, 1 km x 1 km 1.5 8.8 1.1 3.2 15.1 -2.9

a2p Area-to point kriging on original map, 100 m x 100 m 1.5 9.3 1.1 3.3 15.7 -3.1

bl Bilinear interpolation on original map, 100 m x 100 m 1.5 9.2 1.1 3.3 15.3 -3.0

LR Linear regression, 100 m x 100 m 1.0 6.1 0.5 3.2 15.0 -3.0

LR.a2p LR + a2p kriging on its residuals, 100 m x100 m 1.4 8.1 0.9 2.8 13.3 -2.6

LR.bl LR + bl interpolation on its residuals, 100 m x 100 m 1.3 8.0 0.9 2.8 13.3 -2.6

Mapping Variant Urban Background Areas Urban Traffic Areas

PM10 Annual Average

 
 
The results presented in Table 3.3 for PM10 are not as straigtforward as those shown for NO2 in Table 
3.1. The downscaling methods (LR.a2p) and (LR.bl) are the best ones for the traffic areas, however only 
the second best ones for the urban background areas, for which the best results are given by the 
method (LR), i.e. by simple linear regression without further interpolation of its residuals. Compared 
to the original map in coarse resolution, these downscaled fine resolution maps give only slightly better 
results. The results are driven by three stations (and mainly by two of them) in the suburban areas with 
coarse results overestimated. Thus, the pure linear regression gives better results for them than the 
variants in which the residuals bring the values closer to the coarse map. 
 
Figure 3.3 shows the coarse-resolution input data (i.e., original RIMM map in 1 km x 1 km resolution), 
the fine-resolution modelled proxy data and the different mapping results in the fine 100 m x 100 m 
resolution. In addition, re-aggregation of two downscaling results (LR.a2p) and (LR.bl) to the coarse 
resolution 1 km x 1 km is also shown. 
 
Compared to the downscaled NO2 maps (see Figure 3.1), the main roads are less visible in the 
downscaled mapping results. As in the case of NO2, the downscalling methods (LR.a2p) and (LR.bl) give 
almost the same results. 
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Figure 3.3: Coarse-resolution input data (top left), fine-resolution modelled proxy data (top middle) 
and the fine resolution mapping results of the downscaling methods LR (top right), 
a2p (centre left), LR.a2p (centre middle), bl (bottom left) and Lr.bl (bottom middle) and 
the re-aggregated mapping results of the downscaling methods LR.a2p (centre right) 
and LR.bl (bottom right) to the coarse resolution for PM10 annual average 2020, Prague 

 
 
Just as for NO2, the difference maps of downscaled vs. coarse-resolution mapping data and re-
aggregated downscaled vs. coarse-resolution mapping data have been prepared, as well as the maps 
showing the differences of the downscaled mapping results vs. measurement data in the points of the 
measurement stations, see Figure 3.4. Again, these maps have been prepared for the downscaling 
methods (LR.a2p) and (LR.bl).  
 
One can see that the effect of the downscaling is smaller for PM10 compared to the NO2 (see Figure 
3.2). In the difference maps of fine-resolution downscaled maps vs. coarse-resolution input data, one 
can see several main roads with higher PM10 concentrations estimated by the downscaled maps. 
Looking at the difference maps of re-aggregated downscaled maps vs. coarse-resolution map input 
data, one can state that the re-aggregated downscaled maps give almost the same results as the 
original coarse map. 
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Figure 3.4: Difference between downscaled mapping results and coarse-resolution input data (left), 
re-aggregated downscaled mapping results and coarse-resolution input data (middle) 
and downscaled mapping results and measurement data (right) based on the 
downscaling methods LR.a2p (centre right) and LR.bl (bottom right) for PM10 annual 
average 2020, Prague 

 
 
Map 3.2 shows the final fine resolution map of PM10 annual average 2020 for Prague, as created by 
the reference downscaling method (LR.a2p), i.e. the linear regression and area-to-point kriging on its 
residuals.  
 
Looking at Map 3.2, one can note that the roads are not as visible as in the case of NO2 (see Map 3.1). 
The reason probably is that the differences between the traffic and the background air pollution are 
not so profound for PM10 as for NO2. 
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Map 3.2: Fine resolution concentration map of PM10 annual average 2020, Prague 

 
 
Table 3.4 presents the population frequency distribution for a limited number of exposure classes to 
PM10 concentrations and the population-weighted concentration as calculated based on the different 
mapping results. 
 
Table 3.4: Population exposure and population-weighted concentration for PM10 annual average 

2020 in Prague calculated based on different mapping results 

< 10 10-20 20-30 30-40 40-50 > 50

μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 [μg/m3]

SO_bf Separate RIMM map layers + buffers 1 421 394 8 465 1 318 216 94 713 0 0 0 17.8

O_1k Coarse RIMM map, 1 km x 1 km 1 421 394 7 128 1 414 266 0 0 0 0 17.8

a2p Area-to point kriging, 100 m x 100 m 1 421 394 12 630 1 408 763 0 0 0 0 17.7

bl Bilinear interpolation, 100 m x 100 m 1 421 394 12 510 1 408 883 0 0 0 0 17.7

LR Linear regression, 100 m x 100 m 1 421 394 0 1 405 207 16 187 0 0 0 17.2

LR.a2p LR + a2p on its residuals, 100 m x 100 m 1 421 394 17 929 1 386 612 16 853 0 0 0 17.7
LR.bl LR + bl on its residuals, 100 m x 100 m 1 421 394 16 415 1 387 960 17 019 0 0 0 17.7

Mapping Variant Exposed Population

PM10 Annual Average

Pop.-w. 

Conc.

Population 

[inhbs]

 
 
 

3.3 PM2.5 annual average  
 
At first, the linear regression parameters have been estimated at the coarse resolution (when the 
dependent variable is the original regular RIMM map and the independent variable is the fine-
resolution CTM output aggregated  to the same coarse resolution). The estimated intercept is c = 8.88, 
the estimated slope is a = 0.213, the adjusted R2 is 0.358 and the standard error is 0.71 µg/m3. Similarly 
as in the case of PM10, there is only quite a weak correlation between the coarse-resolution data and 
the proxy data. 
 
Table 3.5 gives the comparison of different mapping results in the fine 100 m x 100 m resolution and 
the original RIMM map in the coarse 100 m x 100 m resolution for PM2.5 annual average 2020 in Prague. 



 

 

ETC-HE Report 2022/24 19 

Again, the rows highlighted by green and light green show the statistics that provide the best and the 
second best performances. It should be noted that PM2.5 observations from only three background 
stations and one traffic station have been available for evaluation (EEA, 2022), which influences the 
robustness of the results.   
 
Table 3.5: Comparison of different mapping results showing RMSE, RRMSE and bias against 

measurement data of urban and suburban background (left) and traffic (right) stations 
for PM2.5 annual average 2020 in Prague. Units: µg/m3 except RRMSE 

RMSE RRMSE Bias RMSE RRMSE Bias

M Fine-resolution CTM model, PM10, 100 m x 100 m 3.24 27.4 3.18 8.52 63.7 8.52

O Original regular RIMM map, 1 km x 1 km 0.82 6.9 0.65 0.32 2.4 -0.32

a2p Area-to point kriging on original map, 100 m x 100 m 0.93 7.9 0.81 0.40 3.0 -0.40

bi Bilinear interpolation on original map, 100 m x 100 m 0.88 7.5 0.77 0.40 3.0 -0.40

LR Linear regression, 100 m x 100 m 0.50 4.2 0.27 0.18 1.3 0.18

LR.a2p LR + a2p kriging on its residuals, 100 m x100 m 0.87 7.4 0.63 0.23 1.7 0.23

LR.bi LR + bl interpolation on its residuals, 100 m x 100 m 0.84 7.1 0.61 0.25 1.8 0.25

Mapping Variant Urban Background Areas Urban Traffic Areas

PM2.5 Annual Average

 
 
Looking at Table 3.5, one can see that for the urban background areas, the best results are given by  
the simple linear regression (LR), while for the traffic areas, the best results are shown by methods 
(LR), (LR.a2p) and (LR.bl). The results of these downscaled maps are only slightly better compared to 
the results of the original coarse resolution map. This is probably highly influenced by the weak 
correlation between coarse-resolution data and the proxy data. In any case, due to the very limited 
number of the monitoring stations, one cannot make strong conclusions. 
 
Figure 3.5 shows the coarse-resolution input data (i.e., original RIMM map in 1 km x 1 km resolution), 
the fine-resolution modelled proxy data and the different mapping results in the fine 100 m x 100 m 
resolution. In addition, re-aggregation of two downsclaing results (LR.a2p) and (LR.bl) to the coarse 
resolution 1 km x 1 km is also shown. 
 
Again, the downscalling methods (LR.a2p) and (LR.bl) give almost the same results. Like for PM10, the 
main roads are less visible in the downscaled mapping results compared to the downscaled NO2 maps 
(see Figure 3.1).  
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Figure 3.5: Coarse-resolution input data (top left), fine-resolution modelled proxy data (top middle) 
and the fine resolution mapping results of the downscaling methods LR (top right), 
a2p (centre left), LR.a2p (centre middle), bl (bottom left) and Lr.bl (bottom middle) and 
the re-aggregated mapping results of the downscaling methods LR.a2p (centre right) 
and LR.bl (bottom right) to the coarse resolution for PM2.5 annual average 2020, Prague 

 
 
Figure 3.6 gives the difference maps of downscaled vs. coarse-resolution mapping data and re-
aggregated downscaled vs. coarse-resolution mapping data, as well as the maps showing the 
differences of the downscaled mapping results vs. measurement data in the points of the 
measurement stations. Again, these maps have been prepared for the downscaling methods (LR.a2p) 
and (LR.bl).  
 
Similarly as for PM10, the effect of the downscaling is smaller for PM2.5 compared to the NO2 (see Figure 
3.2). Again, one can see several main roads with higher PM2.5 concentrations estimated by the 
downscaled maps.  
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Figure 3.6: Difference between downscaled mapping results and coarse-resolution input data (left), 
re-aggregated downscaled mapping results and coarse-resolution input data (middle) 
and downscaled mapping results and measurement data (right) based on the 
downscaling methods LR.a2p (centre right) and LR.bl (bottom right) for PM2.5 annual 
average 2020, Prague 

 
 
Map 3.3 presents the fine resolution map of PM2.5 annual average 2020 for Prague, as created by the 
reference downscaling method (LR.a2p), i.e. the linear regression and area-to-point kriging on its 
residuals. 
 
Looking at Map 3.3, one can see only slightly higher PM2.5 concentrations in the main roads. The reason 
probably is that the traffic increment is not so large in the case of PM2.5. 
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Map 3.3: Fine resolution concentration map of PM2.5 annual average 2020, Prague 

 
 
Table 3.6 presents the population frequency distribution for a limited number of exposure classes to 
PM2.5 concentrations and the population-weighted concentration as calculated based on the different 
mapping results. 
 
 
Table 3.6: Population exposure and population-weighted concentration for PM2.5 annual average 

2020 in Prague calculated based on different mapping results 

< 5 5-10 10-15 15-20 20-25 > 25

μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 [μg/m3]

O_bf 1 421 394 0 992 1 420 402 0 0 0 12.6

O_1k Coarse RIMM map, 1 km x 1 km 1 421 394 0 992 1 420 402 0 0 0 12.6

a2p Area-to point kriging, 100 m x 100 m 1 421 394 0 1 234 1 420 160 0 0 0 12.5

bl Bilinear interpolation, 100 m x 100 m 1 421 394 0 815 1 420 578 0 0 0 12.5

LR Linear regression, 100 m x 100 m 1 421 394 0 0 1 415 124 6 262 8 0 12.3

LR.a2p LR + a2p on its residuals, 100 m x 100 m 1 421 394 0 1 318 1 415 551 4 525 0 0 12.5
LR.bl LR + bl on its residuals, 100 m x 100 m 1 421 394 42 993 1 415 597 4 763 0 0 12.5

Mapping Variant Exposed Population

PM2.5 Annual Average

Pop.-w. 

Conc.

Population 

[inhbs]

 
  



 

 

ETC-HE Report 2022/24 23 

4 Conclusion  
 
The report examines the city-level air quality mapping at the fine resolution 100 m x 100 m for the area 
of Prague, as a case study. Several methods of statistical downscaling have been implemented and 
evaluated. The reference downscaling methodology used is the linear regression and the interpolation 
of its residuals by the area-to-point kriging. As an alternative, bilinear interpolation is used for the 
interpolation of the linear regression´s residuals. In addition and for comparison purposes, methods 
using the interpolation only and the linear regression only have been also examined. The results of 
different downscaling methods have been compared based on the data from the monitoring stations 
of Prague, separately for urban background and traffic areas. 
 
Based on the analysis, it can be concluded that the best results for NO2 are given by the downscaling 
methods of the linear regression and the interpolation of its residuals, either by the area-to-point 
kriging or the bilinear interpolation. Both these methods improve the results given by the original map 
in the coarse 1 km x 1 km resolution. The downscaled results show almost no bias in the urban 
background areas. The traffic areas are still somewhat underestimated in the fine resolution, however 
the level of this bias is reduced, compared to the coarse resolution map.  
 
For PM10, the downscaling methods of the linear regression and the interpolation of its residuals give 
the best ones for the traffic areas, however only the second best ones for the urban background areas, 
for which the best results are given by simple linear regression. Compared to the original coarse 
resolution map, the downscaled maps give only slightly better results. 
 
For PM2.5, the best downscaling results are given by simple linear regression, followed by the methods 
of the linear regression and the interpolation of its residuals. However, due to very limited number of 
the monitoring stations available fo PM2.5, one cannot make strong conclusions. 
 
These findings agree with those obtained from other downscaling methods (e.g. the uEMEP 
downscaling approach, Denby et al., 2020) that also tend to perform best for NO2 and show 
significantly poorer results for particulate matter. The reasons can vary somewhat from method to 
method, however in general downscaling methods will perform better for pollutants such as NO2, for 
which the pollution typically remains spatially relatively close to their emissions sources. 
 
The downscaled maps in 100 m x 100 m resolution have been constructed for three pollutants, namely 
for NO2, PM10 and PM2.5. In the maps, one can see overall realistic spatial patterns, for example the 
main roads in Prague are visible through higher air pollution levels. This is distinct especially for NO2, 
while for PM10 and PM2.5 the differences between road increments and urban background are smaller 
as would be expected. Based on the downscaled mapping results, the population exposure estimates 
have been also calculated, in addition. 
 
The results of the case study for Prague have proven the usefulness of the statistical downscaling for 
the air quality mapping, especially for NO2. It is recommended further to examine the downscaling for 
more cities of Europe (ideally for all cities of the Eurostat´s Urban Audit), including the population 
exposure estimates. Such examination is dependent on available proxy data in fine resolution. Next to 
the statistical downscaling, applying the existing mapping methodology but exploiting a high-
resolution CTM output (e.g. from the uEMEP model, Denby et al., 2020) should be also examined if 
possible, as recommended in Horálek et al. (2022a).  
 

  



 

 

ETC-HE Report 2022/24 24 

List of abbreviations 
 

Abbreviation Name Reference 

 

AQ Air Quality  

AQG Air Quality Guideline  

CAMx Comprehensive Air Quality Model with Extensions https://www.camx.com/ 

CHMI Czech Hydrometeorological Institute https://www.chmi.cz/ 

CTM Chemical Transport model  

EEA  European Environment Agency www.eea.europa.eu 

ETC HE European Topic Centre on  Human health and the 
Environment 

https://www.eionet.europ
a.eu/etcs 

EU European Union https://european-
union.europa.eu 

GRIP Global Roads Inventory Dataset  

ILV Indicative Limit Value http://eur-
lex.europa.eu/LexUriServ/L
exUriServ.do?uri=OJ:L:200
8:152:0001:0044:EN:PDF 

LV Limit Value http://eur-
lex.europa.eu/LexUriServ/L
exUriServ.do?uri=OJ:L:200
8:152:0001:0044:EN:PDF 

NILU Norwegian Institute for Air Research https://www.nilu.no/  

NO2 Nitrogen dioxide  

PM10 Particulate Matter with a diameter of 10 
micrometres or less  

 

PM2.5 Particulate Matter with a diameter of 2.5 
micrometres or less  

 

R2 Coefficient of determination  

RIMM Regression – Interpolation – Merging Mapping  

RMSE Root Mean Square Error  

SAMIRA Satellite based Monitoring Initiative for Regional Air 
Quality 

https://samira.nilu.no 

WHO World Health Organization https://www.who.int/ 
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